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Abstract

Microorganisms are the pillars of life on Earth. Over billions of years, they have evolved into 

every conceivable niche on the planet. Microbes reshaped the oceans and atmosphere and gave rise 

to conditions conducive to multicellular organisms. Only in the past decade have we started to peer 

deeply into the microbial cosmos, and what we have found is amazing. Microbial ecosystems 

behave, in many ways, like large-scale ecosystems, although there are important exceptions. We 

review recent advances in our understanding of how microbial diversity is distributed across 

environments, how microbes influence the ecosystems in which they live, and how these 

nanomachines might be harnessed to advance our understanding of the natural world.

The turn of the 21st century saw the rise of a new kind of natural historian, focused on the 

invisible life that permeates our planet [1]. Unlike earlier naturalists, like Alexander von 

Humboldt or Alfred Russell Wallace, who documented the ‘…endless forms most 

beautiful…’, recognized by Darwin as the fruits of natural selection, these new explorers 

confronted a strange and unfathomably vast world of imperceptible single-celled organisms 

[2•]. This world was largely inaccessible and underestimated before the advent of molecular 

fingerprinting and high-throughput sequencing technologies, which now allow us to 

circumvent culture-based approaches [2•,3].

The excitement in this new era of exploration is palpable, as molecular toolsets help crack 

open the microbial ‘dark matter’ [4] responsible for driving global biogeochemical cycles 

[5•], maintaining the health of multicellular organisms [6••], and ensuring the longevity of 
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our ~3.8 billion-year-old biosphere [7]. At first, each sequencing survey seemed like another 

Voyage of the Beagle. However, unlike Victorian naturalists, microbial ecologists had the 

tools of modern genetics and molecular biology at their fingertips. Consequently, the 

transition from a descriptive phase to a more quantitative, mechanistic understanding of how 

diverse microbial communities assemble, fluctuate through time, and achieve biological and 

ecological functionality was rapid. Although microbial ecology is still a young field with 

many unanswered questions, we explore recent advances in our understanding of how 

natural environments shape and maintain microbial diversity over time and space, and how 

the diversity of microbial communities influences the environment. We briefly discuss how 

microbial ecology fits into the larger body of established theory underlying traditional 

ecology. Finally, we look toward the future and suggest how the study of microbial ecology 

will influence other disciplines and how it might change the course of human history.

Quantifying diversity

What are the units of microbial diversity? The answer to this question is not as 

straightforward as for plant and animal species, though these definitions are often arbitrary 

as well. We cannot rely upon morphological or functional features, as most microorganisms 

are indistinguishable under the microscope [3], and distantly related organisms can fill 

equivalent ecological roles [8••]. We are often fooled by molecular phylogenies because 

microbes can swap genes across vast phylogenetic distances [9]. Thus, we rely on 

phylogenetic inference derived from highly conserved genes that are vertically inherited 

(e.g. 16S rRNA gene sequences), or on concatenations of multiple housekeeping genes [10]. 

The most common unit of diversity in microbial ecology is what we call the ‘operational 

taxonomic unit’ (OTU; or, equivalently, ‘phylotype’), which clusters environmentally 

derived sequences based upon nucleotide similarity. For example, 97% sequence similarity 

of the 16S rRNA gene is often used as a rough estimation of species clusters in bacteria, 

based on a species definition established using DNA–DNA hybridization [11]. However, 

many researchers advocate for finer-scale distinction of diversity using single base pair 

differences in marker genes [12], genomes-scale alignments [10,13••], and/or contextual 

information regarding the environment (e.g. ecotypes) [13••,14]. These higher resolution 

methods can reveal interesting patterns that would be obscured by traditional approaches 

[15••,16]. However, higher resolution is not always desirable, especially when the dominant 

mechanisms underlying shifts in community composition are due to functional pathways 

that are deeply rooted within lineages (e.g. oxygenic photosynthesis in cyanobacteria; see 

Figure 1). In this case, strain-level variation could be noisy, and might wash out subtle 

differences that are only apparent when correlated organismal abundances are grouped at 

higher taxonomic levels [8••,17]. Thus, we should not assume a one-size-fits-all heuristic for 

assessing microbial diversity.

What governs the distribution of microbial diversity?

For the last few decades, microbial ecologists have used a wide array of molecular tools to 

characterize microbial communities, enabling the observation of particular organismal 

assemblages or community characteristics. However, as each method has its own set of 

biases, it is often difficult to compare between studies, reducing the potential for meta-
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analysis. There have been a few within-study global surveys of microbial diversity, which 

have revealed dominant physicochemical drivers of microbial community structure using 

consistent methodologies [18–21,22•]. However, only recently have multi-study consortia 

begun to standardize their data collection and analysis workflows to build large intra-

comparable databases [6••,23]. The largest global survey of microbial diversity to date, 

carried out by the Earth Microbiome Project (http://www.earthmicrobiome.org/), revealed 

the existence of 5.6 million OTUs (97% similarity at the V4 region of the 16S gene; not 

including singleton OTUs) in the first 15 000 samples, which set a new lower-bound on the 

number of bacterial and archaeal phylotypes on Earth [24]. In addition, as sampling efforts 

increase, the number of novel phylotypes discovered continues to rise beyond prior 

estimates, and far beyond estimates for multicellular organismal diversity [25].

We have just begun to negotiate the complex interactions within and between biological and 

physicochemical parameters that determine how microbial communities assemble in natural 

ecosystems. An initial step in this journey has been to characterize the environmental axes 

that are important for filtering diversity. For example, we know that salinity is a strong driver 

of community structure in aquatic environments, pH is a dominant force in soil systems, and 

host-associated and environmental communities are very distinct from one another [18,22•,

26]. Microorganisms carry out a diverse array of metabolisms, using everything from 

sunlight, to organic carbon and inorganic minerals as energy sources, and are often able to 

switch between these metabolic modes. Microbes can make a living under a staggering array 

of physicochemical conditions, from boiling thermal springs to acid mine drainage [27]. In 

addition, they are able to produce and consume innumerable metabolites, including complex 

carbohydrates, antibiotics, peptides, and lipids, which allow microbes to cross-feed one 

another and carve out highly specific niches and different life history strategies [28••,29••]. 

Furthermore, rapid evolution and speciation in microorganisms can contribute significantly 

to diversity on ecological timescales [29••,30].

Beyond fine-scale niche partitioning, microbial diversity is also influenced by stochastic 

forces, like extremely high rates of dispersal, coupled with the ability of many 

microorganisms to become dormant when conditions are not conducive to growth [31,32••]. 

These processes appear to give rise to a persistent seed bank of scarce but viable microbes 

[32••,33], often referred to as the ‘rare biosphere’ [34], with almost endless phylogenetic and 

functional potential for populating emerging or transient niches [35••]. However, despite 

high rates of dispersal and dormancy, there is evidence that microorganisms encounter 

barriers to dispersal that gave rise to temporarily isolated populations, which can result in 

allopatric differentiation of ecotypes at the genomic level [15••,36].

The balance between niche (e.g. pH or temperature driving changes in microbial dominance) 

and neutral (e.g. stochastic dispersal and dormancy) processes will influence the diversity of 

microbial ecosystems [37••]. Recent work has suggested that increasing environmental 

heterogeneity or noise disrupts the deterministic coupling between ecosystem properties and 

ecological diversity, which results in neutrally assembled communities [37••]. The 

magnitude of alpha diversity in neutrally assembled communities is partially determined by 

the composition of the metapopulation from which the local species pool is drawn [38]. If 

the local species pool is drawn from multiple source populations of varying composition at a 
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high enough rate of dispersal, then the diversity of the local population will be greater than 

any of the individual source populations (i.e. the apparent meta-community will be a mixture 

of the source communities; see Figure 2). The magnitude of alpha diversity in niche-

structured systems will depend upon the volume of niche space and how finely this space 

can be partitioned. Over evolutionary time, as novel ecotypes arise, there will be a rapid 

saturation of niche-volume, with a small number of taxa dominating most of the available 

resources. Due to the diminishing return of invading smaller and smaller pockets of 

resource-space, there will be an asymptotic approach to some maximal alpha diversity as 

low-abundance species are able to pack into ever-shrinking interstitial niches [39].

Does microbial diversity matter for the environment?

From oceanic weather patterns [7], to the oxidation of Earth’s atmosphere [40], and the 

health of multi-cellular hosts [6••], microbes engineer their environments [5•]. In fact, human 

civilization would soon collapse in the absence of microorganisms, followed soon thereafter 

by the remaining life on Earth [41]. The following section details a few examples of how 

microbial communities alter their surroundings.

Climate scientists are beginning to recognize a sleeping giant beneath the Arctic tundra. 

Permafrost locks away around half of global soil carbon, but these regions are beginning to 

thaw due to anthropogenic climate change, which is having a disproportionate impact on the 

poles. Soil warming has been shown to alter the diversity and function of microbial 

communities [42,43]. Thawing of permafrost soils will likely result in large-scale losses in 

soil carbon in the form of methane and carbon dioxide as a result of microbial activity [44]. 

Depending on the rate of temperature increase, permafrost soils would account for an 8–

18% increase in anthropogenic carbon emissions over the next 100 years [45]. This positive 

biological feedback on climate change could reshape the structure of the entire biosphere.

Another fascinating way that microbes engineer their physical environments comes from 

early in Earth’s history, when bacterial communities gave rise to naturally occurring nuclear 

fission reactors [46]. Certain bacteria are able to respire uranium (i.e. use oxidized uranium 

as an electron acceptor). However, the early Earth had an anoxic, reducing atmosphere, and 

uranium, which is insoluble in its reduced form, remained locked away in rock and 

sediment. The rise of cyanobacteria resulted in the steady production of O2, which began to 

weather the Earth’s crust and accumulate in the atmosphere over hundreds of millions of 

years [40]. Uranium deposits were slowly oxidized, which allowed uranium to dissolve in 

water and be carried into lakes. This process led to the enrichment for uranium-respiring 

microbes in these bodies of water. These microbes reduced the uranium, which made it fall 

out of solution and settle to the bottom of the lakes. Over time, uranium was enriched and 

deposited on lakebeds until critical mass was achieved, and the lakes became natural fission 

reactors [46]. This process was only possible early in Earth’s history, when the radioactive 

isotope of uranium was still at high enough abundance.

Gut-associated microbial communities can also influence their mammalian hosts. Host diet 

and activity can have large effects on the gut microbiome composition and function, even on 

daily timescales [47–49]. However, we also know that gut microbiota are integral to 
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maintaining the health of their hosts. For example, we are accumulating a large body of 

evidence showing that microbes are crucial for our developing immune systems and help 

protect us from allergies and autoimmune disorders [50,51]. Gut microbes are also 

implicated in driving obesity and a number of metabolic disorders [52]. Additionally, there 

is a subset of the human population that, when they contract a streptococcal infection, 

develop obsessive-compulsive disorder [53]. In fact, microbial dysbioses have been 

implicated in a number of behavioral disorders [54••].

The future of microbial ecology

As our appreciation of the extent and complexity of microbial ecosystems grows, we can 

begin to extrapolate how our new understanding could shape our future. It is clear that 

microbes can alter their environments, and it is possible that they could be harnessed to 

engineer our planet and our health. Although our current knowledge of the metabolic 

mechanisms and evolutionary processes that underpin most microbial ecosystem dynamics 

is extremely limited, rapid advances in technologies that help elucidate these processes are 

set to drastically increase the current rate of knowledge acquisition. Microbial ecology is 

changing the way we practice medicine, so that instead of trying to deal with the one-

disease-one-pathogen paradigm, clinical practice is adopting ecological approaches to 

diagnose and treat complex conditions [48••,52,55,56]. Similarly, industrial processes that 

once relied on biotechnology derived from a single organism are starting to embrace 

complexity and explore ways to standardize metabolic interactions within complex 

communities to elicit reproducible biochemical transformations [57]. Indeed, even 

agriculture and ecosystem restoration, which have long had a deep appreciation of the role 

of bacteria in shaping the relevant environments, are starting to use systems biology, 

molecular analysis, and modeling to elucidate the mechanism of action for improving crop 

productivity, disease suppression, and stress tolerance [58].

Several research fields have come to appreciate how microbial communities can serve as 

tractable models. The enormous population sizes and rapid growth rates of microorganisms 

mean that microbial ecology may transform the fields of ecology and evolution by providing 

a biological system that is easily manipulated to test specific hypotheses. For example, we 

have seen the rise of long-term evolution experiments, which have captured speciation in 

action [59]. Also, the complex process of community assembly, or community response to 

environmental perturbations, can now be followed under controlled, replicated conditions in 

microbial mesocosms and microcosms [60–63]. Perhaps the largest contribution of 

microbial communities to the Darwinian Sciences so far is to establish stronger empirical 

links between ecological and evolutionary processes, because microbial evolution is rapid 

enough to quickly feedback on ecological phenomena [64••]. This has led to experiments 

aimed at asking Stephen Jay Gould’s classic question about what would happen if we tried 

‘replaying the tape of life’ [65]. Such experiments have shown us how ecological 

communities can stabilize themselves through division of labor [29••], show signs of 

collapse before a critical transition — just like dynamic physical phenomena [66], exhibit 

different eco-evolutionary dynamics depending on timescale [64••], and that multiple 

ecological steady-states can evolve from the same initial conditions [67••].
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Together, these microbiome-enabled experimental approaches will help transform biology 

into a more quantitative discipline. With the ability to replicate and test eco-evolutionary 

processes, we can start to ask about the forces underlying these levels of biological 

organization [68]. The boundaries between physics, chemistry, and biology have become 

increasingly perforated, and new fields are emerging at the frontiers. This newfound 

potential is leading us back to the beginning, with ‘origins of life’ research and astrobiology 

gaining traction and funding.

In summary, we have entered an exciting era of discovery. Our new understanding of 

microbial diversity will allow us to cure disease, engineer and conserve our environment, 

manufacture better products, grow more food, colonize other worlds, and so much more. In 

both practical and scientific terms, microbes have given us the power to ask new questions 

and solve previously intractable problems.
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Figure 1. 
The hypothetical tree pictured above shows the phylogenetic distribution of two arbitrary 

functional traits across bacterial genera. The colored symbols denote the identity and origin 

of each function (see key). Both functions originated within a single clade. However, 

‘oxygenic photosynthesis’ remained confined to a deeply-rooted group, while ‘galactose 

metabolism’ has been passed around via horizontal gene transfer. If phylotypes were 

assigned at the phylum level (red inner circle), the distribution of phylotypes across light and 

dark environments would yield a clear pattern, with a single phylotype enriched by the light. 

However, if response to galactose concentration were assessed at the phylum level, the result 

might be unclear, as many phylotypes would contain a mixture of taxa with and without 

galactose genes. If phylotypes were assigned at the family level (red outer circle), the 

changing abundances of phylotypes along a galactose gradient would yield more coherent 

patterns. However, there would be a variety of behaviors in response to galactose in the 

photosynthetic clade due to horizontal gene transfer and gene loss.
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Figure 2. 
Both deterministic and stochastic processes are important for shaping microbial diversity. 

Each environment selects for a particular set of taxa (e.g. 3 ‘mesophiles’ in the lake and 3 

‘thermophiles’ in the hot spring). These different sets of taxa inhabit incompatible ecological 

niches that are widely separated along an environmental gradient (i.e. temperature). The 

structure of each community (i.e. the relative abundances of species) is determined by 

competition for niche space, unless environmental noise is too high or ecological 

interactions are too weak, in which case no species will have an advantage (see phase 

diagrams, modeled after Figure 2 in Fisher and Mehta, 2014). As such, niche-structured 

communities will tend to have a highly uneven rank-abundance pattern (i.e. there will be 

winners and losers in the competition for niche-space), while neutral communities should, 

on average, have a more even rank-abundance distribution (i.e. no species has an advantage). 

When the two communities are forced to mix along an environmental gradient (see the 

‘stream’ above), ecological diversity is increased — both in terms of community richness 

and evenness — independent of niche/neutral dynamics. This maximum in diversity has 

been described before in many systems (e.g. the Intermediate Disturbance Hypothesis). The 

diversity maximum in the stream is a non-equilibrium state that would dissipate if the 

environmental mixing were to stop. The above picture can be further complicated by further 

dispersal from outside the system (i.e. meta-communities and island biogeography models), 

speciation, and extinction.
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