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Abstract

Object—To establish and compare normative metabolite concentrations in 2nd and 3rd trimester 

human amniotic fluid samples in an effort to reveal metabolic biomarkers of fetal health and 

development.

Materials and methods—Twenty-one metabolite concentrations were compared between 2nd 

(15–27 weeks gestation, N = 23) and 3rd (29–39 weeks gestation, N = 27) trimester amniotic fluid 

samples using 1H high resolution magic angle spinning (HR-MAS) spectroscopy. Data were 

acquired using the electronic reference to access in vivo concentrations method and quantified 

using a modified semi-parametric quantum estimation algorithm modified for high-resolution ex 

vivo data.

Results—Sixteen of 21 metabolite concentrations differed significantly between 2nd and 3rd 

trimester groups. Betaine (0.00846±0.00206 mmol/kg vs. 0.0133±0.0058 mmol/kg, P <0.002) and 

creatinine (0.0124±0.0058 mmol/kg vs. 0.247±0.011 mmol/kg, P <0.001) concentrations increased 

significantly, while glucose (5.96±1.66 mmol/kg vs. 2.41±1.69 mmol/kg, P <0.001), citrate 

(0.740±0.217 mmol/kg vs. 0.399±0.137 mmol/kg, P <0.001), pyruvate (0.0659±0.0103 mmol/kg 

vs. 0.0299±0.286 mmol/kg, P <0.001), and numerous amino acid (e.g. alanine, glutamate, 

isoleucine, leucine, lysine, and valine) concentrations decreased significantly with advancing 

gestation. A stepwise multiple linear regression model applied to 50 samples showed that 

gestational age can be accurately predicted using combinations of alanine, glucose and creatinine 

concentrations.

Conclusion—These results provide key normative data for 2nd and 3rd trimester amniotic fluid 

metabolite concentrations and provide the foundation for future development of magnetic 

resonance spectroscopy (MRS) biomarkers to evaluate fetal health and development.

Keywords
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magic angle spinning (HR-MAS); Spectroscopy; High-resolution quantum estimation (HR-
QUEST); Human amniotic fluid

Introduction

High-resolution magnetic resonance spectroscopy (MRS) of human amniotic fluid has the 

potential to become a valuable technique for the evaluation of fetal health and development 

[1–3]. Although numerous clinical assays utilize amniotic fluid to evaluate chromosomal 

abnormalities, metabolic errors, and fetal lung maturity [4], none currently uses MRS to 

exploit the complex metabolic information contained within amniotic fluid. Many of these 

clinical assays require time-consuming laboratory procedures and provide only a limited 

amount of information. MRS requires minimal sample preparation and can be used to 

quantify several metabolites simultaneously. However, before MRS-detectable biomarkers 
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can be used clinically, the general relationships between amniotic fluid metabolites, 

gestational age, and the health status of the mother and fetus must be characterized.

Several metabolites associated with fetal developmental abnormalities have previously been 

identified by MRS. 31P MRS studies of human amniotic fluid detected various phospholipid 

analytes related to fetal respiratory distress syndrome (RDS) [5–7]. Subsequent 1H MRS 

investigations identified several organic acids, amino acids, sugars, choline-containing 

compounds and developmental catabolites [1,4,8,9]. Other studies employing a variety of 

methods searched for biomarkers of renal function [1], diabetes [8,10], pre-eclampsia [8,11], 

perinatal infection [12], spina bifida [8,13], trisomy 21 [8,14], cystic fibrosis [14] and fetal 

lung maturity [2,3,15,16]. These studies described the variance of specific compounds with 

respect to disease state, but often lacked robust quantitative analysis of the data. Recent high 

field studies performed at 800MHz have identified several additional amniotic fluid 

metabolites, determined the effects of freeze-thawing, and evaluated long term sample 

stability at room temperature, −20, and −70°C [17].

Because water suppression can be challenging in 1HMRS studies of amniotic fluid, previous 

investigators typically centrifuged or filtered the samples to remove insoluble matter or 

lyophilized and redissolved the samples in deuterium oxide (D2O) [1,9,13]. These 

procedures require additional sample preparation steps, which could lead to quantitation 

errors. Furthermore, the freeze-drying process can cause sample degradation or other 

spectral changes, particularly if the samples are not adjusted to neutral pH prior to freeze-

drying [17]. We previously applied high resolution magic angle spinning (HR-MAS) 

spectroscopy to whole amniotic fluid to investigate surfactant molecules and other 

metabolites as potential markers of fetal lung maturity [3,16]. Using this approach, high 

quality MR spectra were obtained with good water suppression and minimal sample 

preparation.

Quantification of amniotic fluid metabolites is complicated due to the poor reproducibility of 

internal quantitation standards and severe spectral overlap. For example, the commonly used 

standard trimethylsilyltetradeuteriopropionate (TSP) can bind to macromolecules [18] and 

may also overlap with other signals of interest [19]. The Electronic REference To access In 

Vivo Concentrations (ERETIC) method [20] provides a synthetic radiofrequency signal and 

has been shown to be more robust than TSP for HR-MAS spectroscopy quantification [21].

Simple integration and Lorentzian–Gaussian peak-fitting cannot accurately quantify 

metabolites that co-resonate, and the problem is compounded when the overlapping peaks 

are multiplets. Semi-parametric quantum estimation (QUEST) is a time domain 

quantification algorithm that can model several metabolites simultaneously using prior 

knowledge of chemical shift and coupling constant information obtained from basis set 

spectra [22,23]. In the present study, metabolite concentrations in 2nd and 3rd trimester 

amniotic fluid samples were determined from 1H HR-MAS spectroscopy data acquired 

using ERETIC and quantified using a modified QUEST algorithm for high-resolution ex 

vivo MRS data (HR-QUEST). The purpose of this study was to establish and compare 

normative metabolite concentrations in 2nd and 3rd trimester human amniotic fluid samples.
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Materials and methods

Sample acquisition

All samples were collected for clinical indications and a waiver of consent that satisfies 

federal regulations for Protection of Human Subjects and Standards for Privacy of 

Individually Identifiable Health Information (HIPAA) for analyses of existing biofluids was 

granted for this study. This protocol was reviewed and approved by our Institutional Review 

Board. Fifty amniotic fluid specimens (mean: 27 weeks gestation, range: 15–39 weeks) were 

retrospectively identified, transferred from their initial storage locations to −80°C freezers, 

and analyzed within 2 months of amniocentesis. Twenty-three samples were collected during 

the 2nd trimester (range: 15–27 weeks) and twenty-seven samples during the 3rd trimester 

(range: 29–39 weeks). The 2nd trimester samples were obtained for karyotype analysis in 

patients at risk for genetic disorders, however, the samples included in this study were 

karyotypically normal. The 3rd trimester samples were acquired from patients in pre-term 

labor or at risk for premature delivery to assess fetal lung maturity, as is the standard of care. 

While many of the patients were noted to be diabetic; each patient was undergoing medical 

management for their condition and was euglycemic at the time of amniocentesis. No first 

trimester samples were included because amniocentesis is not typically performed until at 

least 14 weeks of gestation at our institution. Gestational age was determined by date of last 

menstrual period or crown-rump length measurement at time of first trimester ultrasound per 

the standard of practice within our obstetric clinics. Demographic information is detailed in 

Table 1.

Reference metabolite spectra

A reference database was created containing quantitative 1D spectra of the most common 

metabolites in amniotic fluid and urine as well as metabolites associated with fetal maturity 

[4,17,24]. All chemicals were purchased from Sigma–Aldrich (Sigma, Aldrich, Fluka and 

Supelco, St Louis, MO). Stock solutions of each compound were prepared with 1× 

phosphate buffered saline solution and pH adjusted (to between 7.0 and 8.0) using 

concentrated hydrochloric acid or sodium hydroxide to match the physiologic pH of 

amniotic fluid [25]. Diluted samples of known concentrations (between 0.01 and 100.0 mM) 

were prepared to approximate physiologic concentrations of metabolites in human urine or 

amniotic fluid. Reference solutions were kept frozen at −80°C when not in use and were 

analyzed as described below.

1H HR-MAS spectroscopy protocol
1H HR-MAS spectroscopy was performed at 11.7 T (500MHz for 1H) using a Varian 

INOVA spectrometer equipped with a 4 mm gHX nanoprobe. Data were acquired at 1°C to 

minimize degradation and a 2,250 Hz spin rate in order to place the spinning sideband of 

water between the frequency reference TSP (0 ppm) and the first metabolites (~0.8 ppm). 

Samples were analyzed using custom designed 35-µl volume zirconium oxide rotors, which 

can be purchased from Varian, Inc (Palo Alto, CA). The rotors were designed to be easy to 

assemble, and are effectively leak proof when properly tightened [26]. If leakage occurred 

during sample preparation, as evidenced by the presence of liquid on the outside of the rotor 

or the loss of lock signal, the rotors were cleaned and dried, and the samples were remade. 
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The sealed rotors were also routinely weighed before and after analysis to ensure that no 

leakage occurred during spectral analysis.

At HR-MAS analysis, the reference solutions or amniotic fluid samples were thawed at 

room temperature for up to 45 min and briefly vortexed for ~5–10 s to mix the contents. To 

provide a frequency and lock reference, 3.0 µl of D2O containing 0.75% TSP was pipetted 

into the rotor and weighed to ±0.01 mg, after which a sample aliquot was pipetted into the 

rotor and weighed (mean: 22.53 mg, range: 19.01–26.15 mg). The rotor was then assembled 

and placed into the probe for analysis. Quantitative 1D spectra were acquired with a 

90°pulse, 4 s water presaturation, 2 s acquisition, 256 transients, 40,000 points, and 20,000 

Hz spectral width. The total repetition rate was 6 s for amniotic fluid samples and 10 s for 

reference solutions, which was 4× and 5× the longest T1 (1.5 s for lactate) of the metabolites 

of interest at 1°C, respectively. Water suppression was achieved by continuous wave 

presaturation using the standard Varian “presat” sequence. During experimental optimization 

the power level and duration of the presaturation pulses were optimized to minimize 

saturation of nearby resonances (e.g., glucose). These parameters were then used for all 

samples.

The ERETIC signal was created using PBox (Varian Inc, Palo Alto, CA) and transmitted 

during the acquisition period using 0 dB of power, a full width at half height of 3.5 Hz, and 

an offset frequency equivalent to −0.5 ppm. The ERETIC signal was phase cycled in 

synchronization with the receiver to maintain phase coherence across scans. At the 

beginning of each acquisition, the phase of the ERETIC signal was manually adjusted to 

match the other signals in the spectrum. The ERETIC signal was calibrated daily using a 

standard amount of D2O+TSP. Detailed information on the implementation of ERETIC on 

our spectrometer has been reported elsewhere [21]. The total time required for data 

acquisition, including sample preparation, rotor assembly, tuning, shimming, pulse width 

calibrations, phasing of the ERETIC signal and data collection was ≤45 min.

Quantification

Spectra were processed and displayed using the Advanced Chemistry Development (ACD) 

1D NMR processor (ACD/Labs, Toronto), the Java-based graphical user interface for the 

Magnetic Resonance User Interface (jMRUI) quantitation package, and MATLAB (The 

MathWorks, Natick, MA) and quantified using a custom version of the semiparametric 

quantum estimation program developed by Ratiney and co-workers which was adapted for 

analysis of short-echo time HR-MAS spectra containing 40,000 points (HR-QUEST) [22]. 

The first two points of each free-induction decay (FID) were backward linear predicted in 

ACD using base points 3–1,000 and 32 coefficients. Each spectrum was then saved as a text 

file and imported into jMRUI. The spectra were reversed, phased, and referenced to TSP. 

Spectral regions downfield of 4.75 ppm (including residual water) and upfield of −1 ppm 

were deleted. The HR-QUEST program estimated the macromolecule signals using the 

Hankel-Lanczos singular value decomposition (HLSVD) algorithm and iterated between 

fitting the metabolites and modeling the macromolecules 12 times. Minor frequency shifts, 

which could be caused by differences in pH between samples, were also accounted for 

during the iterative process. HR-QUEST results were displayed in MATLAB and metabolite 
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peak areas were then exported into an excel spreadsheet and converted to concentrations 

using a conversion factor for the ERETIC signal as previously described [21].

Statistical analysis

Signal not accounted for by the HR-QUEST modeling algorithm was represented as a 

residual spectrum (the difference between the measured and HR-QUEST modeled 

spectrum). Model error was calculated using MATLAB as the area under the residual 

spectrum divided by the area under the measured spectrum. Errors for the complete 

spectrum and the spectral range of interest (from 0.2 to 4.5 ppm) were both calculated.

Differences between 2nd trimester (N = 23) and 3rd trimester (N = 27) amniotic fluid 

samples were assessed using the 2-sample Wilcoxon/Mann–Whitney test. The Wilcoxon test 

is non-parameteric and therefore avoids the need to make distributional assumptions about 

the data. In addition, an analysis was performed to determine whether metabolites provided 

complementary (i.e. additive) information. Five pre-selected metabolites (alanine, betaine, 

choline, creatinine and glucose) were entered as explanatory variables in a stepwise multiple 

linear regression model with gestational age as the outcome variable. These five metabolites 

were selected to test the hypothesis that members of each of their representative groups 

(amino acids, surfactant catabolites, surfactant components, indicators of renal function and 

sugars, respectively) would contribute to the prediction of gestational age. Terms were 

retained or dropped at a significance level of P = 0.01. Finally, the stepwise linear regression 

modeling procedure was repeated with all 21 metabolite concentrations included as 

explanatory variables to account for all possible predictors of gestational age.

Results

Figure 1 shows 1H MR spectra of the same amniotic fluid sample obtained using (a) a 4-mm 

HR-MAS probe and (b) a conventional 5-mm inverse probe. For the HR-MAS spectrum, the 

sample tube was briefly vortexed and then an aliquot was pipetted into the rotor; whereas for 

the inverse probe, the sample was centrifuged and an aliquot of the supernatant was pipetted 

into a 5-mm NMR tube. It is important to note that both samples were 90% aqueous with 

10% D2O added to provide a lock signal. As demonstrated in the figure, the water 

suppression achieved with the HR-MAS probe was superior to that achieved with the inverse 

probe, both in terms of the degree of water suppression and baseline distortion. Note that the 

α-glucose doublet (δ = 5.22 ppm), which resonates very close to water, can be observed in 

the HR-MAS spectrum but not the conventional NMR spectrum. Also note in the HR-MAS 

spectrum that the spinning side bands of water near 0.5 and 9.5 ppm are very small and do 

not have a significant effect on the baseline or nearby resonances. During preliminary 

investigations, some samples were also centrifuged and/or filtered or were lyophilized and 

reconstituted in 100% D2O prior to analysis. However, these approaches required additional 

sample preparation steps and degradation is known to occur if the samples are not closely 

adjusted to pH 7 prior to freeze drying. Since high quality spectra were achieved with no 

additional sample preparation steps using the HR-MAS probe, we elected to use this probe 

rather than a liquids probe for this study.
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Figure 2 shows representative 1H HR-MAS spectra of (a) 2nd (16 weeks 6 days gestation) 

and (b) 3rd trimester (36 weeks) amniotic fluid specimens. Both spectra are scaled relative 

to lactate and were chosen arbitrarily; however, the metabolic changes illustrated in this 

figure reflect the overall trends that were observed between 2nd and 3rd trimester samples. 

For example, note the visually apparent decreases in glucose and alanine between 2nd and 

3rd trimester samples. The region between 2.95 and 3.35 ppm is shown as an inset to 

illustrate the significant increase in betaine and creatinine between 2nd and 3rd trimester 

samples.

Figure 3 shows the ~3.0 to 4.2 ppm region of (a) 3rd trimester amniotic fluid sample, (b) the 

HR-QUEST modeled spectrum, and (c) the residual or difference spectrum. The modeled 

spectrum is composed only of the metabolites contained in the reference spectral database 

and a baseline correction (dotted line). Twenty-one reference metabolites were identified and 

quantified in amniotic fluid, accounting for 99.7% of all resonances in the spectrum by area. 

Ethanolamine was quantified in less than half of the spectra and thus was excluded from 

statistical analyses. Three reference metabolites (phosphatidylcholine (lecithin), 

phosphatidylglycerol, and sphingomyelin) were not observed in any of the amniotic fluid 

samples. The mean spectral fitting error was −0.27 ± 0.9% for all samples over the entire 

spectral range. The mean spectral fitting error over the range of interest between 0.2 and 4.5 

ppm was nearly zero (0.07 ± 0.7%).

Table 2 lists the mean concentrations (mmol/kg), standard deviations, and percent change of 

the significantly different metabolites in 2nd versus 3rd trimester amniotic fluid samples. 

Sixteen of 21 metabolites were significantly different between 2nd and 3rd trimester 

amniotic fluid samples (P < 0.05, Wilcoxon test), without adjusting significance thresholds 

to account for multiple comparisons. Applying a strict Bonferroni correction (i.e. a 

significance threshold of P < 0.05/21 = 0.00238), 12 metabolites (alanine, betaine, citrate, 

creatinine, glutamate, glucose, GPC, lactate, leucine, lysine, pyruvate and valine) were still 

significantly different. These metabolites reflect diverse chemical classes, including sugars, 

amino acids, components of the Krebs cycle and biomarkers for renal function.

Table 3 displays results from a stepwise multiple linear regression model, which assessed the 

joint capability of five selected metabolites (alanine, betaine, choline, creatinine and 

glucose) to predict gestational age. These metabolites were selected a priori as representative 

compounds that may be related to fetal lung and renal maturity. Terms were retained or 

dropped at a significance level of 0.01. This model yielded a significant additive contribution 

from 3 of the 5 metabolites. When applied sequentially, the combination of alanine, 

creatinine and glucose created a linear prediction model that fit the data with an R2 value of 

0.90. When this model “fitting procedure” was repeated for all 21 metabolites, these same 

three compounds were part of the final model (with a minor added contribution from 3-

hydroxybutyrate).

Discussion

In this study, 2nd and 3rd trimester amniotic fluid metabolite concentrations were 

determined using 1H HR-MAS spectroscopy by incorporating an improved external 
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quantitation reference (ERETIC) into the experiment and a semi-automated spectral 

modeling algorithm (HR-QUEST) for data analysis. The combination of HR-MAS 

spectroscopy with ERETIC and HR-QUEST provided several improvements over previous 

MRS studies of amniotic fluid. As shown in Fig. 1, improved water suppression was 

achieved using a HR-MAS probe compared to a conventional inverse probe designed for 

liquids. The improved water suppression is likely due to several factors. First, greater B0 

homogeneity can be obtained by reducing the sample volume [27]. The volume of sample 

typically used for a 5-mm NMR tube is 500–600 µl, whereas the volume typically used for 

HR-MAS is ≤40 µl. However, it should be noted that small volume microtubes could also be 

used in a conventional NMR probe without the need for water suppression. Secondly, the 

HR-MA Srotors used in this study were designed to have an oblate spheroid geometry, 

which provides improved homogeneity compared to cylindrical designs [26,28]. 

Additionally, in a HR-MAS probe, the coil is slightly larger than the sample chamber [21], 

whereas in an inverse probe the coil is smaller than the sample length. Therefore, in an 

inverse probe, unsuppressed water can diffuse in and out of the region of detection resulting 

in a residual water signal [29], whereas in an HR-MAS probe this does not significantly 

occur. Although HR-MAS probes are less sensitive than conventional inverse probes, HR-

MAS spectroscopy can be used as an alternative when the analysis of intact biofluid samples 

is desired. It should also be noted that although the samples in this study were briefly 

vortexed prior to analysis, any solid matter would be effectively centrifuged to the bottom of 

the rotor because of the high-spin rate used for HR-MAS.

The determination of metabolite concentrations using the ERETIC method also represents a 

major advance. Some earlier studies reported metabolite ratios (based on integrals or 

intensities) [5–7,14], which are not ideal because they do not illustrate how individual 

metabolites change independently of each other. Consequently, ratios can yield ambiguously 

high or low values when either the numerator or the denominator approaches zero. The use 

of external or internal standards (e.g., TSP, solvent signals, standard addition) [1,9,10,13] 

can yield absolute concentrations, however, errors associated with the use of integrals or 

peak intensities still remain. Although ERETIC has been shown to be more reliable than 

TSP for HR-MAS applications in tissue [21], PUlse Length based CONcentration 

determination (PULCON) is another external reference technique—based upon the principle 

of reciprocity—has recently been reported [19]. Both ERETIC [30] and PULCON are now 

commercially available on Bruker spectrometers and future studies will be needed to 

compare the results obtained using these two techniques.

Previous studies often used integration [1,9,10,13], peak intensities [8,14], or peak fitting [6] 

to quantify amniotic fluid metabolites. The use of integration and peak intensities is only 

accurate for completely resolved resonances, while peak fitting is also limited in cases of 

extreme spectral overlap and prone to user-bias. HR-QUEST is much better suited to fit 

overlapping metabolites because it uses a priori knowledge of all of the frequencies, 

multiplicities, and linewidths of each metabolite in the library. This is particularly useful for 

metabolites such as glucose, which have complex splitting patterns and also co-resonate with 

several metabolites of interest. In this study, HR-QUEST modeled amniotic fluid spectra 

with a fitting error of less than 1%, representing a significant improvement over manual 

techniques [31]. Moreover, although the reference metabolite solutions were adjusted to 
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physiological pH, no efforts were made to adjust the pH of the amniotic fluid samples. The 

frequencies of protons located near ionizable groups (e.g., phosphate) are known to shift 

with changes in pH; however, HR-QUEST is able to compensate for minor frequency 

differences during the iterative process. Although HR-QUEST is very robust, several other 

approaches including principal component analysis [32], linear combination models 

(LCModel) [33], and various time-domain and frequency-domain fitting algorithms [34] 

have been reported that may be equally effective.

Consistent with previous studies, metabolite profiles for 2nd and 3rd trimester amniotic fluid 

samples showed significant differences with gestational age [8,9,11,13]. As illustrated in 

Fig. 2 and shown in Table 2, the concentrations of glucose, creatine, and various amino acids 

decreased while the concentrations of creatinine and betaine increased with advancing 

gestational age. These data provide excellent metabolomic evidence of fetal maturation. In 

addition to general fetal maturation, the detection and quantification of creatinine may 

provide a biomarker for assessing fetal renal status. While prior reports have suggested that 

creatinine would be a poor MRS biomarker for renal maturation because it co-resonates with 

multiple glucose resonances, the present technique reliably identified and quantified 

creatinine within this region of the 1H spectrum. Prior authors have investigated surrogate 

markers of renal function with limited success. Given the inherent difficulties reported in 

quantifying surrogate markers of renal maturity (urea, indoxyl-sulfate, formate) [1], the 

accurate quantification of creatinine presents a significant development in the MR 

assessment of fetal renal function.

This work elaborated upon similar studies in human urine [35,36], blood, serum and plasma 

[37], which vetted the ability of rapid metabolic profiling techniques to provide accurate 

quantitation of biofluid constituents. As reported in Table 2, there was a much greater 

change in betaine than choline between 2nd and 3rd trimester fetuses. Betaine is thought to 

be produced in the liver by oxidation of choline, an essential nutrient that functions in 

multiple physiological pathways, and is a component of phosphatidylcholine and 

sphingomyelin [38]. Choline is transported across the placenta, and is higher in fetal than 

maternal plasma [39,40] [41], but no published studies indicate whether betaine is 

transferred across the human placenta. If betaine is not freely transported, it may be a more 

accurate marker of fetal choline metabolism than choline proper. Therefore, betaine may 

prove to be a more specific marker of fetal lung maturity than choline. In addition, recent 

case–control studies have provided evidence that low dietary intake of betaine and choline 

are associated with increased risk of neural defects in humans, offering an additional 

indication for the monitoring of these metabolites using 1HMRS [42].

Stepwise linear regression models performed on the present data suggest that gestational age 

can be accurately predicted using combinations of alanine, glucose and creatinine 

concentrations. At present, the clinical estimation of gestational age is based upon a 

woman’s last menstrual period (LMP) or early ultrasound (<20 weeks) findings. However, as 

gestation advances into the late second and third trimesters, the ability of existing techniques 

to accurately assess fetal age decreases markedly [43,44]. While it is not our contention that 

this technique would replace existing dating techniques early in gestation, this model may 

provide concurrent physiologic evidence to complement existing tests (i.e. biometric 
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ultrasound studies), which rely on anatomic measurements. In this case, a metabolite-based 

method for estimating gestational age may prove more reliable and is the topic of ongoing 

investigation.

In any NMR study involving biological fluid or tissue, sample stability and degradation are 

critical issues. Graca et al. [17] previously showed that amniotic fluid samples were stable at 

room temperature for 4–5 h and for up to 6 months at −70°C. In the current study, data were 

acquired at 1°C to minimize degradation, and the total time allowed for sample thawing, 

sample preparation, rotor assembly, tuning, shimming, pulse width calibrations, and finally 

data collection was ≤90 min. Additionally, all of the samples included in this paper were 

analyzed within 1–2 months of amniocentesis. During preliminary studies, serial 1D 

experiments were performed over 12 h and found that there were negligible spectroscopic 

changes over this time period at this temperature. This is in contrast to tissue studies where 

significant spectroscopic (and histologic) changes occur even over 2 h [26]. Additionally, 

prior experiments using a temperature standard (methanol) demonstrated negligible sample 

heating using the conventional pulse-acquire sequence with presaturation turned on. While 

phase separation is an issue for HR-MAS studies of cells and tissue, it does not pose a major 

problem in amniotic fluid, which is acellular and closely resembles urine.

Finally, sample leakage is an issue which must also be addressed in HR-MAS studies of 

biofluids. Sample leakage can occur during either rotor assembly or analysis and results in a 

uniform overestimation of metabolite concentrations. When leakage occurs during rotor 

assembly it is often visually apparent as the liquid is displaced from the rotor. If leakage 

occurs during HR-MAS analysis (e.g., due to inadequate tightening of the rotor), the lock 

signal will usually be lost and the sample will be pushed out of the rotor because of the high 

spin rate. Weighing rotors before and after analysis is a simple method to determine if 

leakage has occurred. The use of specially designed rotors can also be helpful. For example, 

the rotors used in the current study have a simple plunger that gently slides into the rotor and 

requires almost no force at all to assemble. At the top of the plunger is a rubber O-ring, 

which creates a seal when the rotor is tightened. Early designs included inserts to constrict 

the sample volume, however, fluids become trapped underneath them resulting in residual 

signals. Instead, the current plungers have fixed lengths corresponding to specific rotor 

volumes, and the volume between the side of the rotor and the plunger is factored into the 

concentration calculations. These rotors have proven to be very robust and have resulted in 

fewer problems with sample leakage compared to other rotor designs.

Conclusion

Normative metabolite concentrations were established and compared for 2nd and 3rd 

trimester amniotic fluid samples. The simultaneous assessment of multiple metabolic 

markers with advancing gestational age has the potential to improve the evaluation of fetal 

health and development.
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Fig. 1. 
500 MHz 1H MR spectra of the same amniotic fluid sample obtained using a a 4 mm HR-

MAS probe and b a conventional 5 mm inverse probe. Both samples were 90% aqueous with 

10% D2O added to provide a lock signal. For HR-MAS, the sample was vortexed and an 

aliquot was analyzed; for the inverse probe, the sample was centrifuged and the supernatant 

was analyzed
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Fig. 2. 
Representative 500 MHz 1H HR-MAS spectra of the 0.75–4.25 ppm region of a 2nd and b 
3rd trimester human amniotic fluid samples. The 2.95–3.35 ppm region of each spectrum is 

shown in inset. Note the significant decrease in glucose and alanine and concurrent increase 

in creatinine and betaine with advancing gestational age
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Fig. 3. 
Example of HR-QUEST fitting of a 3rd trimester amniotic fluid sample. The figure 

demonstrates the ~3.0–4.2 ppm region of a the measured spectrum, b the modeled spectrum 

and c the residual spectrum. The modeled spectrum is composed only of metabolites 

contained in reference spectral database and a baseline correction (dotted line)
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Table 1

Patient demographic data for 2nd versus 3rd trimester amniotic fluid samples

2nd Trimester 3rd Trimester Significance

Total (n) 23 27

Gestational age (weeks)

  n 23 27

  Mean 18.28 ± 2.45 36.35 ± 1.97 0.226

Maternal age (years)

  n 23 27

  Mean 33.00 ± 6.78 32.30 ± 7.71 0.256

Gravidity

  n 14 16

  Mean 2.00 ± 1.41 3.65 ± 1.98 0.039

Parity

  n 14 16

  Mean 0.714 ± 0.914 1.69 ± 1.35 0.131

Ethnicity

  African American/Black 1 4

  Asian/Pacific Islander 5 8

  Caucasian 2 3

  Hispanic/Latina 5 10

  Undisclosed 10 3

Significance determined by 2-tailed t-test for nominal data sets
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Table 2

Average metabolite concentrations (mmol/kg) and percent change of significantly different metabolites (16 of 

21) in 2nd vs. 3rd trimester amniotic fluid samples

Metabolite 2nd Trimester (Mean ± SD) 3rd Trimester (Mean ± SD) Percent change P (Wilcoxon)

Alanine 0.860 ± 0.229 0.228 ± 0.132 −73.5 <0.001

Betaine 0.00846 ± 0.00206 0.0133 ± 0.0058 +56.7 <0.002

Citrate 0.740 ± 0.217 0.399 ± 0.137 −46.0 <0.001

Creatine 0.154 ± 0.084 0.097 ± 0.053 −37.2 0.008

Creatinine 0.0124 ± 0.0058 0.0247 ± 0.011 +99.5 <0.001

GPC 0.0424 ± 0.0407 0.0181 ± 0.0178 −57.4 <0.001

Glutamine 0.219 ± 0.106 0.310 ± 0.166 +41.6 0.029

Glutamate 1.10 ± 0.26 0.319 ± 0.305 −71.0 <0.001

Glucose 5.96 ± 1.66 2.41 ± 1.69 −59.4 <0.001

Isoleucine 0.0847 ± 0.0889 0.0409 ± 0.0512 −51.7 0.043

Lactate 20.0 ± 5.1 15.4 ± 4.1 −23.3 0.001

Leucine 0.0787 ± 0.0318 0.0240 ± 0.0230 −69.5 <0.001

Lysine 0.719 ± 0.196 0.270 ± 0.209 −62.4 <0.001

Pyruvate 0.0659 ± 0.0103 0.0299 ± 0.0286 −54.6 <0.001

Succinate 0.0562 ± 0.0624 0.0842 ± 0.0663 +49.9 0.007

Valine 0.828 ± 0.288 0.323 ± 0.179 −60.9 <0.001

GPC glycerophosphocholine
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Table 3

Metabolites most predictive of gestational age based on stepwise linear regression model

Variable R2 Cp Prob F

Alanine 0.77 54.18 <0.0001

Creatinine 0.83 29.79 0.0002

Glucose 0.90 5.84 <0.0001
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