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The endocannabinoid system (ECS) and reactive oxygen species (ROS) consti-

tute two key cellular signalling systems that participate in the modulation of

diverse cellular functions. Importantly, growing evidence suggests that

cross-talk between these two prominent signalling systems acts to modulate

functionality of the ECS as well as redox homeostasis in different cell types.

Herein, we review and discuss evidence pertaining to ECS-induced regulation

of ROS generating and scavenging mechanisms, as well as highlighting emer-

ging work that supports redox modulation of ECS function. Functionally, the

studies outlined reveal that interactions between the ECS and ROS signalling

systems can be both stimulatory and inhibitory in nature, depending on cell

stimulus, the source of ROS species and cell context. Importantly, such

cross-talk may act to maintain cell function, whereas abnormalities in either

system may propagate and undermine the stability of both systems, thereby

contributing to various pathologies associated with their dysregulation.
1. Introduction
The cellular redox environment constitutes a delicate balance between the pro-

duction of reactive oxygen species (ROS) and their removal by antioxidant

enzymes and small-molecular-weight antioxidants. At low concentrations,

ROS are involved in regulating numerous physiological events, including

their ability to mediate signal transduction from membrane receptors, thereby

facilitating the activation of multiple proteins and enzymes [1,2]. However,

excess accumulation of intracellular ROS causes oxidative stress, which can

damage cellular membranes, promote mitochondrial injury and induce cell

death, thereby negatively impacting upon cell function and survival [3–5].

Notably, this is largely owing to the damaging effects that free radicals

convey upon cellular lipids, proteins and DNA, thus impairing their normal

function. Accordingly, the dysregulation of redox homeostasis has been

linked with the development of various pathologies, including those associated

with metabolic disorders such as type 2 diabetes and obesity, cardiovascular

disease, as well as various neurodegenerative disorders (e.g. Alzheimer’s

disease, Parkinson’s disease and multiple sclerosis; figure 1) [6–11]. Conse-

quently, there is growing interest in identifying cellular pathways and/or

processes that can regulate ROS levels, for example by altering the balance

between pro-oxidants and free radical scavenging molecules. In this review,

we explore experimental evidence supporting a role for the endocannabinoid

system (ECS) in the modulation of redox homeostasis and provide examples

of how this relationship may impact upon cellular function.
2. Reactive oxygen species: generation and
neutralization

ROS are oxygen-containing molecules that are highly reactive in redox reac-

tions, and are primarily produced by two metabolic sources: the
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Figure 1. ROS involvement in disease pathogenesis. Schematic of the involvement of increased ROS production in the development of various pathologies.
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mitochondrial electron-transport chain, and/or through

oxygen-metabolizing enzymatic reactions such as those cata-

lysed by xanthine oxidases, the cytochrome P450 system,

NADPH oxidases, myeloperoxidase, lipoxygenase and nitric

oxide synthase [12–16] (figure 2). Oxygen concentrations

can also act as a key determinant of ROS production.

Indeed, molecular oxygen is the terminal electron acceptor

during energy production whereby it accepts an additional

electron to create superoxide (.O2
2), a highly reactive form

of oxygen. Notably, the superoxide anion can act as a precur-

sor for the formation of other ROS moieties including

peroxynitrite (ONOO2), and hydroxyl radicals (.OH) through

its reaction with transition metals (e.g. cuprous and ferrous

ions; figure 2).

Importantly, there is substantial evidence supporting a

role for ROS as key signalling intermediates that can regu-

late numerous cellular processes, including cell growth and

proliferation, by modulating a number of different pro-

tein kinases and ion channels [10,17–20]. Cellular ROS

levels are maintained by controlling the production and

neutralization of ROS by various antioxidant enzymes and

small-molecular-weight antioxidants. For example, super-

oxide is converted to hydrogen peroxide by members of

the superoxide dismutase (SOD) family of enzymes, includ-

ing manganese-dependent SOD (MnSOD), copper/zinc-

dependent SOD (CuZnSOD) and extracellular SOD (EcSOD).

MnSOD is a mitochondrial enzyme that functions to neutral-

ize ROS generated by these organelles [21]. In contrast,

CuZnSOD resides within both the cytoplasm and nucleus,

while EcSOD is present in the plasma membrane and extra-

cellular space [22]. Two other key antioxidant enzymes

include catalase and glutathione peroxidase (GPx), which

act to neutralize H2O2 by catalysing its conversion to water.

Different isozymes of GPx are present in most subcellular

compartments, and function to convert reduced monomeric

glutathione (GSH; g-L-glutamyl-L-cysteinyl-glycine) into its

oxidized form (GSSG; glutathione disulfide) using hydrogen

peroxide as a substrate, whereas catalase is found primarily

in peroxisomes [23–25]. In the case of glutathione, its cysteine
residue forms a redox-active thiol group which becomes

oxidized when GSH reduces target molecules [26].

Additional intracellular small-molecular-weight antioxidants

include cysteine, vitamin C (ascorbic acid) and vitamin E

(a-tocopherol). Alternatively, chemical antioxidants such as

N-acetyl-L-cysteine are also widely used as ROS scavengers.
3. The endocannabinoid system
The ECS is a ubiquitous ligand-directed signalling system

that has been implicated in regulating a wide range of

physiological processes and pathologies, including energy

homeostasis, cardiovascular disease, cancer and neurodegen-

eration [27–30]. Two key lipid-derived molecules that act as

endogenous ligands for this system are anandamide (N-ara-

chidonoylethanolamine (AEA)) and 2-arachidonoylglycerol

(2-AG)—commonly referred to as endocannabinoids. Both

AEA and 2-AG can be synthesized on demand within

the plasma membrane from arachidonic acid-derived

lipids [31,32]. Anandamide generation from its membrane

phospholipid precursor N-acylphosphatidylethanolamine

(NAPE) is driven by the action of the enzyme NAPE-

hydrolysing phospholipase D (NAPE-PLD) [33]. In contrast,

phospholipase C-mediated cleavage of membrane phospha-

tidylinositols gives rise to a diacylglycerol precursor whose

subsequent hydrolysis (via diacylglycerol lipase activity) per-

mits the formation of 2-AG [34]. In addition to these synthetic

pathways, enzymes that catalyse the degradation of ananda-

mide and 2-AG have also been characterized, including fatty

acid amide hydroxylase (FAAH) and monoacylglycerol

lipase (MAGL), respectively [35].

Both AEA and 2-AG evoke cellular and physiological

responses through binding and activating two distinct G

protein-coupled receptors identified as the cannabinoid

type 1 (CB1R) and type 2 (CB2R) receptors [36–39]. Indeed,

various synthetic CB1R and/or CB2R agonists (e.g.

CP-55,940, ACEA, WIN-55,212-2, JWH-133 and HU-210)

have been used to provide mechanistic insight into the
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Figure 2. Summary of pathways involved in ROS production and clearance.
Pathological conditions such as chronic inflammation, cardiovascular disease
(CVD), as well as obesity and diabetes can lead to the aberrant production
of various oxygen radicals from molecular oxygen, including superoxide (O2

2),
peroxides and hydroxyl radicals. A number of different enzymes have been
implicated in mediating this process including NADPH oxidase (NOX),
xanthine oxidase (XO), cyclooxygenase (COX), lipoxygenase (LPX), nitric
oxide synthase (NOS) and cytochrome P450 isoforms as well as ROS derived
from mitochondria (Mito). In response, cells will often initiate an antioxidant
response that facilitates the neutralization of ROS into less harmful products
by activating enzymes such as superoxide dismutase (SOD), catalase and glu-
tathione peroxidase, in an attempt to alleviate the damaging effects of ROS
upon lipid, protein and DNA integrity.
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regulation of cellular processes by the ECS (table 1)

[40,46,47,50,51]. Importantly, these are often applied in combi-

nation with selective receptor antagonists to determine

receptor-specific responses. Such cannabinoid receptor block-

ers act either by competitively binding and preventing

activation of a receptor by an agonist (i.e. as an antagonist),

and/or function as inverse agonists through suppressing spon-

taneous (ligand-free) receptor signalling. For example,

SR141716 (also known as rimonabant) has been shown to act

as both a CB1R antagonist and an inverse agonist (table 1)

[52,53]. Notably, endocannabinoids have also been reported

to mediate some of their biological effects through alternative

molecular targets such as the orphan G protein-coupled recep-

tor GPR55, the transient receptor potential cation channel

(TRPV1), as well as the peroxisome proliferator-activated

receptor (PPAR) alpha and gamma isoforms [54–56].
4. Endocannabinoid system-mediated
regulation of reactive oxygen species

There is accumulating evidence that supports a key role for

the ECS in the modulation of ROS production in different

cell types. For example, extensive work carried out investi-

gating the neuroprotective properties of cannabinoid

ligands has revealed a crucial link between the ECS and
redox homeostasis [57–60]. For example, anandamide has

been reported to attenuate neurotoxicity in response to oxi-

dative stress [58,61]. In accord with this, the mixed CB1R/

CB2R agonist WIN-55,212-2 and the plant-derived cannabinoid

tetrahydrocannabinol (THC) have both been shown to protect

serum-deprived astrocytes against H2O2-induced apoptosis

[57]. Notably, this protective action was found to be prevented

by the selective CB1R blocker SR141716, suggesting the involve-

ment of CB1R in mediating these anti-apoptotic and/or

antioxidant actions. However, it is noteworthy that the protec-

tive effect of THC may be cell specific as judged by the finding

that activation of CB1R by THC increases cellular susceptibility

of C6 glioblastoma cells to oxidative damage [62].

Notably, as well as responses mediated through CB1R,

there is evidence to suggest that stimulation of CB2R may

also convey beneficial free radical scavenging effects. Indeed,

in a study by Ribeiro et al. [60], and co-workers, the selective

CB2R agonist AM1241 was shown to almost completely

block ROS generation in response to lipopolysaccharide

(LPS) in BV-2 cells. Consistent with this, CB2R activation has

also been reported to attenuate oxidative stress damage in var-

ious tissue types, including brain [59], kidney [63], heart [64]

and liver [65]. Moreover, previous work using CB2R agonists

and/or knockout mice indicates that activation of CB2R con-

fers protection against hepatic ischaemia–reperfusion (I/R)

injury, concomitant with its ability to alleviate tissue free rad-

ical damage [66–68]. Allied to this, further evidence

supporting a protective role for the ECS was provided in a

study by Cao et al. [65], who demonstrated that pharmacologi-

cal inhibition of monoacylglycerol lipase, the enzyme which

catalyses the hydrolysis of 2-AG, led to the suppression of oxi-

dative stress and associated inflammation in liver tissue

following hepatic I/R injury in mice [65]. Notably, the protec-

tive effects of MAGL inhibition against hepatic I/R injury

involved increased endocannabinoid signalling via CB2R [65].

Conversely, stimulation of the ECS has also been demon-

strated to induce the production of ROS in certain cell types

[69–71]. For example, 2-AG stimulation has been shown to

promote an increase in cellular ROS in BeWo trophoblasts

[71]. Moreover, increased ROS and concomitant TNF-a cyto-

kine production have been reported in human macrophages

following CB1R activation, with both responses being attenu-

ated by pharmacological inhibition of CB1R [69]. Moreover,

CB1R inhibition using SR141716 has been found to

ameliorate diabetes-induced retinal oxidative stress and

inflammation, as well as improving oxidative stress in mice

with non-alcoholic fatty liver disease [72]. In accord with

this, evidence from a number of studies indicates that CB1R

stimulation can either promote and/or facilitate oxidative

stress and associated inflammation and/or cell death in

human coronary artery endothelial cells [70], as well as in

various models of cardiomyopathy [28,73,74], and nephropa-

thy [75]. In addition, work by Dando et al. [76] showed that

activation of CB1R or CB2R promotes oxidative stress in

Panc1 pancreatic cancer cells resulting in the AMP-activated

protein kinase (AMPK)-dependent induction of autophagy,

which may, at least in part, account for the observed inhibi-

tory effects of cannabinoid receptor ligands upon tumour

cell growth [77–79]. Importantly, such findings are often

supported by data demonstrating the beneficial effects on

ROS-related inflammation and/or cell death following

genetic deletion or pharmacological inhibition of CB1R

[72,74,75,77,78].



Table 1. Synthetic modulators of cannabinoid receptor function. Citations refer to studies performed using the compounds listed in order to elucidate the
functional role of CB1R and CB2R.

name
activity at CB1
(Ki in nM)

activity at CB2
(Ki in nM) comments references

ACEA 1.4+ 0.3 .2000 selective CB1 receptor agonist [40,41]

AM251 7.5 2000 – 3000 selective CB1 receptor antagonist/inverse

agonist

[42,43]

SR141716 1.8+ 0.2 — selective CB1 receptor antagonist/inverse

agonist

[44]

JWH-133 680 3.4 selective CB2 receptor agonist [45]

AM630 5.2 � 103 31.2 selective CB2 receptor antagonist/inverse

agonist

[46]

CP-55940 0.5+ 0.1 2.8+ 0.4 non-selective potent CB1/2 receptor agonist [47]

HU-210 0.1 – 0.7 0.2 – 0.5 non-selective potent CB1/2 receptor agonist [48]

WIN-55,212-2 4.4+ 1.3 1.2+ 0.25 non-selective CB1/2 receptor agonist [49]
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Intriguingly, CB1R and CB2R have also been reported to

differentially regulate ROS production within the same cell

type. For example, a study by Han et al. [69] demonstrated

that CB1R activation led to the upregulation of ROS levels

in RAW264.7 macrophages, whereas CB2R stimulation in

the same cells acted to suppress CB1R-stimulated ROS pro-

duction through a pathway involving the small G protein

Rap1. Therefore, modulation of these distinct cannabinoid

receptors can promote differential responses with respect

to cellular redox homeostasis, even within one specific

cell type.
4.1. Mechanisms underlying cellular reactive oxygen
species production by the endocannabinoid system

It is likely that the ability of the ECS to modulate the pro-

duction of ROS and reactive nitrogen species is largely

mediated through alterations in the expression and/or

activity of enzymes implicated in the generation of these

free radical species. For example, the NADPH oxidase

(Nox) family of proteins are key generators of cellular ROS,

particularly in central nervous system cell types such as

neurons, astrocytes and microglia under pathophysiological

conditions [80,81]. Notably, treatment of H2O2-stimulated

HT22 neuronal cells with AEA led to the suppression of

intracellular ROS and Nox2 protein/mRNA expression,

with these antioxidant responses being reversed by appli-

cation of the CB1R antagonist AM251 or CB1R-siRNA [82].

The authors of the same study also demonstrated that

under conditions of oxidative stress, AEA acted to raise intra-

cellular levels of SOD and GSH, while concomitantly

decreasing GSSG. Importantly, these responses were pre-

vented by AM251, indicating that AEA could restore the

balance of intracellular antioxidants and pro-oxidants

through targeting CB1R. In accord with these findings, treat-

ment of streptozotocin-induced diabetic rats with D9-THC

was also reported to increase pancreatic glutathione levels,

as well as enzymatic activities of SOD and catalase [83]. Con-

versely, in other cell types, CB1R inhibition (by either
pharmacological or genetic silencing) has been shown to

attenuate ROS formation by repressing the expression of

Nox isoforms [28,74,75,84]. Therefore, these findings suggest

that the pathways involved in mediating the effects of canna-

binoid receptor modulation upon ROS formation may be

cell-type-specific. Notably, both CB1R and CB2R agonists

have also been reported to repress the expression/activity

of cyclooxygenase, an enzyme implicated not only in

the generation of ROS but also in the degradation of

anandamide [85–87].

Alternatively, the ability of ECS stimulation to regulate

the production of cellular ROS may be mediated through

the accumulation of toxic lipid intermediates. For example,

activation of CB1R and/or CB2R has been associated with

increased ceramide formation in various cell types (e.g. hep-

atocytes, colon cancer cells) through either increased

sphingomyelin hydrolysis or ceramide de novo synthesis

[88–90]. This is in accord with the reported ability of cera-

mide to stimulate activation of NADPH oxidase by

promoting translocation of its regulatory p47phox subunit to

the plasma membrane [91]. Conversely, chronic CB1R stimu-

lation has also been reported to protect against the sensitizing

effects of ceramide towards H2O2-induced loss of astrocyte

viability [57]. Therefore, some of the biological actions of can-

nabinoid receptor modulation, for example the maintenance

of cell viability, may occur partly as a result of ECS

modulation of ceramide and ROS formation [92].

In addition, various protein kinases may also be impli-

cated in mediating ECS regulation of ROS. One such

candidate is the cyclic AMP-dependent protein kinase A

(PKA), whose regulation of ROS production has been

described in several systems, including leptin-stimulated

endothelial cells [93], tumour necrosis factor-treated fibrosar-

coma cells [94], and in cardiomyocytes following hypoxia

and reoxygenation [95]. Given the fact that PKA has been

implicated in positively regulating the expression and/or

activity of enzymes involved in ROS generation such as

NADPH oxidase and nNOS [96,97], and that activation of

CB1R can lead to reduced cellular levels of cyclic AMP and

the corresponding inhibition of PKA [98], this may, at least
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in part, act as a means by which CB1R stimulation acts

to suppress ROS formation in certain cell types, such as

neuronal cells [61].

Protein kinase C (PKC) activity may also be involved in

mediating the pro- and/or antioxidant responses induced by

ECS stimulation. Indeed, various PKC isoforms have been

shown to convey biological actions of cannabinoid ligands

[99–101]. Moreover, PKC has been reported to disrupt canna-

binoid actions through its ability to serine phosphorylate the

CB1 receptor [102]. Based on previous findings that PKC iso-

forms (e.g. PKCa and PKC1) can facilitate and/or stimulate

ROS formation, for example through activation of NADPH oxi-

dase [103,104], it is plausible that ECS-mediated regulation of

ROS homeostasis may also be mediated, at least in part,

through the activity of one or more PKC isoforms, although

further work will be required to determine their involvement.

In addition, active PKC can stimulate the MEK/ERK1/2

signalling pathway whose activation has been shown to upre-

gulate Nox5 activity [105], as well as being positively

modulated by CB1R and/or CB2R activity [30,106–108]. Fur-

thermore, stimulation of RAW264.7 cells by the CB1R agonist
ACEA was found to induce ROS generation by a pathway

dependent upon p38 MAPK, a protein kinase which can also

be stimulated in response to PKC activity [69,109].

Another potential regulator of ROS production by the

ECS is Rap1, a small G protein of the Ras family. In a

study by Han et al. [69], active Rap1 was demonstrated to

inhibit CB1R-induced generation of intracellular ROS and

associated pro-inflammatory responses in murine peritoneal

macrophages. Moreover, expression of a dominant-negative

form of Rap1 profoundly enhanced CB1R-dependent ROS

production. Intriguingly, the authors of the same study also

demonstrated that CB2R stimulation led to the activation of

Rap1, concomitant with the amelioration of CB1R-induced

ROS formation in macrophages [69]. These findings therefore

highlight the potential opposing effects of CB1R and CB2R

activation in the modulation of ROS production in macro-

phages, and implicate a key role for Rap1 in regulating

ROS levels by the ECS in immune cells.

In addition, the ECS has also been reported to regulate the

activity of redox-sensitive transcription factors. For example,

CB2R-mediated protection against myocardial infarction in
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mice was shown to coincide with increased nuclear

translocation of the transcription factor Nrf-2 in the myocar-

dium, concomitant with the induction of its target

gene haem oxygenase-1, a key cellular antioxidant [110].

Notably, Nrf-2 functions to activate the antioxidant response

element transcriptional pathway, thereby controlling the

expression of genes whose protein products are involved

in the detoxification and elimination of reactive oxygen

intermediates [111].

Alternatively, cannabinoid ligands may act to alter cellu-

lar ROS production through controlling the production of

mitochondrial-derived ROS. For example, in hepatic stellate

cells, mitochondria were found to be the predominant

source of ROS generated in response to 2-AG stimulation

[112]. Furthermore, a recent study by Ma et al. [113] demon-

strated that treating hippocampal neurons and tissue with the

CB1R agonist ACEA increased the expression of CB1R

protein in the mitochondrial membrane. Notably, in this

same study, ACEA was shown to inhibit ROS generation

and attenuate Ca2þ-induced mitochondrial injury, effects

that were prevented by co-application of a cell permeant

CB1R antagonist (AM251), but not following co-treatment

with a cell impermeable CB1R blocker (haemopressin). There-

fore, it is possible that CB1R residing within mitochondria

may act to control the production of ROS by these organelles,

for example, by altering the expression and/or activity

of components of the mitochondrial electron-transport

chain, and/or by promoting changes in mitochondrial

membrane potential.

4.2. CB1R/CB2R-independent modulation of cellular
reactive oxygen species production

As well as conveying their biological effects through

activation of CB1R and/or CB2R, it is possible that endocan-

nabinoids may also regulate ROS levels by targeting

alternative receptors/ion channels such as TRPV1 or GPR55

[55,56]. Indeed, one study performed by Balenga et al. [114]

revealed that 2-AG-induced ROS production in neutrophils

was significantly diminished upon co-treatment with the

GPR55 activator lysophosphatylinositol (LPI). Endocannabi-

noids such as AEA are also known to mediate some of

their cellular responses by targeting the non-selective cation

channel TRPV1, whose activation has been linked to

increased ROS production [115–118]. Indeed, this may be

driven, at least in part, through the ability of TRPV1 stimu-

lation to trigger Ca2þ signalling which is functionally

coupled to ROS generating systems, in particular mitochon-

drial ROS production, as well as the upregulation of Nox5

activity following its phosphorylation by CAMKII, a

serine/threonine protein kinase activated in response to cal-

cium signals [119–121]. In addition, AEA has also been

reported to target the PPAR family of nuclear receptors

[54], whose activation is known to induce the expression of

antioxidant enzymes, including catalase and glutathione

peroxidase 3 [122,123].

It should be highlighted that some cannabinoid receptor

ligands may also convey more direct free radical scavenging

activity. For example, analysis performed in cell-free bio-

chemical assays has revealed that some phenolic

cannabinoid compounds (e.g. D9-THC, cannabinol, cannabi-

diol, CP-55,940, HU-210 and AM-404) can act as potent
lipophilic antioxidants [124]. Moreover, owing to their

lipophilicity, these compounds may further affect mem-

brane-associated and intracellular signalling mechanisms,

leading to changes in the activity of membrane-bound recep-

tor systems (e.g. neurotransmitter receptors). Therefore,

such free radical scavenging activity should also be

considered as a potential explanation for non-CB1R/CB2R-

dependent modes of antioxidant action by cannabinoid

receptor ligands.
5. Redox-mediated regulation of the
endocannabinoid system

In addition to the effects of altering ECS activity upon cellular

redox homeostasis, it should be highlighted that changes in

cellular redox homeostasis can also impact upon the function

of the ECS. For example, activation of NADPH oxidase iso-

forms Nox4 and Nox1 has been reported to mediate the

upregulation of CB1R expression in mouse hepatic stellate

cells during Schistosoma J. infection [125]. Consistent with

this finding, H2O2-induced oxidative stress has been reported

to increase CB1R and CB2R mRNA and protein abundance in

human retinal pigment epithelial (RPE) cells, as well as

downregulating expression of FAAH, the enzyme involved

in the degradation of anandamide [126]. The authors of the

same study also demonstrated that treatment with the

CB2R agonist JWH-015 protected RPE cells from oxidative

damage, suggesting that upregulation of cannabinoid recep-

tor expression and/or endocannabinoid levels may

constitute part of a counter-feedback mechanism to amelio-

rate the damaging effects of ROS exposure under those

conditions. Furthermore, Batkai et al. [66] have reported elev-

ated hepatic levels of AEA and 2-AG following I/R injury

in mice. Notably, the authors of the same study also

demonstrated raised levels of these endocannabinoids in

hepatocytes following brief exposure to pro-oxidants (hydro-

gen peroxide and peroxynitrite). Therefore, these findings

support an important role for ROS in modulating ECS

function, for example by regulating the expression of key

ECS components.
6. Conclusion and future perspective
To conclude, there is growing appreciation that the ECS may

play an important role in the regulation of cellular redox

homeostasis. Collectively, the evidence presented in this

review indicates that ECS activation or inhibition can

convey detrimental and/or beneficial biological effects

through altering cellular ROS levels, depending on the cell

type and/or stimulus involved. Indeed, the studies high-

lighted in this review show that ECS function can impact

upon free radical production in a number of different ways

(figure 3). Crucially, given the importance of redox status

in the development of numerous pathologies, these findings

identify ECS components as potential therapeutic targets

for the treatment of oxidative stress-related neurological,

cardiovascular and metabolic disorders.
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