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Classification of stimuli into categories (such as ‘old’ and
‘new’ in tests of recognition memory or ‘present’ versus
‘absent’ in signal detection tasks) requires the mapping of
internal signals to discrete responses. Introspective judgements
about a given choice response are regularly employed in
research, legal and clinical settings in an effort to measure
the signal that is thought to be the basis of the classification
decision. Correlations between introspective judgements and
task performance suggest that such ratings often do convey
information about internal states that are relevant for a given
task, but well-known limitations of introspection call the
fidelity of this information into question. We investigated to
what extent response times can reveal information usually
assessed with explicit confidence ratings. We quantitatively
compared response times to confidence ratings in their
ability to qualify recognition memory decisions and found
convergent results suggesting that much of the information
from confidence ratings can be obtained from response times.

1. Introduction
Any assessment of recognition memory (and performance in other
classification tasks) needs to separate the ability to distinguish
the different stimulus classes (e.g. old and new items) from
preferences for the different response classes (i.e. response biases).
A large proportion of correct classifications of previously studied
items as ‘old’ could reflect substantial ability to distinguish
between old and new items or a tendency to liberally respond ‘old’
when presented with a recognition memory test. Signal detection
theory (SDT) is a common analysis framework for tasks with two
response classes [1]. Within this framework, the strength of the
(internal) signal on which the classification is based is assumed to
vary continuously and a criterion is placed to map the continuous
signal onto a binary classification response. Responses can be

2016 The Authors. Published by the Royal Society under the terms of the Creative Commons
Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted
use, provided the original author and source are credited.

http://crossmark.crossref.org/dialog/?doi=10.1098/rsos.150670&domain=pdf&date_stamp=2016-04-13
mailto:ctw@cogsci.info
http://orcid.org/0000-0002-4280-2744


2

rsos.royalsocietypublishing.org
R.Soc.opensci.3:150670

................................................

5 4 3 2 1
confidence

0

0.2

0.4

0.6

0.8

1.0
p 

(x
)

p 
(x

)

‘new’

target

lure

1 2 3 4 5
confidence

‘old’

0.2 0.4 0.6 0.8 1.00

0.2

0.4

0.6

0.8

1.0

p 
(H

IT
)

p 
(H

IT
)

‘old’

‘new’ 0.88

0.90

0.92

0.94

0.96

0.98

1.00

ar
ea

 u
nd

er
 R

O
C

5 4 3 2 1

RT strength

0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5

RT strength

0.2 0.4 0.6 0.8 1.0

p (FA)

p (FA)

0

0.2

0.4

0.6

0.8

1.0

all
responses

all
responses

0.88

0.90

0.92

0.94

0.96

0.98

1.00

ar
ea

 u
nd

er
 R

O
C

(a) (b) (c)

Figure 1. Response probabilities for bins of each measure (a) used to compute the ROC functions (b) with corresponding areas (c). Rows
show analyses for confidence ratings and response times, respectively. For illustrative purposes, RT strength is shown partitioned into the
samenumber of levels as there are confidence ratings (using equally-spacedquantiles) and thepoints on theROC functions corresponding
to these bins are indicated. However, smooth ROC functions taking advantage of the full resolution of the data are drawn and form
the basis of the area calculations. The left-most points on the ROC functions correspond to the right-most bars in the left panels and
subsequent points are calculated by cumulatively adding the probabilities for targets and lures to the hit and FA values, respectively.
Probabilities for target and lures are shown with overlapping bar graphs with hatching as indicated in the legend (additional shading,
blue for targets and yellow for lures, is added to help with the discrimination). The classification point (i.e. the point separating ‘old’ from
‘new’ responses) is shown as a diamond (solid-red and dashed-green parts of the ROC functions indicate the parts corresponding to ‘old’
and ‘new’ responses, respectively).Main diagonals aswell as randomROC functions are shown as dotted lines in the ROC plots. The lowest
value on the ordinate for the bar graphs on the right (0.87) corresponds to the area under the randomROC. Error bars on the areameasure
show the 95% confidence intervals.

classified as ‘hit’ (correct response in favour of a standard response class, e.g. ‘old’ in recognition memory
tasks or ‘present’ in signal detection tasks) or ‘false alarm’ (FA; incorrect response in favour of a standard
response class), as well as ‘correct rejection’ or ‘miss’ (correct and incorrect responses to the non-
standard response class, respectively). With rising endorsement of the standard response class (when
data from different response criteria are obtained), the way the cumulative hit rates increase relative
to the cumulative FA rates indexes a classifier’s performance (a receiver operating characteristic (ROC)
function; figure 1). To the extent that a classifier correctly distinguishes between the two stimulus classes,
hit rates should initially rise faster leading to a concave ROC function.

Several indices of discriminability and response bias have been developed within the framework
of SDT. Most of these indices are strongly dependent on the specific assumptions associated with a
particular application of SDT. The area under an ROC function (AUC), however, provides an index
of discriminability which does not depend on strong (and typically untested) assumptions about the
distribution of internal states—it is simply a measure of ordinal separation of the two distributions
indexing the responses to targets and lures, respectively. In contemporary research on perception
and memory, ROC functions are almost exclusively constructed through putative manipulation of
response criteria (e.g. by varying instructions, stimulus base-rates, or pay-off contingencies) or from
introspective judgements (e.g. through confidence ratings with each level assumed to reflect a different
response criterion). Because the former approach is particularly costly (requiring dedicated experimental
blocks/sessions for each point on the ROC function), the use of confidence judgements is the de facto
standard for the generation of ROC functions in recognition memory tasks.
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Introspective judgements are perhaps the oldest empirical tool for psychological inquiry—they are

regularly employed in research, legal and clinical settings [2,3], but have also long been recognized as
problematic [4–9]. Correlations between introspective judgements and task performance suggest that
such ratings often do convey information about internal states that are relevant for a given task [10–13],
but similar correspondences are often observed between task performance and response latency [14].
Indeed response times play a central role in models accounting for performance in recognition memory
(and other) tasks with sequential sampling or diffusion processes [15].

Research on the nature of confidence judgements has shown that they largely reflect ‘fluency’ of
the response (i.e. the ease and speed with which it is generated), even when it is a poor index of
performance [16–20]. In the light of the well-known relationship between such ratings and response
fluency (often operationalized by response latency), the substantial effort required to solicit these
ratings (which often take longer to execute than the response to which they apply), and the strong
correspondence between response times and performance [14], it is remarkable that attempts to quantify
discriminability through analyses of response time data are mostly limited to the fitting of sequential
sampling models (which usually require large numbers of trials to estimate various parameters in
addition to those directly reflecting the ability to distinguish old from new items).

Here, we raise the question to what extent we can quantify the discriminability of memory states
independent from response biases on the basis of response latencies. To foreshadow the results, we
show that despite absolute differences in the magnitude of performance indices derived from confidence
ratings and response latencies, the relative pattern of these indices across various partitions of the data
is remarkably similar.

1.1. Generating receiver operating characteristic functions from response times
Historically, a wide variety of dependent variables, including response times [11,21–38], latency of
heart rate increase [27], response frequency [39], and firing rates of individual neurons [32,40], have
been used for ROC construction. To construct an ROC function from a dependent variable, one has to
assume or establish a mapping between this measure and the evidence for the classification response.
A common way to construct ROC functions is to partition the dependent variable (e.g. response time)
by the classification response and to sort it within these partitions on the basis of this mapping. For the
case of response time, the usual assumption is that fast responses are based on a stronger signal/made
with higher confidence than slow responses, such that, in the case of recognition memory, the inferred
evidence that an item has been studied is weakest for fast ‘new’ responses, strongest for fast ‘old’
responses and intermediate for slow responses [22,24,41,42]. We refer to response times (RTs) ordered
in this way as ‘RT strength’. This assumed relationship between signal strength and response time is
well supported by findings that responses that are made with high confidence also tend to be made
faster than those with low confidence [43,44]. We address occasional exceptions to this relationship in
the Discussion section.1

1.2. Classification performance and signal strength
ROC functions constructed in this way are constrained to pass through the classification point (the
point separating, say, ‘old’ from ‘new’ responses in tests of recognition memory or ‘signal present’ from
‘signal absent’ responses in signal detection tasks) as well as through the points where both hits and
FAs are either zero or one. Consider, for example, a random measure that bears no relationship to the
classification response such as the throw of a die. Just as with confidence ratings, one could interpret the
outcomes of a die thrown after every classification response in a test of recognition memory such that the
inferred memory strength of an item is weakest for a ‘new’ response with an outcome of six, strongest
for an ‘old’ response with an outcome of six, and intermediate for lower casts. In the limit, the partitions
of this variable within a given classification response contain equal proportions of correct and incorrect
responses such that the rate of increase of hits and FAs in the ROC function is constant within each
classification response. Thus, a ‘random ROC’ that reveals no information beyond that contained in the
classification response is bilinear, connecting the origin to the classification point and that point to (1, 1)
with straight lines (shown together with the main diagonal as dotted lines in figure 1; [8,24,45]). The AUC
therefore conflates classification performance with the measure’s ability to reflect the signal underlying

1In certain situations, the relationship between response times and signal strength is better described by a speed-accuracy trade-off
and conditional accuracy functions are sometimes used to characterize this relationship, especially in cases where response speed is
not manipulated (ch. 6 of [22] discusses these cases and analyses).
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the classification decision. A relative index of how much information a particular measure contains
about the signal underlying the classification response can be obtained by subtracting the area under the
random ROC from that under the ROC of interest [24]. Previous applications of this method have shown
that response times and other measures contain significant information that qualifies a classification
response at levels that sometimes approached, but never exceeded that in confidence ratings [24,33,38].

In order to assess to what extent response times can reveal information similar to that obtained by
confidence ratings, we administered a recognition memory test that first asked for a binary recognition
decision followed by a confidence rating. This set-up allowed us to directly compare the time taken for
the recognition decision with the subsequent introspective judgements.

2. Material and methods
2.1. Participants
We obtained data from the Penn Electrophysiology of Encoding and Retrieval Study which asked
participants to contribute data for a total of 20 sessions each. From all participants we selected young
adults (ages 18–30 years) who provided data from at least seven sessions. We excluded trials with invalid
confidence responses and those with response times for binary old–new judgements below 300 ms or
above 3000 ms (a total of 3% of the full dataset). From the remaining data, we eliminated 121 sessions
(about 3% of the data) that did not contain at least one ‘old’ and one ‘new’ response for both targets and
lures. Some analyses partitioned the targets into those that were previously recalled and those that were
not (see below for details). For those analyses, we additionally required that sessions contained at least
one ‘old’ and one ‘new’ response for both types of targets which excluded a further 540 sessions (16%
of the remaining dataset). These exclusion criteria yielded a total of 171 participants (of which only 10
provided data from fewer than 10 sessions for the general analyses, with 24 participants providing data
from fewer than 10 sessions for the analyses partitioning the data by previous recall). The total number
of analysed sessions was 3120 for the general analyses and 2580 for the analyses partitioning the data by
previous recall.

2.2. Experimental task
Each session included multiple pairs of study lists followed by recall tasks. Details of study conditions
and recall tasks varied across sessions (see [46] for details), but in all cases participants studied words
presented on a computer screen before being probed to recall the previously presented words. The
current study focuses mostly on a final recognition test at the end of each session. Participants were
shown one word at a time and asked to indicate whether each word was presented in any of the
previous study lists that had been shown in this session. Participants answered verbally by speaking
either ‘pess’ or ‘po’ into a microphone to answer in the affirmative or negative, respectively (‘yes’
and ‘no’ were replaced by ‘pess’ and ‘po’ to equalize the initial phoneme in an effort to allow more
precise measurements of response latencies; response time was only measured in relation to the initial
recognition memory decision and not with respect to the confidence rating). Following the ‘old’/‘new’
classification, participants were asked to rate their confidence in their classification response on a 5 point
scale from ‘very unsure’ to ‘very sure’ by either speaking a number between 1 and 5 into the microphone
(most participants) or by pressing the corresponding number key on the keyboard. The proportion of
lures in the recognition memory test was varied across sessions, but this manipulation had miniscule
effects on performance and was not a focus of the current investigation. Participants indicated that they
had finished speaking by pressing the space key on a computer keyboard both after the classification
response and after the confidence rating (response times were only measured as the latency of the verbal
classification response). Immediately after participants indicated that they had finished the confidence
rating they received brief (randomly jittered between 100 and 200 ms) visual (‘Correct’ in green or
‘Incorrect’ in red) and auditory feedback on their classification decision (feedback was automatically
generated with custom speech recognition software). After offset of the feedback, the screen turned
blank for a variable interval uniformly distributed between 800 ms and 1200 ms before the next test word
was presented. All stimulus presentation and recording of voice and button-press responses were done
with PyEPL [47]. Some analyses condition recognition memory performance on whether or not a given
target item was recalled in any of the recall periods of that session, but we make no other reference to
performance in the recall periods of this experiment. Electroencephalography recordings were obtained
but are not further discussed in this article.
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3. Results
Means of the distribution of all response times ranged from 773 ms for hits (s.d. = 321) to 1065 ms for
misses (s.d. = 459), with response times for false alarms (M = 943, s.d. = 502) and correct rejections (M =
967, s.d. = 389) falling between those two extremes. Visual inspection of the response time distributions
confirmed that their shapes were typical for response time distributions.

3.1. Assessing memory strength with C- and L-ROC functions
Figure 1 illustrates the construction of the ROC functions based on confidence ratings (C-ROC; top
row) and response latency (L-ROC; bottom row). The figure breaks down the steps of constructing
and assessing ROC functions to illustrate how this process generalizes across dependent variables. The
common case of using confidence ratings to construct ROC functions is illustrated in the top row; the
bottom row mirrors these steps for response latencies. We followed this procedure separately for each
experimental session, averaged the sessions for each participant and show the mean across participants
in figure 1. It is important to note that as long as some relationship between a dependent variable
and the strength of the signal underlying the classification response can be assumed or established, the
same procedure can be used to evaluate to what extent this variable is able to qualify the classification
decision. Similarly, this procedure is completely agnostic with respect to the nature of the classification
decision and, indeed, previous applications of this procedure have almost exclusively focused on signal
detection/perceptual discrimination tasks [24]. A particular feature of confidence ratings is that they
are usually discrete, whereas many other variables that could be used to qualify the signal underlying
classification decisions (such as response times and physiological recordings) are continuous. To better
illustrate the correspondence with confidence ratings, the bottom panel of figure 1a shows RT strength
binned into the same number of bins as there are in our confidence scale (using equally spaced quantiles).
All analyses, however, are based on the raw latency data which is why the L-ROC function does not
connect the indicated points with straight lines. The curvature reflecting the use of the full resolution of
the latency data is difficult to discern, but most prominent for the lowest strength ‘old’ responses.

Though uncommon (and impractical for continuous variables), the response probability plots in
figure 1a contain the same information as the corresponding ROC functions, albeit at a lower resolution
for our latency data for illustrative purposes as explained above. Cumulatively adding the response
probabilities (starting with the strongest ‘old’ responses) for targets and lures to the hit and FA
probabilities, respectively, traces out the ROC function (figure 1b). The response probability plots indicate
that for both confidence ratings and RT strength, stronger responses tended to be associated with higher
response probabilities for correct responses and lower response probabilities for incorrect responses—
a trend that is more easily quantified on the basis of the resulting ROC functions. As is evident from
figure 1c, the L-ROC is closer to the random ROC than the C-ROC, resulting in a significant difference
between the areas under the C-ROC and the L-ROC functions (t170 = 13.609, s.e. = 0.003, d = 1.041,
p < 0.001). As is also clear from the figure, the areas under both ROC functions exceeded those under the
random ROC functions, effects which turned out to be substantially larger than the difference between
the two areas (t170 = 109.312, s.e. = 0.004, d = 8.359, p < 0.001 and t170 = 65.243, s.e. = 0.006, d = 4.989,
p < 0.001, for C-ROCs and L-ROCs, respectively).

To investigate the correspondence between the AUC for C-ROC and L-ROC functions (AUCC and
AUCL, respectively), we analysed the correlation of these and related measures. Figure 2a shows a
scatter-plot of AUCC and AUCL that reveals a very close correspondence between both areas (r = 0.93,
t169 = 44.714, p < 0.001). This correlation, however, is inflated by the fact that both ROC functions are
constrained to pass through the classification point. To illustrate this issue, it may help to point out
that both AUCC and AUCL are also expected to strongly correlate with the AUC for the random ROC
function. We interpret each dependent measure as reflecting evidence for the particular classification
response and the hit and false alarm rates associated with that classification define a point on any
corresponding ROC function. Thus, AUCs will be larger for ROC functions reflecting higher classification
performance regardless of what measure is used to construct the ROC function (and indeed even if that
measure contains no information about the classification decision at all). Confidence ratings can also be
used to solicit an absolute measure of evidence for one and against the other alternative. Used this way,
extreme (low or high) ratings indicate high confidence for one or the other stimulus class, respectively,
with intermediate ratings indicating low confidence. For some other measures, such as choice RT, it does
not seem possible to extract the direction of the choice along with its confidence without a separate
classification decision. When each end of the rating scale indicates support for one of the stimulus
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Figure 2. Scatter-plots comparing areas under the ROC curve (AUC) for confidence ratings (C) and response latency (L). Corresponding
correlations and the main diagonal are indicated in each panel. Data points correspond to the average AUCs across all sessions for each
participant. Individual data points are transparent such that darkness indicates density of points in a given area. (a) Comparison of the
areas under the entire ROC functions. (b) Comparison of the areas under the ROC functions for ‘old’ (O) responses only. (c) Comparison of
the areas under the ROC functions for ‘new’ (N) responses only. Note that the scales in (a) differ from those in the other two panels.

classes, a classification threshold (e.g. the middle rating option) is not always explicitly indicated,
making it difficult to identify a classification point on the corresponding ROC function. However, as
long as a classification is taking place, the fact remains that classification performance and the dependent
measure’s ability to reflect the signal underlying the classification decision jointly determine the shape
of (and hence the area under) the corresponding ROC function.

3.2. Classification-response specific receiver operating characteristic functions
Another way to compare confidence ratings and response times as measures of memory strength,
without contamination from classification performance, is by assessing their ability to qualify
classification responses separately for ‘old’ and ‘new’ judgements. Figure 3 illustrates how the data
for ‘old’ and ‘new’ judgements can be separately used as the bases for the calculation of classification-
alternative specific ROC functions. Figure 3 shows the same data as figure 1, but this time response
probabilities are conditioned on the classification response. As in figure 1, RT strength is binned in
figure 3a and the points corresponding to these bins are indicated on the respective ROC functions
in figure 3b. This binning again serves to illustrate the correspondence between the approaches for
confidence ratings and response latencies, and we used the full resolution of the response time data
in the generation of ROC functions and for corresponding analyses (the curvature of the lines connecting
points on the L-ROC functions which reflects our use of the raw latency data is clearly discernible in
figure 3b). Whereas the response probabilities for targets and lures across both classification responses
each add up to 1.0 in figure 1a, they add up to 1.0 within each classification response in figure 3a.
The distribution of target and lure response probabilities across the response categories in figure 1a
reflects the overall classification performance. By conditioning on the classification response in figure 3a,
classification performance does not affect the resulting ROC functions. We present this approach as a
novel way to analyse measures qualifying classification responses that allows for the separate assessment
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Figure 3. Conditional response probabilities for bins of each measure (a) used to compute conditional ROC functions (b) with
corresponding areas (c). Samedata as in figure 1, but probabilities are conditioned on the respective classification responses. Separate ROC
functions for ‘old’ and ‘new’ judgements are generated by cumulatively adding target and lure probabilities with decreasing strengths to
the hit and FA values, respectively, for ‘old’ responses and vice versa for ‘new’ responses. The corresponding AUCs with 95% confidence
intervals are shown in (c). As in figure 1 blue and yellow shadings correspond to data from targets and lures, respectively, and red and
green shadings correspond to data from ‘old’ and ‘new’ responses, respectively.

of such measures for each response class. We comment further on this approach in the Discussion section
and we illustrate the calculation of different ROC functions with a worked-out example in appendix A.

Given that figure 3 is based on the same data as figure 1, it is not surprising that it, too, indicates
that stronger responses are associated with higher probabilities for correct responses and lower
probabilities for incorrect responses—a trend that is more easily discernible in figure 3a for both response
alternatives owing to the conditioning. These response probabilities contain the same information as the
corresponding ROC functions (albeit at a lower resolution for L-ROCs owing to the binning as explained
above). They can be used to generate separate ROC functions for both response alternatives (‘old’ and
‘new’ in this case) by cumulatively adding response probabilities for targets and lures with decreasing
strengths to the hit and FA probabilities, respectively, for the standard response class (‘old’ in this case)
and vice versa for the other response alternative.

The areas under these ROC functions indicate to what extent the respective dependent variable
(confidence ratings or RT in our case) qualifies a given classification response alternative (‘old’ or
‘new’ in our case). Areas under all ROC functions in figure 3 clearly exceeded 0.5 (t170 = 18.933–59.921,
s.e. = 0.005–0.009, d = 1.448–4.582, all ps < 0.001) confirming that both measures contain additional
information about each classification response alternative. A large difference between the areas under
the ROC functions for ‘old’ and ‘new’ responses is also apparent (t170 = 36.076, s.e. = 0.005, d = 2.759
and t170 = 11.337, s.e. = 0.006, d = 0.867, for confidence ratings and response latencies, respectively; both
ps < 0.001). The differences between the areas under the corresponding C- and L-ROC functions are
also substantial (t170 = 23.038, s.e. = 0.008, d = 1.762, and t170 = 17.781, s.e. = 0.004, d = 1.360 for ‘old’
and ‘new’ responses, respectively; both ps < 0.001). Figure 2b,c shows the relationship between AUCC
and AUCL for ‘old’ and ‘new’ responses, respectively. These scatter-plots illustrate large correlations
between AUCs derived from confidence ratings and RTs for both ‘old’ (r = 0.45, t169 = 7.860, p < 0.001)
and ‘new’ (r = 0.56, t169 = 11.053, p < 0.001) responses that are not affected by the constraint of the full
ROC functions to pass through the classification point.

As illustrated in figure 3, both confidence ratings and response latencies are much better able to
qualify ‘old’ responses than ‘new’ responses. Nevertheless, it seems reasonable to ask to what extent
these measures are correlated across classification responses (e.g. do large areas under the C-ROC
(L-ROC) for ‘old’ responses coincide with large areas under the C-ROC (L-ROC) for ‘new’ responses?).
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Figure 4 illustrates substantial and similar relationships between AUCs for ‘old’ and ‘new’ responses
for confidence ratings (r = 0.57, t169 = 11.174, p < 0.001) and response latencies (r = 0.68, t169 = 15.548,
p < 0.001).

3.3. Previous recall as a proxy for memory strength
When comparing indices of sensitivity that are based on different dependent measures, it is useful to
assess how these measures fare when sensitivity varies. Comparisons of performance for conditions
with different levels of memory strength have also been used in tests aiming to distinguish threshold
accounts of recognition memory from signal detection accounts [48]. It is therefore important to assess
to what extent estimates of sensitivity based on confidence ratings and response times covary across
various levels of memory strength. A close correspondence across dependent measures would suggest
that related findings based on confidence ratings may generalize to response times—a finding that would
need to be confirmed by detailed modelling. Even though we did not manipulate sensitivity directly,
the set-up of the current experiment allowed us to compare performance for groups of targets that
can reasonably be expected to differ in sensitivity. Specifically, we compared performance for targets
that have been previously recalled to that for items that have not been recalled in any of the recall
periods that preceded the recognition memory test. Across all included sessions, the mean proportion
of previously recalled targets was 61% (s.d. = 16%). Figure 5 shows the mean AUCs based on previously
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Figure 6. Scatter-plots comparing areas under the ROC functions for targets thatwere previously recalled and those thatwere previously
unrecalled within each session (the same set of lures were used in the generation of both ROC functions). Separate scatter-plots are
shown for ROC functions based on confidence ratings (a) versus response latency (b). Corresponding correlations and the main diagonal
are indicated in each panel. Individual data points are transparent such that darkness indicates density of points in a given area.
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Figure 7. Scatter-plots comparing areas under the ROC functions for targets thatwere previously recalled and those thatwere previously
unrecalledwithin each session (the same set of lureswere used in the generation of both ROC functions). Separate scatter-plots are shown
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versus ‘new’ (right column, (b,d)) responses. Corresponding correlations and the main diagonal are indicated in each panel. Individual
data points are transparent such that darkness indicates density of points in a given area.

recalled versus unrecalled targets for confidence ratings, response latencies and the corresponding AUCs
for ROC functions that are conditioned on the classification response (cf. figure 3). It is clear from the
figure that recognition memory was lower for targets that were not previously recalled (as indicated by
the shorter shaded areas outlining the areas for the random ROCs that are only based on classification
performance; t170 = 36.265, s.e. = 0.002, d = 2.773, p < 0.001). For both sets of items, confidence ratings
and response latencies effectively qualified classification decisions as indicated by AUCs for classification
response-specific ROC functions exceeding 0.5 (t170 = 13.263–63.322, s.e. = 0.004 − 0.009, d = 1.014–4.842,
ps < 0.001). The difference between the AUCs corresponding to the C-ROC as well as the L-ROC and the
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random ROC appears to be similar for AUCs based on recalled versus unrecalled trials (0.063 versus 0.060
and 0.023 versus 0.022 for AUCs based on C-ROCs and L-ROCs, respectively). However, this similarity is
deceiving, because these differences have different baselines anchored on the random AUCs for recalled
(0.897) and unrecalled (0.829) targets. The AUCs based on the ROC functions that are conditioned on the
classification response (the four right-most sets of bars in figure 5) reveal that both confidence ratings
and response latencies were somewhat more effective at qualifying recognition decisions for previously
recalled items, especially when these were classified as ‘old’. A 2 (recalled status) ×2 (response) ×2
(dependent measure) repeated measures ANOVA on the AUCs that are conditioned on the classification
response (i.e. the four right-most sets of bars in figure 5), confirmed large main effects (F1,170 = 332–645,
MSE = 10.17–91.08, η2

p = 0.66–0.79, ps < 0.001) as well as large interactions between recalled status and
response (F1,170 = 130, MSE = 3.39, η2

p = 0.43, p < 0.001) and between response and dependent measure
(F1,170 = 310, MSE = 13.85, η2

p = 0.65, p < 0.001).2

Despite this discrepancy between the effectiveness of C- and L-ROC functions for previously recalled
and unrecalled targets, we would expect that in sessions where a given measure is effective at qualifying
classification decisions involving previously recalled targets, it should also be effective at qualifying
classification decisions involving previously unrecalled targets (and likewise for sessions where a given
measure is less effective). Figure 6 shows the correlations between the AUCs based on previously recalled
and unrecalled targets for C- and L-ROC functions. Both correlations are substantial and similar (r = 0.89,
t169 = 34.076 and r = 0.94, t169 = 50.348, respectively, both ps < 0.001). The corresponding correlations for
AUCs based on ROC functions that are conditioned on the classification response are shown in figure 7
and also show substantial and similar correlations (r = 0.89, t169 = 35.412, and r = 0.97, t169 = 72.265 for
‘old’ responses as well as r = 0.57, t169 = 11.158 and r = 0.62, t169 = 12.989 for ‘new’ responses, all ps <

0.001).

4. Discussion
Much of what we know about human behaviour comes from experimental work asking participants
to judge a stimulus as belonging to one of two classes. Examples include tasks asking participants to
distinguish studied from unstudied items (e.g. to investigate recognition memory—our focus in this
paper), tasks asking participants whether two stimuli are identical or not (e.g. to establish a detection
threshold), tasks asking which of two stimuli is larger/better on some dimension (e.g. to study inference
and/or preference) and tasks asking participants to match stimuli to categorical labels (e.g. to study
knowledge and/or perception). Most theories of cognitive processes that are measured with these
tasks, assume that a continuous signal (e.g. strength of a memory, percept or preference) is somehow
thresholded to produce a binary response (e.g. ‘old’ versus ‘new’ in a recognition memory task or ‘signal
present’ versus ‘signal absent’ in a signal detection task). Attempts to characterize this signal, however,
have mainly focused on aggregating large numbers of trials (e.g. to compare average levels of evidence
across different experimental conditions) or on introspective judgements (e.g. by asking participants to
rate their confidence in each classification decision). The latter measures have the distinct advantage of
providing trial-by-trial assessments of the evidence underlying the classification decisions, but previous
research suggests that they reflect an inference about this evidence (based on response fluency) rather
than direct introspective access to it [16–20,49,50]. Furthermore, a large literature on response biases
in survey data has demonstrated reliable limits on introspective judgements [5–7,9]. Potential issues
with the use of confidence ratings have also been highlighted in recent debates on the extent to which
recognition memory ROC functions are compatible with a dual high threshold model positing discrete
‘recognize as old’, ‘recognize as new’ and ‘uncertain’ states, rather than continuously varying evidence
assumed by SDT [51–54].

Given that introspective judgements are costly to obtain, largely reflect response fluency (which is
usually assumed to be inversely related to response latency), and may be subject to response biases,
we assessed to what extent response latencies conveyed similar information to that obtained from
introspective judgements. Even though response times have previously been used in several studies to
generate ROC functions in perceptual tasks [11,21,24–37], as far as we are aware, the only published
application to recognition memory is a study that investigated performance in a range of memory
tasks for four participants [23]. This is particularly surprising given that many studies of recognition
memory place a strong focus on the shape of ROC functions in an effort to constrain theoretical

2The interaction between recalled status and dependent measure also reached conventional levels of statistical significance, but that
effect was of negligible size: η2

p = 0.06.



11

rsos.royalsocietypublishing.org
R.Soc.opensci.3:150670

................................................
accounts and given that response times to recognition decisions feature prominently in attempts to
understand recognition memory using sequential sampling models; see [55,56] for recent efforts to
validate the unequal-variance assumption in recognition memory (which is usually supported by
analyses of the shape of ROC functions) with response times in a diffusion model analysis. Furthermore,
applied work on eye-witness memory has found response latency to be indicative of identification
accuracy [57].

We found that L-ROC functions tended to be closer to the corresponding random ROC functions
than C-ROC functions—a common finding among studies using L-ROC functions—but that areas under
both types of ROC functions conveyed similar information about relative performance. In all cases of
which we are aware, the generation of L-ROC functions depends on the assumption that RT tends
to be inversely related to evidence strength. See [38,42] for theoretical work assuming that response
time should be related to the signal underlying the classification decision, with the former authors
providing a formal derivation of (among other things) how variability in the dependent measure
(‘criterion variability’) affects the shape of the resulting ROC function. Even though there is strong
evidence for this assumed relationship between response time and evidence strength, there is also
evidence for different relationships in some cases [43]. Examination of L-ROC AUCs for individual
sessions (not shown here) revealed that in some cases these AUCs fell considerably below 0.5 (i.e. the
level indicating no relationship between RTs and memory strength). This suggests that for these cases
our assumptions for the calculation of RT strength are not met. Analyses of some of these cases (not
reported in detail here) revealed relatively high FA rates and a tendency for faster responses (particularly
for incorrect responses). This is evidence for a substantial proportion of fast guesses in these data which
would counteract the assumed trend of shorter RTs being associated with stronger evidence. Presumably
inferential processes that generate confidence ratings on the basis of response fluency can take into
account when a response was guessed quickly which may help explain the absolute differences in
the AUCs for ROC functions based on confidence ratings and response latencies. Note also that some
sessions contained more targets than lures which may have led participants to preferentially guess ‘old’.
Such a response pattern could explain the relatively larger AUCs for ‘old’ confidence responses shown
in figure 2b (figure 2c shows no such advantage for ‘new’ confidence responses). Additionally, analyses
using discrete-state models of recognition memory suggest that detect-old states are more common than
detect-new states and that detect-old states are associated with more extreme confidence ratings [51,58].
It may well be possible to account for the relatively larger AUCs for ‘old’ confidence responses on the
basis of these findings, but this would require further modelling.

It is likely that even the data without obvious violations of the assumptions for the calculation of
RT strength are somewhat contaminated by fast guesses. These tend to reduce the area under L-ROC
functions unless the calculation of RT strength is amended to identify these cases to either exclude
them or to associate them with low levels of evidence. Modelling the relationship between RT and
memory strength in a way that allows for variability between participants and sessions might provide
a sensible alternative basis for computing L-ROC functions. Recent accounts of confidence ratings in
recognition memory and other binary choice tasks have successfully captured accuracy and response
time data with sequential sampling models [43,59]. The RTCON model [43] is designed to handle
confidence ratings only without provisions for a separate binary choice and is thus, in its current form,
not able to account for similarities (or lack thereof) between C- and L-ROC functions. The two-stage
dynamic signal detection interrogation model of confidence [59], on the other hand, models both binary
classification decisions and subsequent confidence ratings by assuming that accumulating evidence is
assessed twice: once with respect to binary classification criteria and then again, at a later point, with
respect to confidence criteria. This set-up predicts a correlation between confidence ratings and binary
choice RTs such that more confident responses are associated with shorter binary choice RTs. The strength
of this relationship depends on the exact parametrization of the model and it is conceivable that this
model, or a close variant, could provide the basis for a better way to generate L-ROC functions taking
into account individual differences.

ROC functions that were specific to each classification response (figure 3) provide a novel way to
assess to what extent a given measure qualifies the evidence underlying each possible response. It is
conceivable that some measures are differentially sensitive to different levels of evidence or that evidence
associated with one response category is inherently less variable (perhaps because of a threshold process
rather than a smooth transition from lower to higher levels of evidence). Indeed for both confidence and
latency data, we found that the areas under the ROC functions for ‘new’ responses were considerably
smaller than the corresponding areas for ‘old’ responses. This indicates that both confidence ratings and
response times, are better able to qualify ‘old’ than ‘new’ responses, but these analyses are unable to
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determine to what extent this is because of differential sensitivity of these measures to evidence levels
associated with the two response classes and/or properties of the underlying evidence distributions. In
this context, it is interesting to note that especially for items classified as ‘old’, both confidence ratings and
response latencies were considerably better able to qualify the classification decision for recalled relative
to unrecalled items. Consistent with the comparison between ‘old’ and ‘new’ responses discussed above,
this result indicates that both measures are more effective when operating on higher levels of evidence—
a finding that, again, could be owing to properties of these measures and/or the evidence distributions.
A common finding in applications of SDT to recognition memory data is that estimates of the variability
of memory strengths for targets tend to be larger than those for lures. Our finding of larger AUCs for
‘old’ responses compared with ‘new’ responses is compatible with this finding.3 Indeed, the fact that we
found this pattern for both confidence ratings and response times supports this result without relying on
the assumptions of a particular modelling framework such as SDT or a drift-diffusion model [55,56].

Traditionally, researchers have placed a strong focus on the exact shape of the ROC function in
an effort to draw inferences about the underlying cognitive processes. Such inferences depend on a
number of strong assumptions about the cognitive processes underlying the classification decision
as well as about the mapping between latent states, e.g. ‘memory strength’ and the variables used
to measure them (e.g. confidence ratings). We already alluded to alternatives to our assumptions
regarding the mapping between memory strength and response latency—changes in these assumptions
will produce corresponding changes in the shapes of the resulting ROC functions that are not related
to properties of the cognitive processes underlying the classification decision. Despite the higher
face validity for the assumptions regarding the mapping between memory strength and introspective
ratings (e.g. a higher confidence rating for an ‘old’ response corresponds to a stronger memory), it is
important to remember that this mapping can also be distorted [5–7,9,16], which likewise limits the
diagnosticity of the corresponding ROC function with respect to the cognitive processes underlying
the classification decision. Furthermore, different dependent measures are likely to respond differently
to some experimental manipulations—speed stress, for example, is likely to affect response latencies
more than confidence ratings, whereas instructions to distribute responses equally among the response
alternatives may produce a more uniform distribution of confidence ratings at the expense of a reduced
correspondence between those ratings and the latent state they are meant to assess. Because the details of
the mapping between a given latent state and the dependent variable used to assess it crucially affect the
shape of the corresponding ROC function, attempts to draw conclusions about the cognitive processes
underlying the classification decision from the shape of the ROC function need to be justified for the
particular context from which the ROC function was derived. Indeed, even the assumptions that are not
specific to the particular dependent variable used to generate the ROC function have been criticized as
‘difficult-to-justify and untestable’ [54] and some of these assumptions have been shown to not hold up
to scrutiny [8,43,60,61]. Our approach mostly sidesteps these issues by focusing on the area under the
ROC functions to qualify the classification decision. As described above, violations of the assumptions
regarding the mapping between the latent state and the dependent variable used to measure it will affect
the corresponding ROC functions (and thus the respective AUCs), but unless the extent of this violation
co-varies with other variables under consideration, this should only affect the absolute value of the AUCs
and not the relative pattern of AUCs across those variables.

A common purpose of SDT analyses is to assess to what extent a given experimental manipulation
affects the ability to discriminate between the stimulus classes ‘sensitivity’ and/or the preference for a
given response option ‘response bias’. The assessment of response biases requires a model of the decision
process, but the current method allows the direct assessment of discrimination performance without
the need to subscribe to the specific assumptions of SDT. In this context, it is important to note that
differences in average response latency across the two response classes (perhaps owing to a response
bias favouring one response class over the other) do not affect the resulting L-ROC functions. This is
owing to the fact that during the construction of the ROC function, the dependent variable is sorted
separately for each response class such that a latency corresponding to strong evidence when it refers
to one response option may correspond to weak evidence when it refers to the other response option
(owing to a larger proportion of faster responses). Similarly, in cases where different ranges of nominal
confidence levels are used for different response classes, these would usually be interpreted such that

3The exact relationship between the relative variability of memory strengths for targets and the AUCs for ROC functions corresponding
to ‘old’ versus ‘new’ responses depends on a number of assumptions, including the placement of the classification criterion, but
simulations confirmed that within the framework of a simple SDT model, larger target variability coincided with larger AUCs for ‘old’
responses.
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the largest values within each response class correspond to the most extreme evidence states, without
consideration for consistency of the nominal confidence levels across response options.

Several of our analyses correlated different subsets of the data (partitions based on ‘old’ versus ‘new’
responses and/or recalled versus unrecalled targets) for measures based on both confidence ratings and
response latency (cf. figures 4, 6 and 7). All of these correlations were strikingly similar for measures
based on confidence ratings and response latency, in both cases showing strong correlations between
AUCs for recalled and unrecalled items (figure 6), especially for items classified as ‘old’ (figure 7), as
well as between AUCs for ‘old’ and ‘new’ responses (figure 4). This suggests that the internal structure
of the data based on both dependent measures was quite similar, despite the absolute differences in the
resulting AUCs—a result that supports our earlier assertion that relative differences in performance are
captured similarly well by measures based on confidence ratings and response latencies.

5. Conclusion
The method we used to generate ROC functions can be (and has been) applied to other classification
tasks and to other dependent variables besides confidence ratings and response times. It is likely that
measures not based on confidence ratings or response latencies can provide similar or better insights into
the evidence underlying classification responses and the current framework allows for the quantitative
assessment of such (potential) indices of cognitive states (relative to a random baseline and/or to another
index). ROC functions undeniably play an important role in the assessment of choice behaviour—a
role that generalizes well beyond tests of theories of recognition memory. In some cases, collection of
confidence ratings can be impractical and the collection of binary choices across multiple conditions is
not always a viable alternative. A strength of the current approach is that it generalizes over a wide range
of potential tasks and dependent measures to assess the evidence underlying classification responses. We
have shown that L-ROC functions derived from RTs to binary choice responses in a recognition memory
task provide similar information about discriminability to that obtained from confidence ratings. In
this process, we have presented a novel method to separately assess the information revealed by a
dependent measure with respect to each response class. Importantly, this way of evaluating evidence
for classification decisions, either across all responses or separately for each response class, can provide
detailed insights into how experimental manipulations affect cognitive processing without relying on
assumptions regarding the distribution of evidence or the nature of the decision process. The ability to
use incidental measures (such as RT) for this purpose provides a convenient alternative to traditional
ways of computing ROC functions that is not subject to the limits of introspection and that can even be
applied to experiments ‘retrospectively’ as long as RT data (or data from another dependent variable that
is thought to reflect the cognitive state on which a classification decision is based) is available.
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Appendix A. Procedures for calculating receiver operating characteristic
functions
Table 1 contains data from a fictional recognition memory experiment to illustrate the construction of the
different types of ROC functions used in this article. Classification responses are partitioned on the basis
of a measure (such as confidence ratings or response times) that qualifies this decision. This partitioning
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Table 1. Number (first set of rows) and proportions (bottom two sets of rows) of responses in a fictional recognitionmemory experiment
broken down by percentiles of a measure (such as confidence ratings or response times) qualifying the classification response. (The sums
(Σ ) of ‘new’ and ‘old’ responses are indicated for the different stimulus classes along with the overall number of targets and lures. The
first set of rows (labelled ‘RAW’) contains counts of the number of responses. The middle set of rows (labelled ‘ALL’) contains the same
data normalized by the respective total numbers of target and lure trials. The final set of rows (labelled ‘REC’) contains the same data
normalized by the respective numbers of target and lure trials within each recognition response.)

‘new’ ‘old’

percentile 100 80 60 40 20 Σ‘new′ 20 40 60 80 100 Σ‘old′ Σ

RAW lure 24 20 14 12 10 80 8 6 3 2 1 20 100
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

target 1 2 3 5 4 15 9 12 15 20 29 85 100
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ALL lure 0.24 0.20 0.14 0.12 0.10 0.80 0.08 0.06 0.03 0.02 0.01 0.20 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

larget 0.01 0.02 0.03 0.05 0.04 0.15 0.09 0.12 0.15 0.20 0.29 0.85 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

REC lure 0.300 0.250 0.175 0.150 0.125 1 0.400 0.300 0.150 0.100 0.050 1 2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

target 0.067 0.133 0.200 0.333 0.267 1 0.106 0.141 0.176 0.235 0.341 1 2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2. Cumulative hit and false alarm (FA) rates for different strength criteria inferred from the fictional data in table 1. (The top set of
rows (labelled ‘RAW’) contains the raw frequencies and the bottom set of rows (labelled ‘ALL’) contains the same data normalized by the
total number of targets (for hits) and lures (for FAs).)

strength criterion

liberal . . . . . . . . . . . . . . . . . . . . . . . . conservative

RAW FA 100 76 56 42 30 20 12 6 3 1 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

hit 100 99 97 94 89 85 76 64 49 29 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ALL FA 1 0.76 0.56 0.42 0.30 0.20 0.12 0.06 0.03 0.01 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

hit 1 0.99 0.97 0.94 0.89 0.85 0.76 0.64 0.49 0.29 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3. Cumulative hit and false alarm (FA) rates for different strength criteria inferred from the fictional ‘new’ responses in table 1.
(The top set of rows (labelled ‘RAW’) contains the raw frequencies and the bottom set of rows (labelled “new”) contains the same data
normalized by the total number of targets (for hits) and lures (for FAs) for which a ‘new’ response was made.)

‘new’ strength criterion

liberal · · · · · · conservative

RAW FA 80 56 36 22 10 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

hit 15 14 12 9 4 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

‘new’ FA 1 0.700 0.450 0.275 0.125 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

hit 1 0.930 0.800 0.600 0.267 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

is based on quantiles of this variable. The partitioning in table 1 is compatible with binary classification
responses followed by a confidence rating with five levels (a rating of ‘5’ would correspond to 100th
percentile of possible ratings, a rating of ‘4’ to the 80th percentile of possible ratings, etc.). For continuous
variables such as response times, the number of possible values is infinite, but the ROC function is fully
described as long as the number of percentiles is at least as large as the number of unique values that
were measured (i.e. no more than the number of trials).

The raw data in the top set of rows in table 1 is normalized in two different ways in the bottom two
sets of rows. The normalization in the middle row (labelled ‘ALL’) corresponds to the histograms shown
in figure 1a and the normalization in the bottom row (labelled ‘REC’) corresponds to the histograms
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Figure 8. ROC functions based onfictional data shown in table 1. (a) An ROC function based on both ‘old’ and ‘new’ responses (cf. table 2).
The classification point (i.e. the point separating ‘old’ from ‘new’ responses) is shown as a diamond (solid-red and dashed-green parts
of the ROC functions indicate the parts corresponding to ‘old’ and ‘new’ responses, respectively). (b) Separate ROC functions for ‘old’ and
‘new’ judgements (cf. tables 3 and 4). Main diagonals as well as the random ROC function (a) are shown as dotted lines.

Table 4. Cumulative hit and false alarm (FA) rates for different strength criteria inferred from the fictional ‘old’ responses in table 1.
(The top set of rows (labelled ‘RAW’) contains the raw frequencies and the bottom set of rows (labelled “old”) contains the same data
normalized by the total number of targets (for hits) and lures (for FAs) for which an ‘old’ response was made.)

‘old’ strength criterion

liberal · · · · · · conservative

RAW FA 20 12 6 3 1 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

hit 85 76 64 49 29 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

‘old’ FA 1 0.600 0.300 0.150 0.050 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

hit 1 0.894 0.753 0.576 0.341 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

shown in figure 3a (albeit for the fictional data from table 1 and not for the actual data presented in the
article).

Table 2 lists the values for the standard ROC function based on both classification responses. It can be
derived by cumulatively adding the respective values from table 1 starting from the strongest evidence
in favour of the standard response class (100th percentile ‘old’ responses) to the weakest evidence in
favour of the standard response class (100th percentile ‘new’ responses). The resulting ROC function is
plotted in figure 8a.

Tables 3 and 4 show the values for the ROC functions conditioned on ‘new’ and ‘old’ responses,
respectively. These can be derived by cumulatively adding the respective values from the bottom set
of rows in table 1 within each classification response starting from the strongest evidence in favour
of the standard response class (100th percentile ‘old’ responses or 20th percentile ‘new’ responses) to
the weakest evidence in favour of the standard response class (20th percentile ‘old’ responses or 100th
percentile ‘new’ responses). The resulting ROC functions are plotted in figure 8b. The area under the
ROC functions can be calculated by adding the areas defined by each pair of points and their projections
onto the ordinate.

References
1. Green DM, Swets JA. 1966 Signal detection theory

and psychophysics. New York, NY: John Wiley and
Sons Inc.

2. Busey TA, Tunnicliff J, Loftus GR, Loftus EF. 2000
Accounts of the confidence-accuracy relation in

recognition memory. Psychon. Bull. Rev. 7, 26–48.
(doi:10.3758/BF03210724)

3. Jensen MP, Karoly P. 2011 Self-report scales and
procedures for assessing pain in adults. In
Handbook of pain assessment, 3rd edn (eds DC Turk,

R Melzack), pp. 19–44, New York, NY: Guilford
Press.

4. Wundt W. 1862 Beiträge zur Theorie der
Sinneswahrnehmung. Leipzig, Germany: C. F.
Winter’sche Verlagshandlung.

http://dx.doi.org/doi:10.3758/BF03210724


16

rsos.royalsocietypublishing.org
R.Soc.opensci.3:150670

................................................
5. Baumgartner H, Steenkamp J-BEM. 2001 Response

styles in marketing research: a cross-national
investigation. J. Marketing Res. 38, 143–156.
(doi:10.1509/jmkr.38.2.143.18840)

6. Harzing A-W, Brown M, Köster K, Zhao S. 2012
Response style differences in cross-national
research: dispositional and situational
determinants.Manag. Int. Rev. 52, 341–363.
(doi:10.1007/s11575-011-0111-2)

7. Lee JA, Soutar G, Louviere J. 2008 The best-worst
scaling approach: an alternative to Schwartz’s
values survey. J. Pers. Assess. 90, 335–347.
(doi:10.1080/00223890802107925)

8. Mueller ST, Weidemann CT. 2008 Decision noise: an
explanation for observed violations of signal
detection theory. Psychon. Bull. Rev. 15, 465–494.
(doi:10.3758/PBR.15.3.465)

9. Paulhus DL. 1991 Measurement and control of
response bias. InMeasures of personality and social
psychological attitudes, vol. 121 (eds JP Robinson, PR
Shaver, LS Wright), pp. 17–59. San Diego, CA:
Academic Press.

10. Fleming SM, Weil RS, Nagy Z, Dolan RJ, Rees G. 2010
Relating introspective accuracy to individual
differences in brain structure. Science 329,
1541–1543. (doi:10.1126/science.1191883)

11. Katz L. 1970 A comparison of type II operating
characteristics derived from confidence ratings and
from latencies. Percep. Psychophys. 8, 65–68.
(doi:10.3758/BF03210176)

12. Baranski JV, Petrusic WM. 1998 Probing the locus of
confidence judgments: experiments on the time to
determine confidence. J. Exp. Psychol. Hum. Percept.
Perform. 24, 929–945. (doi:10.1037/0096-1523.
24.3.929)

13. Ackerman R, Koriat A. 2011 Response latency as a
predictor of the accuracy of children’s reports. J. Exp.
Psychol. Appl. 17, 406–417. (doi:10.1037/a0025129)

14. Kahana MJ, Loftus GR. 1999 Response time versus
accuracy in human memory. In The nature of
cognition (ed. RJ Sternberg), pp. 323–384.
Cambridge, MA: MIT Press.

15. Ratcliff R. 1978 A theory of memory retrieval.
Psychol. Rev. 85, 59–108. (doi:10.1037/0033-
295X.85.2.59)

16. Benjamin AS, Bjork RA, Schwartz BL. 1998 The
mismeasure of memory: when retrieval fluency is
misleading as a metamnemonic index. J. Exp.
Psychol. Gen. 127, 55–68. (doi:10.1037/0096-
3445.127.1.55)

17. Dougherty MR, Scheck P, Nelson TO, Narens L. 2005
Using the past to predict the future.Mem. Cogn. 33,
1096–1115. (doi:10.3758/BF03193216)

18. Kelley CM, Lindsay DS. 1993 Remembering mistaken
for knowing: ease of retrival as a basis for
confidence in answers to general knowledge
questions. J. Mem. Lang. 32, 1–24. (doi:10.1006/
jmla.1993.1001)

19. Schwartz BL, Benjamin AS, Bjork RA. 1997 The
inferential and experiential bases of metamemory.
Psychol. Sci. 6, 132–137. (doi:10.1111/1467-8721.
ep10772899)

20. Oppenheimer DM. 2008 The secret life of fluency.
Trends Cogn. Sci. 12, 237–241. (doi:10.1016/j.tics.
2008.02.014)

21. Carterette EC, Friedman MP, Cosmides R. 1965
Reaction-time distributions in the detection of
weak signals in noise. J. Acoust. Soc. Am. 38,
531–542. (doi:10.1121/1.1909737)

22. Luce RD. 1986 Response times: their role in inferring
elementary mental organization. New York, NY:
Oxford University Press.

23. Norman DA, Wickelgren WA. 1969 Strength theory
of decision rules and latency in retrieval from
short-termmemory. J. Math. Psychol. 6, 192–208.
(doi:10.1016/0022-2496(69)90002-9)

24. Emmerich DS, Gray JL, Watson CS, Tanis DC. 1972
Response latency, confidence, and ROCs in auditory
signal detection. Percept. Psychophys. 11, 65–72.
(doi:10.3758/BF03212686)

25. Yager D, Duncan I-A. 1971 Signal-detection analysis
of luminance in goldfish using latency as a graded
response measure. Percept. Psychophys. 9, 353–355.
(doi:10.3758/BF03212665)

26. Moss SM, Myers JL, Filmore T. 1970 Short-term
recognition memory of tones. Percept. Psychophys.
7, 369–373. (doi:10.3758/BF03208669)

27. Kulics AT, Carlson KR, Werner G. 1974 Signal
detection analysis of stimulus discrimination in
normal and split-brain monkeys. Brain Res. 81,
119–132. (doi:10.1016/0006-8993(74)
90482-X)

28. Kulics AT, Lineberry CG. 1977 Sensory
discriminability in monkeys and humans: direct
comparisons by signal detection theory.
Neuropsychologia 15, 321–327. (doi:10.1016/
0028-3932(77)90041-0)

29. Blough DS. 1978 Reaction times of pigeons on a
wavelength discrimination task. J. Exp. Anal. Behav.
30, 163–167. (doi:10.1901/jeab.1978.30-163)

30. Green M, Terman M, Terman JS. 1979 Comparison of
yes-no and latency measures of auditory intensity
discrimination. J. Exp. Anal. Behav. 32, 363–372.
(doi:10.1901/jeab.1979.32-363)

31. Weintraub DJ, Fidell LS. 1979 A signal-detection
approach to subception: concomitant verbal and
finger-latency responses in metacontrast. Percept.
Psychophys. 26, 143–152. (doi:10.3758/BF0320
8308)

32. Essick GK, Whitsel BL. 1985 Assessment of the
capacity of human subjects and S-I neurons to
distinguish opposing directions of stimulus motion
across the skin. Brain Res. Rev. 10, 187–212.
(doi:10.1016/0165-0173(85)90024-4)

33. Herskovic JE, Kietzman ML, Sutton S. 1986 Visual
flicker in depression: response criteria, confidence
ratings and response times. Psychol. Med. 16,
187–197. (doi:10.1017/S0033291700002622)

34. O’Connor KN, Roitblat HL, Bever TG. 1983 Auditory
sequence complexity and hemispheric asymmetry
of function in rats. In Studies in animal behavior (ed.
HL Roitblat), pp. 275–292. London, UK: Lawrence
Erlbaum Associates.

35. O’Connor K, Ison JR. 1991 Echoic memory in the rat:
effects of inspection time, retention interval, and
the spectral composition of masking noise. J. Exp.
Psychol. Anim. Behav. Process. 17, 377–385.
(doi:10.1037/0097-7403.17.4.377)

36. Gray L. 1993 Simultaneous masking in newborn
chickens. Hear. Res. 69, 83–90. (doi:10.1016/
0378-5955(93)90095-I)

37. Yin P, Fritz JB, Shamma SA. 2010 Do ferrets perceive
relative pitch? J. Acoust. Soc. Am. 127, 1673–1680.
(doi:10.1121/1.3290988)

38. Thomas EAC, Myers JL. 1972 Implications of latency
data for threshold and nonthreshold models of
signal detection. J. Math. Psychol. 9, 253–285.
(doi:10.1016/0022-2496(72)90018-1)

39. Blough DS. 1967 Stimulus generalization as signal
detection in pigeons. Science 158, 940–941.
(doi:10.1126/science.158.3803.940)

40. Zhang J, Riehle A, Requin J. 1997 Analyzing
neuronal processing locus in stimulus response
association tasks. J. Math. Psychol. 41, 219–236.
(doi:10.1006/jmps.1997.1168)

41. Jacobs J, Hwang G, Curran T, Kahana MJ. 2006 EEG
oscillations and recognition memory: theta
correlates of memory retrieval and decision making.
NeuroImage 15, 978–87.

42. Navon D. 1975 A simple method for latency analysis
in signal detection tasks. Percept. Psychophys. 18,
61–64. (doi:10.3758/BF03199368)

43. Ratcliff R, Starns JJ. 2009 Modeling confidence and
response time in recognition memory. Psychol. Rev.
116, 59–83. (doi:10.1037/a0014086)

44. Heathcote A. 2003 Item recognition memory and
the receiver operating characteristic. J. Exp. Psychol.
Learn. Mem. Cogn. 29, 1210–1230. (doi:10.1037/0278-
7393.29.6.1210)

45. Weidemann CT, Mueller ST. 2008 Decision noise
may mask criterion shifts: reply to Balakrishnan and
MacDonald (2008). Psychon. Bull. Rev. 15,
1031–1034. (doi:10.3758/PBR.15.
5.1031)

46. Lohnas LJ, Kahana MJ. 2013 Parametric effects of
word frequency in memory for mixed frequency
lists. J. Exp. Psychol. Learn. Mem. Cogn. 39,
1943–1946. (doi:10.1037/a0033669)

47. Geller AS, Schleifer IK, Sederberg PB, Jacobs J,
Kahana MJ. 2007 PyEPL: a cross-platform
experiment-programming library. Behav. Res.
Methods 39, 950–958. (doi:10.3758/BF0319
2990)

48. Kellen D, Klauer KC. 2015 Signal detection and
threshold modeling of confidence-rating ROCs: a
critical test with minimal assumptions.
Psychol. Rev. 122, 542–557. (doi:10.1037/
a0039251)

49. Koriat A. 1993 How do we know that we know? The
accessibility model of the feeling of knowing.
Psychol. Rev. 100, 609–639. (doi:10.1037/0033-
295X.100.4.609)

50. Koriat A, Lichtenstein S, Fischhoff B. 1980 Reasons
for confidence. J. Exp. Psychol. Hum. Learn. Mem. 6,
107–118. (doi:10.1037/0278-7393.6.2.107)

51. Bröder A, Schütz J. 2009 Recognition ROCs are
curvilinear—or are they? On premature arguments
against the two-high-threshold model of
recognition. J. Exp. Psychol. Learn. Mem. Cogn. 35,
587–606. (doi:10.1037/a0015279)

52. Dube C, Rotello CM. 2012 Binary ROCs in perception
and recognition memory are curved. J. Exp. Psychol.
Learn. Mem. Cogn. 38, 130–151. (doi:10.1037/
a0024957)

53. Dube C, Starns JJ, Rotello CM, Ratcliff R. 2012
Beyond ROC curvature: strength effects and
response time data support continuous-evidence
models of recognition memory. J. Mem. Lang.
67, 389–406. (doi:10.1016/j.jml.2012.
06.002)

54. Rouder JN, Province JM, Swagman AR, Thiele JE.
Submitted. From ROC curves to psychological
theory.

55. Starns JJ, Ratcliff R. 2014 Validating the
unequal-variance assumption in recognition
memory using response time distributions instead
of ROC functions: a diffusion model analysis. J.

http://dx.doi.org/doi:10.1509/jmkr.38.2.143.18840
http://dx.doi.org/doi:10.1007/s11575-011-0111-2
http://dx.doi.org/doi:10.1080/00223890802107925
http://dx.doi.org/doi:10.3758/PBR.15.3.465
http://dx.doi.org/doi:10.1126/science.1191883
http://dx.doi.org/doi:10.3758/BF03210176
http://dx.doi.org/doi:10.1037/0096-1523.24.3.929
http://dx.doi.org/doi:10.1037/0096-1523.24.3.929
http://dx.doi.org/doi:10.1037/a0025129
http://dx.doi.org/doi:10.1037/0033-295X.85.2.59
http://dx.doi.org/doi:10.1037/0033-295X.85.2.59
http://dx.doi.org/doi:10.1037/0096-3445.127.1.55
http://dx.doi.org/doi:10.1037/0096-3445.127.1.55
http://dx.doi.org/doi:10.3758/BF03193216
http://dx.doi.org/doi:10.1006/jmla.1993.1001
http://dx.doi.org/doi:10.1006/jmla.1993.1001
http://dx.doi.org/doi:10.1111/1467-8721.ep10772899
http://dx.doi.org/doi:10.1111/1467-8721.ep10772899
http://dx.doi.org/doi:10.1016/j.tics.2008.02.014
http://dx.doi.org/doi:10.1016/j.tics.2008.02.014
http://dx.doi.org/doi:10.1121/1.1909737
http://dx.doi.org/doi:10.1016/0022-2496(69)90002-9
http://dx.doi.org/doi:10.3758/BF03212686
http://dx.doi.org/doi:10.3758/BF03212665
http://dx.doi.org/doi:10.3758/BF03208669
http://dx.doi.org/doi:10.1016/0006-8993(74)90482-X
http://dx.doi.org/doi:10.1016/0006-8993(74)90482-X
http://dx.doi.org/doi:10.1016/0028-3932(77)90041-0
http://dx.doi.org/doi:10.1016/0028-3932(77)90041-0
http://dx.doi.org/doi:10.1901/jeab.1978.30-163
http://dx.doi.org/doi:10.1901/jeab.1979.32-363
http://dx.doi.org/doi:10.3758/BF03208308
http://dx.doi.org/doi:10.3758/BF03208308
http://dx.doi.org/doi:10.1016/0165-0173(85)90024-4
http://dx.doi.org/doi:10.1017/S0033291700002622
http://dx.doi.org/doi:10.1037/0097-7403.17.4.377
http://dx.doi.org/doi:10.1016/0378-5955(93)90095-I
http://dx.doi.org/doi:10.1016/0378-5955(93)90095-I
http://dx.doi.org/doi:10.1121/1.3290988
http://dx.doi.org/doi:10.1016/0022-2496(72)90018-1
http://dx.doi.org/doi:10.1126/science.158.3803.940
http://dx.doi.org/doi:10.1006/jmps.1997.1168
http://dx.doi.org/doi:10.3758/BF03199368
http://dx.doi.org/doi:10.1037/a0014086
http://dx.doi.org/doi:10.1037/0278-7393.29.6.1210
http://dx.doi.org/doi:10.1037/0278-7393.29.6.1210
http://dx.doi.org/doi:10.3758/PBR.15.5.1031
http://dx.doi.org/doi:10.3758/PBR.15.5.1031
http://dx.doi.org/doi:10.1037/a0033669
http://dx.doi.org/doi:10.3758/BF03192990
http://dx.doi.org/doi:10.3758/BF03192990
http://dx.doi.org/doi:10.1037/a0039251
http://dx.doi.org/doi:10.1037/a0039251
http://dx.doi.org/doi:10.1037/0033-295X.100.4.609
http://dx.doi.org/doi:10.1037/0033-295X.100.4.609
http://dx.doi.org/doi:10.1037/0278-7393.6.2.107
http://dx.doi.org/doi:10.1037/a0015279
http://dx.doi.org/doi:10.1037/a0024957
http://dx.doi.org/doi:10.1037/a0024957
http://dx.doi.org/doi:10.1016/j.jml.2012.06.002
http://dx.doi.org/doi:10.1016/j.jml.2012.06.002


17

rsos.royalsocietypublishing.org
R.Soc.opensci.3:150670

................................................
Mem. Lang. 70, 36–52. (doi:10.1016/j.jml.2013.
09.005)

56. Starns JJ. 2014 Using response time modeling to
distinguish memory and decision processes in
recognition and source tasks.Mem. Cogn. 42,
1357–1372. (doi:10.3758/s13421-014-0432-z)

57. Wells GL, Olson EA. 2003 Eyewitness testimony.
Annu. Rev. Psychol. 54, 277–295. (doi:10.1146/
annurev.psych.54.101601.145028)

58. Bröder A, Kellen D, Schütz J, Rohrmeier C. 2013
Validating a two-high-threshold measurement
model for confidence rating data in recognition.
Memory 21, 916–944. (doi:10.1080/09658211.
2013.767348)

59. Pleskac TJ, Busemeyer JR. 2010 Two-stage dynamic
signal detection: a theory of choice, decision time,
and confidence. Psychol. Rev. 117, 864–901.
(doi:10.1037/a0019737)

60. Balakrishnan JD. 1999 Decision processes in
discrimination: fundamental misrepresentations of
signal detection theory. J. Exp. Psychol. Hum.
Percept. Perform. 25, 1189–1206. (doi:10.1037/0096-
1523.25.5.1189)

61. VanZandt T. 2000 ROC curves and confidence
judgments in recognition memory. J. Exp. Psychol.
Learn. Mem. Cogn. 26, 582–600. (doi:10.1037/0278-
7393.26.3.582)

http://dx.doi.org/doi:10.1016/j.jml.2013.09.005
http://dx.doi.org/doi:10.1016/j.jml.2013.09.005
http://dx.doi.org/doi:10.3758/s13421-014-0432-z
http://dx.doi.org/doi:10.1146/annurev.psych.54.101601.145028
http://dx.doi.org/doi:10.1146/annurev.psych.54.101601.145028
http://dx.doi.org/doi:10.1080/09658211.2013.767348
http://dx.doi.org/doi:10.1080/09658211.2013.767348
http://dx.doi.org/doi:10.1037/a0019737
http://dx.doi.org/doi:10.1037/0096-1523.25.5.1189
http://dx.doi.org/doi:10.1037/0096-1523.25.5.1189
http://dx.doi.org/doi:10.1037/0278-7393.26.3.582
http://dx.doi.org/doi:10.1037/0278-7393.26.3.582

	Introduction
	Generating receiver operating characteristic functions from response times
	Classification performance and signal strength

	Material and methods
	Participants
	Experimental task

	Results
	Assessing memory strength with C- and L-ROC functions
	Classification-response specific receiver operating characteristic functions
	Previous recall as a proxy for memory strength

	Discussion
	Conclusion
	References

