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1 Introduction

Structure-activity relationships (SAR) are key to many aspects of drug discovery, ranging 

from primary screening to lead optimization. Working with SAR starts from identifying 

whether an SAR actually exists in a collection of molecules and their associated activities to 

trying to elucidate the details of one or more SARs and subsequently using that information 

to make structural modifications to optimize some property or activity. Fundamentally, an 

understanding of the SAR for a set of molecules, allows one to rationally explore chemical 

space, which, in the absence of “sign posts” is essentially infinite [1]. Invariably, the 

development of a chemical series involves optimizing multiple physicochemical and 

biological properties simultaneously [2, 3, 4]. For example, most lead optimization projects 

will try and improve potency, reduce toxicity and ensure sufficient bioavailability, amongst 

other properties. While the intuition and experience of a medicinal chemist is vital to these 

efforts, the data generated by modern high throughput experimental techniques can 

overwhelm the capabilities of a single chemist. For example, in a primary HTS it is possible 

that one is faced with hundred of chemical series. How does one rapidly identify the most 

promising series amongst them? In these scenarios, in silico methods allow rapid and 

efficient characterization of SARs. These methods allow one to build a variety of models to 

capture and encode one or more SARs, which can then be used to predict activities for new 

molecules. Coupled with in silico modifications of structures, one can easily prioritize large 

screening decks or even generate new compounds de novo and ascertain whether they 

belong to the SAR being studied or not. It should be kept in mind that computational 

methods do not replace medicinal chemistry domain knowledge. Rather, they can provide a 

guide to the experienced user by integrating and summarizing large amounts of pre-existing 

data to suggest useful structural modifications.

While it is certainly true that computational methods can help in identifying, explaining and 

predicting structure-activity relationships (SAR), it is also true that naïve usage (or even 

misuse) of these techniques can lead to misleading results. Fundamentally, SAR models are 

just that: models. That is, a reduced or simplified representation of reality, replete with 

assumptions and limitations. These methods cover the spectrum in terms of complexity and 

utility. The goal of this chapter is to highlight the different type of SAR modeling methods, 

and specifically, how they support the task of exploring chemical space to elucidate and 

optimize structure-activity relationships in a drug discovery setting. In addition to 

considering modeling algorithms, I will also briefly discuss the use of databases as a source 

of SAR data and how they can be used to inform and enhance the exploration of SAR trends.
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The remainder of the text is structured as follows. Section 2 provides an overview of 

common modeling techniques that are used to encode SAR relationships. Section 3 

discusses recent work in the area of structure-activity landscapes and how they can be used 

as an alternative view of SAR data. Section 4 discusses the role of SAR databases. Section 5 

discusses some approaches to exploring SAR data that do not involve explicit model 

development and finally Section 6 provides a summary of this topic.

2 Capturing SAR

Over the last 60 years there have been a multitude of ways to capture structure-activity 

relationships. We can broadly divide them into two groups - those based on statistical or data 

mining methods (e.g., regression models) and those based on physical approaches (e.g., 

pharmacophore models). For a comprehensive review of QSAR methodologies the reader is 

referred to previous reviews of the field [5, 6, 7]. It is important to realize that the choice of 

modeling technique can influence the to what extent and in how much detail an SAR can be 

explored. For example, statistical QSAR approaches bsed on 2D descriptors that ignore 

stereochemistry can be miss key elements of an SAR that depend on chirality [8]. 3D 

approaches on the other hand are generally more explicitly informative, in the sense that one 

can directly understand the nature of ligand - receptor interactions that underlie an observed 

SAR. Some 3D approaches are more explicit than others - docking versus CoMFA for 

example. However, it generally remains true that 3D approaches are preferable when a 

crystal structure is available and when a few chemical series are being explored.

Much of traditional QSAR is based on statistical models that link chemical structure 

(characterized by numerical descriptors) to biological activities. In some cases, the model 

makes distributional assumptions (linear regression), whereas others are “model-free” [9]. In 

either case, one develops a model based on a training set of molecules. The model can then 

be used to predict the activity for new molecules. While much of QSAR has focused on 

various forms of linear regression (ranging from ordinary least squares to more robust 

methods such as PLS or ridge regression), there is no reason to assume, a priori, the 

structure-activity relationship is linear. Indeed, for nost biological systems it is unreasonable 

to expect linear relationships simply because of the multiple, complex processes occurring in 
vivo. Thus, modern non-linear methods such as neural networks and support vector 

machines have seen extensive use and tend to exhibit high accuracy.

However, building a predictive model is just the first step. For certain scenarios, such as 

virtual screening, one can apply the model and simply obtain numerical predictions of 

activity. However, the focus of this article is to consider the use of such predictive models 

for exploring SAR. Key to such exploration is the ability to interpret the model and 

understand how exactly it correlates activity to specific structural features [10, 11]. For 

interpretive purposes, a model should be understandable - both in terms of the descriptors 

used and the underlying model itself. The predictive ability of the model is not primary 

(though of course, for statistical models, they should be statistically significant). Examples 

include linear regression and random forests. In this type of usage, one is interested in what 

the model can tell us about the effects of specific structural features on the observed activity. 

It is thus vital that this information can be teased out from the model. Obviously, for more 
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physical methods such as pharmacophore modeling and docking, the interpretability is much 

more explicit. Clearly, SAR exploration benefits from models that can be dissected. 

Examples of such interpretive usages have been reported, both for simple models [12] as 

well as traditional black box models [13]. However, it is certainly true that purely predictive 

models can also be useful, especially when used to identify more or less active molecules 

from a large collection. In such a scenario, users could employ a predictive model to provide 

an initial ranking, allowing them to focus on a small subset using more interpretive methods.

Closely related to analytical interpretations of QSAR models is the ability to visualize the 

SAR trends encoded in a model. The “glowing molecule” representation developed by 

Segall et al [14] is an example of direct visualization of a predictive model in terms of the 

actual chemical structure. Figure 1 shows an example of such a representation, where the 

color coding corresponds to the influence of that substructural feature on the predicted 

property. This type of visualization allows the user to directly understand how structural 

modifications at specific points will affect the property or activity being optimized.

While capturing SAR trends in a predictive model, used to subsequently predict properties 

for new molecules, is useful, one can also consider the inverse approach. That is, identify 

structures that match a given activity or activity profile. Most formulations of this approach 

aim to derive a set of descriptor values rather than the structure directly. The challenge is in 

identifying valid structures from a set of descripor values. A number of workers have 

addressed the inverse QSAR problem. Visco et al employed the signature molecular 

descriptors [15] to perform an inverse QSAR analysis of 121 HIV protease inhibitors and 

Churchwell et al [16] employed these same descriptors to explore QSARs of peptides 

inhibiting ICAM-1. More recently, Wong et al [17] developed a novel descriptor to address 

inverse QSAR and coupled this to kernel method to allow explicit mapping between points 

in the high dimensional kernel space (i.e., candidate structures) back to the original 

descriptor space and thence to a set of candidate molecules.

2.1 Is the model reliable?

While any statistical method or machine learning algorithm can be used to learn from SAR 

data and then predict activities for new molecules, such predictions are not always reliable. 

More specifically, these types of approaches to QSAR modeling assume that new molecules 

to be predicted will have some structural features in common with the training set that they 

are based on. If the new molecule is sufficiently different, one will obtain an unreliable (or 

even meaningless) prediction. Thus it is vital to denote the “domain of applicability” (DA) 

of a model, thus letting the user know when the predictions of the model can be relied upon. 

In scenarios where a model is built at one time point and then used to make predictions over 

a period of time, defining the DA can be very useful in determining at what point a model 

should be rebuilt, due to sufficient divergence of the new molecules to be predicted from 

original model [18].

A variety of methods have been developed to define domains of applicability [19, 20, 21, 22, 

23]. The simplest approach is to determine how similar a new molecule is to the training set 

for the model. Sheridan et al [24] employed this technique focusing on two approaches - 

similarity of the molecule to be predicted to the nearest neighbor in the training set and the 
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number of nearest neighbors in the training (decided by a user-defined similarity cutoff). 

Their results indicated that either of these approaches lead to a robust measure of reliability 

of predictions. Xu et al [25] also considered similarity to the training set, using a novel 

distance metric terms the “dimension related distance”, allowing them to measure the 

similarity of a molecule to the entire training set. Other distance metrics have also been 

employed including Mahalanobis and Manhattan distances. For models based on linear 

regression, various diagnostics such as the Cooks distance [26] and leverage [27] have been 

employed [28, 29, 30]

A number of approaches based on descriptor values have also been proposed. The simplest 

approach is to determine the range of descriptor values in the training set and the values for 

the new molecule lie outside the range, the model will have to extrapolate, and hence the 

prediction will be unreliable. While conceptually simple, this approach is easily mislead by 

non-uniformly distributed descriptor values. Alternatives have performed PCA and used the 

ranges of the resulting principal components as the space within which reliable predictions 

can be obtained [31].

3 Exploring SAR Landscapes

QSAR model predictions are a useful guide for lead optimization [32], but alternative views 

of SAR data can be useful. Over the last few years, the landscape paradigm of SAR data has 

gained focus and allows us to explore a number of aspects of structure-activity relationships. 

This work stems from the work of Lajiness [33] that viewed chemical structure and 

bioactivity, simultaneously, in a 3D view, with the structure represented in the X-Y plane 

and the activity along the Z-axis. The immediate consequence of this is that a SAR dataset 

can be viewed as a landscape of varying “topography”. Smooth regions correspond to 

molecules that are similar in structure and activity whereas jagged (i.e., discontinuous) 

regions correspond to structures that are similar but exhibit very different activities (so called 

activity cliffs). In fact, it has suggested that the latter regions of the landscape represent the 

most interesting parts of an SAR, as they provide the possibility of making small structural 

changes to significantly change activities. At the same time, these discontinuities can be 

problematic as they can lead to poor performance of many QSAR modeling methods 

(primarily those based on machine learning or statistical models) [34]. As a result, a variety 

of methods have been developed to characterize and mine SAR landscapes.

Structure-Activity Similarity (SAS) maps were first described by Shanmugasundaram and 

Maggiora [35], which is a pairwise plot of the structure similarity against the activity 

similarity. The resultant plot can be divided into four quadrants allowing one to identify 

molecules characteristic of one of four possible behaviors: smooth regions of the SAR space, 

(rough) activity cliffs, non-descript (i.e., low structural similarity and low activity similarity) 

and scaffold hops (low structural similarity but high activity similarity). Recently, there have 

been a number of extensions of SAS maps that take into account multiple descriptor 

representations (2D & 3D) [36, 37]. In addition to SAS maps, other pairwise metrics to 

characterize and visualize SAR landscapes have been developed such as SALI [38] and 

SARI [39].
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Visualization of landscapes via network diagrams has also led to novel developments in the 

exploration of SAR data. Examples include the SALI networks described by Guha et al [38] 

and network similarity graphs (NSG’s) described by Wawer et al [40]. Both network 

representations use compounds as nodes and draw edges between them based on some 

metric that characterizes the pair of nodes in the context of the landscape (SARI for NSG’s 

and SALI for SALI networks). The networks can be then analyzed to identify specific SAR 

trends. For example, Wawer et al [41] described an approach to identifying “SAR pathways” 

- paths in an NSG that connected regions of low and high SAR discontinuity. Such SAR 

pathways represent a set of compounds, which when order appropriately exhibit a 

continuous series of SAR changes. While network based analyses of landscapes have seen 

much activiy an alternative visualization approach described by Seebeck et al [42] abstracted 

the idea of the SALI metric and extended it to include the receptor. As a result of this, they 

were able o highlight specific regions within protein binding sites that are most likely to lead 

to activity cliffs.

The concept of activity cliffs and the landscape paradigm have also been applied to R-

groups, where an “R-cliff” occurs when a pair of compounds differ in a single R-group. This 

is clearly a specialization of the activity cliff concept, placing this type of analysis in the 

context of analog series derived via R-group decompositions [43, 44].

4 Canned SAR

Over the last few years a number of large chemical structure databases have become 

available. Importantly, a number of these databases also provide extensive information of 

compound activities in addition to compound structures. Notable examples include 

PubChem, ChEMBL and GVK GOSTAR. The first two are freely available resources, 

whereas GOSTAR is a commercial offering. While these databases provide structure-activity 

information, they differ in the nature of the data that is provided. For example, PubChem 

provides a compound and substance database, where records are individual structures as 

well as a bioassay database, which contains assay results for various compound sets, 

deposited by the Molecular Libraries Initiative [45]. The two databases are linked, allowing 

one to easily identify the assays a compound has been tested in or conversely, the structures 

tested in an assay. Assay datasets range in size from two or three compounds to more than 

300,000 compounds and assay types range from primary screens to secondary and 

confirmatory screens, both as single point and dose response formats. It is important to note 

that PubChem data is not curated and thus the assay data can be noisy (which is a given for 

primary screening data). ChEMBL and GOSTAR are both curated SAR databases, where 

structures and their activities have been manually extracted form the literature and stored in 

a standardized form. In addition a variety of annotations have also been added such as assay 

target, species and so on. In essence, these databases have “canned” structure-activity 

relationships, making them readily available for analysis.

One obvious application of these database is to use them as sources of training data when 

developing predictive models. For example, Novotarskyi et al [46] employed PubChem 

Bioassay data to develop models to predict CYP450 1A2 inhibition and Shen et al [47] 

employed the database to develop a support vector machine model to predict hERG 
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liabilities. Though there are many other examples of QSAR modeling studies using 

PubChem as the source of data, the bulk focus on specific targets. In contrast, Chen et al 

[48] built a series of models using multiple PubChem assays, that could be used to provide a 

prediction of an “activity profile”. They employed random forest models, aiming for pure 

predictive ability, over any explanatory power.

A relatively unique database is the GDB-13 database [49] which is an exhaustive 

enumeration of small molecule structures containing up to 13 heavy atoms (restricted to C, 

H, N, O, S, P and Cl). While the database does not contain activity information associated 

with the structures, it can be used a source of structures for virtual screening purposes [50]. 

In this sense, it is similar in nature to databases such as ZINC [51] - the key differentiator is 

that the latter are all commercially available, whereas the former are in effect, completely 

virtual. In general, this class of databases is useful primarily for virtual screening type 

methods, where the goal is to identify candidates for more in depth study, rather than 

explicitly understanding SAR trends.

5 Alternatives to QSAR?

While QSAR approaches (in all its forms) are by far the most common ways to capture and 

explore SAR trends, a number of other approaches are possible. While not quantitative, they 

can. be useful in the form of “idea generators”.

5.1 Characterizing SAR in series

One approach is to consider fragments as the basis for SAR exploration. This is not without 

precedent as substructure based models have been developed that are useful for both 

prediction and interpretation [52]. One approach to using fragments for exploring SAR is to 

develop “R-group QSAR” models, whose goal is to determine whether an SAR exists or not, 

and if so, how do different R-groups affect it. Given a set of molecules, we perform an R-

group decomposition, generating a series of scaffolds and associated substituents. Given a 

scaffold, we can create an R-group matrix, with observations (i.e., molecules containing the 

scaffold) in the rows and the R-groups, R1, R2, …, Rn, in the columns. Element (i, j) of the 

matrix is set to 1 if the i’th molecule contains the j’th substituent. Given this R-group 

incidence matrix, along with the observed activities for the molecules, one can develop a 

predictive model. Given that most such R-group matrices will be small, some form of linear 

regression is likely most suitable. Figure 2 shows a schematic diagram summarizing this 

technique. However, it is obvious that this approach has a number of limitations. Firstly, the 

number of observations for many scaffolds will be very small (< 10) and hence a reliable 

model cann’t be generated. Second, most R-group matrices will be sparse since all 

substitution points will not be uniformly filled. Also, a binary incidence matrix may not be 

the most appropriate input for a linear regression model. One way to address this is to 

replace each of n columns with n × d columns, where d represents a d-dimensional real-

valued descriptor vector derived from the structure of the corresponding R-group. For a 

scaffold with three or more substitution points, this can lead to a R-group matrix with more 

columns than rows. Even when this is not the case, such a matrix will usually have a large 

number of features (depending on how many descriptors are employed). In spite of these 
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problems, for those scaffolds where there is a sufficient number of observations and 

relatively few substitution points a linear regression model can be developed. In such cases, 

the predictive accuracy of the model is not the main focus. Rather, we are interested in 

whether the model is statistically significant; the hypothesis being that such a model 

represents an actual relationship between the substitutions and the observed activities. As a 

result, this could allow us to provide a ranking to individual series. Obviously, for a diverse 

set of structures this approach is not very useful.

5.2 Exploring SAR via fragments

Another approach to using fragments to explore SAR is by making use of SAR databases 

such as ChEMBL. The underlying motivation is that certain fragments may be associated 

with high (or low) activities or may show activity preferentially towards a specific target or 

target family. By precomputing the fragments for a database like ChEMBL and storing the 

fragment-compound associations, we can take an external set of compounds, fragment them 

and explore the activity data associated with them in ChEMBL. While a relatively simple 

task, it does require a number of steps. We recently developed a software tool, the Fragment 

Activity Profiler (http://tripod.nih.gov/?p=206) that allows one to explore structure 

collections from the point of view of scaffolds, integrated with activity and target 

information (Fig. 3). Given a compound collection, with observed activity data, one can 

generate fragments and identify activity profiles associated with those fragments from from 

ChEMBL, drilling down to the individual ChEMBL compounds associated with the 

fragment of interest. Alternatively, one can characterize scaffolds in terms of their activities 

against different targets, and thus summarize selectivity of compound series. This is 

especially easy with ChEMBL since structures (and therefore the derived scaffolds) are 

associated with targets via the assays they are tested in. Other approaches have also been 

discussed in the literature, such as the Scaffold Explorer described by Agrafiotis et al [53] 

and the Scaffold Hunter application [54].

6 Summary

It is clear that computational methods play a key role in the process of drug discovery. While 

there has been some discussion on the actual value added by these models, it is still evident 

that with informed usage of these techniques together with appropriate testing and control 

methods [55], these methods have much to offer [56]. Indeed, with the deluge of data being 

generated by modern high throughput experimental techniques and the evolution of large 

chemical structure databases, it is all the more important to address how computational 

techniques can enable practising scientists in exploring the wealth of structure activity data.

Traditional QSAR approaches based on machine learning or statistical methods have been 

used extensively. However, many are black boxes and can make understanding the actual 

SAR encoded by the model difficult. This can hinder the use of such models when deciding 

how to modify a structure to improve an activity or reduce liabilities. While visualizations in 

some cases can make this job easier, more physical models such as 3D-QSAR methods 

(CoMFA, CoMSIA) and pharmacophore methods can provide a much more direct view into 

structural features contributing to the SAR. Given that the much of SAR exploration is done 
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during the lead optimization stage of a drug development project, it makes sense to consider 

related SAR information that has been reported in the literature or otherwise made public. 

Databases such as PubChem and ChEMBL allow one to easily access large amounts of SAR 

data points (both curated and uncurated) and compare those data with our own data. Such 

comparisons can be performed in a variety of ways ranging from developing predictive 

models to browsing scaffolds and viewing activity profiles of compounds containing those 

scaffolds.

In summary, there is an extensive array of computational methods that allows one to explore 

SAR trends at varying levels of detail. While all methods are not necessarily accurate in a 

numerical sense, in silico models can serve as idea generators, augmenting the decision 

making ability of the medicinal chemist.
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Figure 1. 
An example of a glowing molecule representation, developed by Optibrium. The color 

coding corresponds to the influence of the structural feature on the predicted property (red 

for a negative influence, blue for a positive influence). Image modified, with permission, 

from http://www.optibrium.com/community/faq/glowing-molecule.
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Figure 2. 
A schematic diagram of R-group QSAR workflow that can be used to rank scaffolds (i.e., 

chemical series) in terms of whether they exhibit an SAR or not.

Guha Page 13

Methods Mol Biol. Author manuscript; available in PMC 2016 May 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Screenshots of the Fragment Activity Profiler. The top figure highlights the single scaffold 

view that displays activity profiles for a given scaffold versus individual targets (at a 

specified level of the ChEMBL target hierarchy. The bottom figure shows the pairwise view, 

allowing one to compare activity profiles of two scaffolds simultaneously.
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