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Rapamycin is a Food and Drug Administration (FDA)-approved immunosuppressant and
anticancer agent discovered in the soil of Easter Island in the early 1970s. Rapamycin is a
potent and selective inhibitor of the mechanistic target of rapamycin (mTOR) protein kinase,
which acts as a central integrator of nutrient signaling pathways. During the last decade,
genetic and pharmaceutical inhibition of mTOR pathway signaling has been found to
promote longevity in yeast, worms, flies, and mice. In this article, we will discuss the mo-
lecular biology underlying the effects of rapamycin and its physiological effects, evidence for
rapamycin as an antiaging compound, mechanisms by which rapamycin may extend life
span, and the potential limitations of rapamycin as an antiaging molecule. Finally, we will
discuss possible strategies that may allow us to inhibit mTOR signaling safely while mini-
mizing side effects, and reap the health, social, and economic benefits from slowing the
aging process.

The mechanistic target of rapamycin (mTOR)
is a phosphatidylinositol-3-kinase (PI3K)-

like serine/threonine protein kinase that is con-
served in eukaryotes including yeast, worms,
flies, and mammals. mTOR was discovered
as a result of the search for the target of rapa-
mycin, a polyketide produced by Streptomyces
hygroscopicus, which originally attracted atten-
tion because of its ability to inhibit the growth
of Candida albicans and other fungi (Vezina
et al. 1975). It was soon determined that rapa-
mycin also acts against mammalian cells, with
effects on both cell size and proliferation, lead-
ing to its development as an immunosuppres-
sant (Seto 2012). Its immunosuppressive ef-
fects led to very cautious exploration of the

potential of rapamycin as an anticancer agent,
but several rapamycin derivatives, including
everolimus and temsirolimus, as well as rapa-
mycin itself (sirolimus) are FDA-approved
both as immunosuppressants and anticancer
agents. Rapamycin has attracted significant in-
terest with the finding in 2009 that rapamycin
treatment can robustly extend the life span of
mice (Harrison et al. 2009). In this article, we
discuss the molecular biology of mTOR, re-
search into the mechanism by which mTOR
inhibition promotes life span, the side effects
of rapamycin, and possible ways in which rapa-
mycin or alternative strategies to inhibit mTOR
signaling may enable us to extend human life
span and health span.
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MOLECULAR BIOLOGY OF RAPAMYCIN

The mTOR protein kinase is found in two
evolutionarily conserved protein complexes
with distinct functions, substrates, and sensi-
tivity to rapamycin (Fig. 1). mTOR complex 1
(mTORC1) consists of the mTOR protein ki-
nase, RAPTOR, and mLST8, along with the
regulatory proteins PRAS40 and DEPTOR.
mTORC1 plays a key role in the regulation of
translation and cell growth through substrates
that include S6 kinase 1 (S6K1) and the eukary-
otic initiation factor eIF4E-binding protein 1
(4E-BP1) (reviewed in Caron et al. 2015). Other
mTORC1 substrates include unc-51-like au-
tophagy-activating kinase 1 (ULK-1), a key reg-
ulator of autophagy, transcription factor EB
(TFEB), a regulator of lysosome biogenesis,
and Grb-10, an insulin-receptor binding pro-
tein (Hsu et al. 2011; Kim et al. 2011; Settembre
et al. 2012). The activity of mTORC1 toward
many substrates is acutely sensitive to rapamy-
cin, but mTORC1 also possess rapamycin-resis-
tant activity toward certain substrates (Thoreen
et al. 2012; Kang et al. 2013).

The activity of mTORC1 is dependent on its
localization to the lysosome by the Rag/ragula-
tor complex, where it can interact with its acti-
vator Rheb, but these proteins are not, strictly
speaking, components of mTORC1 itself (San-
cak et al. 2010; Bar-Peled and Sabatini 2014).
The regulation of mTORC1 activity is extremely
complex, but in brief, the Rag/ragulator com-
plex recruits mTORC1 to the lysosome when
amino acids and glucose are plentiful, whereas
the tuberous sclerosis complex 1/2 (TSC1/2)
complex, which negatively regulates mTORC1
signaling, departs from the lysosome in response
to insulin (Bar-Peled and Sabatini 2014; Menon
et al. 2014). The regulation of the Rag/ragulator
complex has been a subject of intensive investi-
gation, resulting in the identification of the
additional upstream regulators of mTORC1 sig-
naling, including the GATOR1/2 complex and
Sestrin1–Sestrin3 (Bar-Peled et al. 2013; Chan-
tranupong et al. 2014).

mTOR complex 2 (mTORC2) consists of
mTOR, rapamycin-insensitive companion of
mammalian target of rapamycin (RICTOR),

mLST8, PROTOR1/2, and mSin1, as well as
the regulatory protein DEPTOR. In contrast to
mTORC1, mTORC2 is relatively resistant to the
effects of rapamycin both in vitro and in vivo,
but can be disrupted by prolonged treatment
(Sarbassov et al. 2006; Lamming et al. 2012).
mTOR complex 2 (mTORC2) regulates a di-
verse set of substrates downstream from the in-
sulin/insulin-like growth factor 1 (IGF-1) re-
ceptor, the best characterized of which include
AKT on residues T450, S473, and S477/T479,
serum/glucocorticoid-regulated kinase (SGK)
S422, and protein kinase C a (PKC-a) (Guertin
et al. 2006; Garcia-Martinez and Alessi 2008;
Ikenoue et al. 2008; Liu et al. 2014a). More re-
cently, mTORC2 has been shown to regulate
control of other PKC family members, includ-
ing PKC-d and PKC-z, and mTORC2 also reg-
ulates the stability of insulin receptor substrate 1
(IRS1) via phosphorylation of the ubiquitin li-
gase subunit Fbw8 (Gan et al. 2012; Kim et al.
2012; Li and Gao 2014). It is apparent from this
diverse set of substrates that mTORC2 is a key
effector of the insulin signaling pathway.

Although the pathway that mediates activa-
tion of mTORC2 by the insulin/IGF-1 receptor
is not fully understood, at least some mTORC2
localizes to the mitochondrial-associated endo-
plasmic reticulum membrane, and the activity
of mTORC2 may be dependent on its associa-
tion with ribosomal subunits (Zinzalla et al.
2011; Betz et al. 2013). A variety of other pro-
teins, including TSC1/2, P-rex1, Rac1, sestrin3,
and XPLN, have also been implicated in the
regulation of mTORC2 (Hernandez-Negrete
et al. 2007; Huang et al. 2008; Saci et al. 2011;
Khanna et al. 2013; Tao et al. 2014). However, a
cohesive model integrating all of these addition-
al proteins is still lacking.

RAPAMYCIN TREATMENT EXTENDS
LIFE SPAN

The role of the mTOR-signaling pathway in lon-
gevity was first discovered in 2003 in Caeno-
rhabditis elegans; mutation of worm mTOR
or RNAi against mTOR more than doubled
the life span (Vellai et al. 2003). A similar effect
was found in Drosophila, in which expression of
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dominant negative mTOR or S6K similarly
increased life span (Kapahi et al. 2004). The
interest surrounding the mTOR-signaling path-
way increased still further when inhibition of
mTOR signaling in yeast was found to increase
both chronological and replicative life span
(Kaeberlein et al. 2005; Powers et al. 2006). Im-
portantly, Kaeberlein and colleagues found that
calorie restriction (CR), an intervention that
extends life span in yeast as well as mammals,
was unable to extend the life span of long-lived
tor1D yeast.

A CR diet has been the gold standard for life
span interventions since its discovery in the
1930s, and extends the life span of yeast, worms,
flies, mice, dogs, and nonhuman primates (re-
viewed in Lamming and Anderson 2014). The
mechanism behind the effects of a CR diet on
life span have been elusive and highly debated,
and the possibility that CR might function by
inhibiting mTOR pathway signaling spurred
significant efforts into understanding how the
mTOR-signaling pathway regulates life span. It
also suggested the possibility that rapamycin, as
an inhibitor of mTOR, could function as a small
molecule CR mimetic and extend life span.
Indeed, rapamycin was soon shown to extend
life span in yeast (Powers et al. 2006; Lamming
et al. 2007).

Although interest in testing rapamycin in
flies and worms was intense, and has now been
shown to extend life span (Bjedov et al. 2010;
Robida-Stubbs et al. 2012), investigation of the
effects of rapamycin on life span jumped directly
to mice with the aid of the National Institute of
Aging (NIA) Interventions Testing Program
(ITP). The ITP was able to solve the technical
challenges of delivering rapamycin to mice in
chow by microencapsulating it in an enteric
polymer to protect rapamycin from the acidic
environment of the stomach. In 2009, the ITP
published the first of several manuscripts on the
effects of rapamycin on mice, showing that ra-
pamycin could extend the life span of genetically
heterogeneous HET3 mice when treatment
began at 20 mo of age (Harrison et al. 2009).
Subsequent studies by the ITP determined that
rapamycin had a similar effect on life span when
delivered starting at 9 mo of age (Fig. 2A,B), and

that the response to rapamycin was dose depen-
dent (Miller et al. 2011b, 2014).

In addition to HET3 mice, rapamycin has
now been shown to extend the life span of
both male and female C57BL/6J mice (Fok
et al. 2014b; Zhang et al. 2014), male C57BL/
6J Rj mice (Neff et al. 2013), female 129/Sv mice
(Anisimovet al. 2011), and female FVB/N HER-
2/neu mice (Popovich et al. 2014). Fascinating-
ly, all studies that have compared the effect of
rapamycin on both males and females have
found that rapamycin promotes longevity in fe-
males more effectively than in males (Fig. 2C).
We will discuss a possible reason for this effect
below, but it is interesting to note that many
genetic interventions in the insulin/IGF-1/
mTOR signaling pathway also show greater ben-
efits in females than males (Fig. 2C). This in-
cludes mice null for either Irs1 or S6K1 (Selman
et al. 2009, 2011) and mice heterozygous for
both mTOR and mLST8 (Lamming et al. 2012).

HOW DOES RAPAMYCIN EXTEND LIFE
SPAN, AND WHAT CAN IT TEACH US?

Because of the involvement of mTOR in so
many key physiological processes, rapamycin
has many different biological effects in pathways
that are important in health and longevity. In-
terestingly, although rapamycin initially attract-
ed attention as a CR mimetic, a microarray and
metabolome study found that rapamycin and
CR have surprisingly divergent effects on gene
expression and metabolites in the liver (Foket al.
2014a). As we have previously detailed (Lam-
ming et al. 2013), the proposed mechanisms
by which rapamycin extends life span include
suppression of cancer, inhibition of transla-
tion, maintenance of protein quality, and ef-
fects on stem cells. We provide a brief overview
of these areas with the latest research on these
areas below.

Cancer

Cancer is an important cause of mortality in
both mice and humans. Overall, rapamycin
and derivatives such as everolimus and temsi-
rolimus have been only modestly effective in
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humans (Miller et al. 2011b), although targeted
use of rapamycin against cancers with hyper-
activating mutations in the mTOR protein ki-
nase shows significant promise (Grabiner et al.
2014; Wagle et al. 2014). Approximately 70% of
HET3 mice die from lymphoma, hemangiosar-
coma, and lung carcinoma, the frequency of
which is not significantly shifted by rapamycin
(Miller et al. 2011b), suggesting that rapamycin
does not prevent cancer. Rapamycin signifi-
cantly reduces the proportion of 16-mo-old
mice with cancer or precancerous lesions, sug-
gesting that rapamycin does delay cancer in
mice, and it has been argued that the effect of
rapamycin may be limited to delaying cancer,
not aging (Neff et al. 2013). However, it is clear

that rapamycin delays many forms of age-de-
pendent changes and preserves health span
(Wilkinson et al. 2012). Although the antican-
cer effect of rapamycin may be important, it
likely does not account for the full effects of
rapamycin on the aging process.

Protein Translation

mTORC1 is an important regulator of protein
translation through two distinct mechanisms:
the regulation of ribosomal biogenesis via
S6K1, and the regulation of mRNA translation
mediated by the 4E-BPs. The importance of
translation in regulating longevity in model or-
ganisms is undisputed, as experiments in Sac-
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Figure 2. Sexually dimorphic impact of rapamycin and genetic interventions in the insulin/insulin-like growth
factor 1 (IGF-1)/mechanistic target of rapamycin (mTOR)-signaling pathway. (A,B) Treatment with 14 ppm
rapamycin begun at 9 mo of age extends the life span of genetically heterogeneous HET3 (A) males and (B)
females. (C) Rapamycin and genetic interventions in the insulin/IGF-1/mTOR-signaling pathway that pro-
mote life span have a stronger effect on median female life span than on male life span (data from Holzenberger
et al. 2003; Harrison et al. 2009; Selman et al. 2009, 2011; Lamming et al. 2012; Nojima et al. 2013; Fok et al.
2014b; Miller et al. 2014; Zhang et al. 2014). Mean life span is shown for HET3 mice initiated on 14 ppm
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charomyces cerevisiae, C. elegans, and Drosophila
melanogaster clearly show (Kapahi et al. 2004;
Hansen et al. 2007; Syntichaki et al. 2007;
Steffen et al. 2008; Zid et al. 2009). In these ex-
periments, deletion or RNAi-mediated knock-
down of specific ribosomal proteins or transla-
tion initiation factors extend life span. In yeast,
the life span extension resulting from reduced
expression of large ribosomal subunits is de-
pendent upon the increased translation of the
transcriptional activator GCN4, providing a
mechanistic explanation for how the efficiency
of translation initiation can regulate life span
(Steffen et al. 2008). However, this has not been
shown in higher organisms. Indeed, recent find-
ings in C. elegans show that mTOR path-
way inhibition can further promote longevity
in long-lived C. elegans with RNAi-depressed
translation initiation factors (Hansen et al.
2007; Syntichaki et al. 2007). Moreover, a 50%
decrease in protein translation is not sufficient
to extend C. elegans life span (Hansen et al.
2007).

In mice, it is unclear whether decreased pro-
tein translation is sufficient to extend life span.
Although deletion of S6K1 significantly extends
life span (Selman et al. 2009), initial studies
found that loss of S6K1 does not impair protein
translation in skeletal muscle (Mieulet et al.
2007). Although yeast lacking Rpl22a have ex-
tended life span, loss of Rpl22 in mice has es-
sentially no effect on translation because of
compensatory expression of a paralog, Rpl22l1
(O’Leary et al. 2013). A more recent study found
that rapamycin does decrease skeletal muscle
protein synthesis, but the amount of the change
is very small, and rapamycin does not decrease
protein synthesis in heart (Drake et al. 2013). A
study comparing the effect of rapamycin and
S6K1 deletion in multiple tissues of mice found
that although a single dose of rapamycin did
decrease translation in multiple tissues, chronic
treatment with rapamycin for 4 wk did not
(Garelick et al. 2013). Moreover, mice lacking
S6K1 have normal translational activity and re-
spond normally to rapamycin, suggesting that
the benefits of chronic rapamycin on life span
are not a result of decreased translation (Gare-
lick et al. 2013).

Protein Quality

Maintaining protein quality is an important
challenge during aging. One of the most inter-
esting effects of rapamycin that was recently
discovered is that rapamycin treatment of aged
mice rejuvenates the aging heart proteome. De-
spite increased protein half-life, the hearts of
rapamycin treated mice had a decreased abun-
dance of damaged proteins (Dai et al. 2014).
Such a change could result from increased clear-
ance of damaged proteins.

One of the ways in which damaged proteins
are cleared is autophagy, a process in which pro-
teins, especially damaged ones, are broken
down to their constituent amino acids. mTOR
normally suppresses autophagy by phosphory-
lating S757 of Ulk1, a kinase required for ini-
tiation of autophagy (Kim et al. 2011). In
C. elegans, autophagy is required for either CR
or mTOR inhibition to extend life span (Han-
sen et al. 2008). Autophagy is up-regulated dur-
ing CR in mice, and may mediate the beneficial
effects of CR on many organ systems, including
the liver (Cuervo et al. 2005; Zhang and Cuervo
2008; Kume et al. 2010; Han et al. 2012). The
regulation of autophagy is likely a critical part of
how rapamycin promotes life span, and it may
also impact cancer, as stimulation of autophagy
may be an important mechanism of tumor sup-
pression (White et al. 2010).

A second way in which damaged proteins
are cleared is proteasome activity, which has
been shown to be important in yeast life span
(Kruegel et al. 2011). Enhanced proteasome
activity has also been found in the exceptionally
long-lived naked mole rat (Rodriguez et al.
2012). It was recently found that rapamycin
boosts proteasome activity in the brains of fe-
male mice treated with rapamycin (Rodriguez
et al. 2014), suggesting that regulation of pro-
teasome activity may be important for life span.

Stem Cells and Cell Senescence

Loss of stem-cell proliferative capacity, either
because of a decrease in stem cell number or
decreased potency, may explain many of the
phenotypes of aging. Some of the first work
on mTOR signaling in stem cells was performed
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with hematopoietic stem cells (HSCs), which
show age-related declines in self-renewal and
function. The function of HSCs declines during
aging, and Chen et al. (2009) determined that
mTOR signaling was elevated in HSCs from
aged mice, and that treatment with rapamycin
restored self-renewal of aged HSCs. Similarly,
rapamycin treatment or CR increases the self-
renewal of aged intestinal stem cells (Yilmaz
et al. 2012). More recent experiments conducted
in vitro have found that rapamycin can preserve
mesenchymal stem-cell self-renewal and pre-
vent epithelial stem cell senescence (Iglesias-
Bartolome et al. 2012; Gharibi et al. 2014). In
both cases, this appears to be largely a result of
decreased damage from reactive oxygen species
rather than more general protection from aging.
Stem cells remain an important research area
for the biology of aging, and hopefully more
in vivo data will determine whether rapamycin
can protect or even rejuvenate other popula-
tions of stem cells. In vivo data suggests that
rapamycin may increase transcription of oxida-
tive stress response genes in C. elegans and
mouse liver (Robida-Stubbs et al. 2012).

WILL THE SIDE EFFECTS OF RAPAMYCIN
LIMIT ITS USE AS A HUMAN ANTIAGING
THERAPEUTIC?

Although rapamycin shows many beneficial
effects in mice, in humans, rapamycin and
rapamycin derivatives are used primarily as im-
munosuppressants following organ transplan-
tation, and in the treatment of several specific
types of cancer, including renal cell carcinoma,
pancreatic neuroendocrine tumors, and HER2-
negative breast cancer (Pusceddu et al. 2014).
Serious side effects in humans include an in-
creased incidence of viral and fungal infections
including pneumonia, chronic edema, painful
oral aphthous ulceration, and hair loss (Mahe
et al. 2005; McCormack et al. 2011). Metabolic
effects of long-term rapamycin treatment have
also been observed, including decreased insulin
sensitivity, glucose intolerance, and an increased
risk of new-onset diabetes (Johnston et al.
2008). Finally, rapamycin treatment of mice
consistently benefits females more than males,

suggesting the possibility that rapamycin treat-
ment of humans may show a similar sexually
dimorphic effect on health span and life span.

Short-term treatment with rapamycin is ac-
ceptable in the context of cancer treatment and
organ transplantation, and might be acceptable
for short-term treatment of specific age-related
pathologies. For instance, 10 wk of rapamycin
treatment reverses age-related cardiac hypertro-
phy and diastolic dysfunction in aged mice
while rejuvenating the heart at the level of the
proteome (Dai et al. 2014). However, short-
term rapamycin treatment is likely to be insuf-
ficient in the case of many age-related diseases,
including Alzheimer’s disease. Although pro-
phylactic dosing with rapamycin in mouse
models of Alzheimer’s disease significantly re-
duces amyloid-b, plaques, tangles, and cogni-
tive defects, dosing older mice has no beneficial
effects (Spilman et al. 2010; Majumder et al.
2012). The risks of long-term prophylactic
treatment with rapamycin are therefore likely
to be unacceptable.

One area in which the side effects of rapa-
mycin treatment may be less important is in
the treatment of diseases of rapid aging such
as Hutchinson–Gilford progeria syndrome
(HGPS). HGPS is a rare, fatal genetic disorder
resulting from a mutation in LMNA, with no
known treatment or cure. The cause of death in
most cases of HGPS is progressive arterial oc-
clusive disease, with death from heart attack or
stroke occurring at an average age of 13 years
(Varga et al. 2006). Treatment of human HGPS
fibroblasts and mice lacking Lmna with rapa-
mycin reverses HGPS phenotypes at the cellular
level and promotes life span and health at the
organismal level (Cao et al. 2011; Ramos et al.
2012). Although long-term treatment with ra-
pamycin poses risks, the fatal nature of HGPS
suggests that clinical trials of rapamycin in
HGPS patients should be considered.

The majority of the data on the side effects
of rapamycin have come from mice and from
relatively sick humans, not from relatively
healthy humans, and healthy humans might ex-
perience fewer serious side effects. The potential
benefits of rapamycin are so large that trials in
other mammals, which may be better models
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for humans, are getting underway. Rapamycin
pharmacology studies in a nonhuman primate,
the marmoset, show that rapamycin can be
dosed to socially housed marmosets for more
than a year without causing anemia, fibrotic
lung changes, or mouth ulcers (Tardif et al.
2014). The effects on metabolism and immuni-
ty in marmosets, however, are as yet unknown.
Also, these marmosets have been maintained in
a relatively pathogen-free environment, not the
relatively pathogen-rich environment in which
humans live. To address some of these issues, a
new study at the University of Washington will
test the effect of rapamycin on aging pheno-
types in pet dogs (Check Hayden 2014). Al-
though these experiments have the potential
to significantly advance our understanding of
the real-world effects of rapamycin, they must
be pursued cautiously, as negative outcomes,
such as the development of diabetes in pet
dogs, could taint the public perception of rapa-
mycin as a pro-longevity intervention.

INTERMITTENT RAPAMYCIN TREATMENT:
A WAY TO SIDESTEP SIDE EFFECTS

How can we use the exciting potential of rapa-
mycin to reap the longevity dividend? Impor-
tantly, recent discoveries suggest that at least
some of the negative side effects of rapamycin
may be separable from its deleterious side ef-
fects. In particular, it was recently discovered
that long-term treatment with rapamycin dis-
rupts not only mTORC1, but also disrupts
mTORC2 in vivo in multiple tissues, including
the liver, white adipose tissue, and skeletal mus-
cle (Lamming et al. 2012). Research from many
laboratories has identified many positive roles
for mTORC2 in health and longevity, and neg-
ative consequences from its disruption.

Specifically, hepatic mTORC2 is important
for the regulation of gluconeogenesis, and dis-
ruption of hepatic mTORC2 by rapamycin
causes hepatic insulin resistance and decreased
glucose tolerance (Lamming et al. 2012, 2014a).
mTORC2 is also important in the proper func-
tioning and proliferation of b cells (Zahr et al.
2008; Yang et al. 2012). The critical role of
mTORC2 in the immune system has only been

recently uncovered, with mTORC2 playing a
role in the function, proliferation, and differen-
tiation of T cells, B cells, and macrophages (Hax-
hinasto et al. 2008; Maier et al. 2012; Powell et al.
2012; Byles et al. 2013). A significant decrease
in T-cell number and the expansion of regula-
tory T cells (Tregs) are the likely cause of many
of the effects of rapamycin on the immune sys-
tem (Powell et al. 2012), and mTORC2 activity
normal suppresses the differentiation of Tregs
(Haxhinasto et al. 2008). Finally, mTORC2 is
extremely important in male longevity, and ge-
netic depletion of Rictor, a key component of
mTORC2, severely shortens male, but not fe-
male, life span (Lamming et al. 2014b).

It is possible that this male-specific effect of
mTORC2 inhibition on life span explains the
sexually dimorphic impact of rapamycin and
genetic inhibition of insulin/IGF-1/mTOR sig-
naling pathway on life span, but the mechanistic
basis for this sexually dimorphic effect remains
unknown. Many of the physiological effects of
hepatic Rictor deletion are mediated by reduced
Akt activity; however, mice heterozygous for
Rictor, although having decreased male longev-
ity (Fig. 3A), have normal Akt activity (Lam-
ming et al. 2014b). A recent article examining
the life span of mice heterozygous for Akt1
found that these mice had a significant increase
in life span (Fig. 3B) (Nojima et al. 2013). It
is, therefore, likely that one or more additional
mTORC2 substrates mediate the decreased
male life span resulting from Rictor depletion.
Although the role of the mTORC2 substrate
SGK in mammalian life span is not known, re-
cent findings in C. elegans suggest that SGK may
play an important role in determining life span
(Mizunuma et al. 2014).

Since many of the negative side effects
of rapamycin are mediated by inhibition
of mTORC2, drugs that specifically inhibit
mTORC1 without inhibiting mTORC2 could
allow us to realize the full power of rapamycin
(Lamming et al. 2013). We have reported that
the rapamycin analogs everolimus and temsir-
olimus have a decreased impact on glucose
tolerance in male C57BL/6J mice, suggesting
that these analogs may have a reduced impact
on mTORC2, but this remains to be proven
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(Arriola Apelo et al. 2016). Unfortunately, al-
though the scientific literature suggests several
compounds specifically inhibit mTORC1, we
have found that some of these results may be
specific to particular cell lines or time points.
Regrettably, the efforts of the pharmaceutical
industry have been focused on the development
of mTOR kinase inhibitors, such as Torin 1,
PP242, KU63794, and WYE354 for the treat-
ment of cancer (Liu et al. 2012). These inhibi-
tors are extremely effective at inhibiting both
mTOR complexes, and are therefore likely to
have increased side effects as compared with
rapamycin.

A more promising strategy is the possibility
that intermittent rapamycin treatment might be
sufficient to extend life span, while minimizing
the time period that an individual might be
immunosuppressed or at risk of diabetes. Re-
cent findings that the effects of rapamycin on
(at least) glucose tolerance and mTORC1 sig-
naling can be washed out within a few weeks
suggest this may be a feasible approach (Yang

et al. 2012; Liu et al. 2014b). A fairly intensive
dosing schedule (2 wk on, 2 wk off ) extends the
life span of inbred female 129/Sv mice (Anisi-
mov et al. 2011), but this dosing schedule still
leads to mice spending .50% of their lives ex-
posed to rapamycin and subject to glucose in-
tolerance, in addition to any other metabolic
and immunological impacts. We recently iden-
tified an intermittent rapamycin treatment reg-
imen with decreased metabolic and immuno-
logical effects (Arriola Apelo et al. 2016), but it
remains to be determined whether this regimen
can extend life span and health span.

SUSTAINABLE DIETARY INTERVENTIONS
TO INHIBIT mTORC1

An alternative approach that has not been
fully explored is the possibility of inhibiting
mTORC1 by altering the diet. mTORC1, but
not mTORC2, is specifically sensitive to glucose
and amino acid levels among other stimuli
(Bar-Peled and Sabatini 2014). Interventions
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that focus on either amino-acid sensing or on
the availability of glucose and amino acids may
act to inhibit mTORC1 signaling. A CR diet has
been suggested to function in part by lowering
fasting blood glucose levels, which is one of
the most well-documented, reproducible, and
widely conserved response to a CR diet in mam-
mals (Lamming and Anderson 2014). Treat-
ment with acarbose, a compound that acts to
slow glucose uptake from food, has been shown
to extend life span (Harrison et al. 2014), and it
will be interesting to learn the effect of acarbose
on mTORC1 activity.

mTORC1 activity in cultured cells is ex-
tremely sensitive to leucine (Long et al. 2005),
and in rodents, the branched-chain amino ac-
ids—leucine, isoleucine, and valine—promote
mTORC1 activity in the liver, skeletal muscle,
adipose tissue, and the pancreas (Blomstrand
et al. 2006; Sans et al. 2006; Li et al. 2011; Xiao
et al. 2011). Consumption of leucine also sig-
nificantly affects mTORC1 activity in humans
(Moberg et al. 2014). A short-term protein-free
diet leads to a significant decrease in mTORC1
signaling (Harputlugil et al. 2014), and we re-
cently found that a low protein diet can inhibit
mTORC1 signaling in both the tumors and so-
matic tissues of a mouse xenograft model (Lam-
ming et al. 2015).

Recent studies have clearly shown that a
low-protein diet significantly extends rodent
life span and is associated with reduced cancer
and mortality in humans (Levine et al. 2014;
Solon-Biet et al. 2014), although it is not clear
whether this effect is mediated by mTOR sig-
naling. Low-protein diets may be an attractive
and more sustainable alternative to CR in hu-
mans (Fontana and Partridge 2015). A CR diet
is extremely difficult for humans in the devel-
oped world to maintain, surrounded by the
sights and smells of abundant food. In contrast,
vegan diets may be maintainable, and it has
been suggested that such plant-based diets may
be particularly low in methionine (McCarty
et al. 2009), which when restricted significantly
extends the life span of rodents (Anthony et al.
2013). Diets restricted in specific amino acids
are often used in the treatment of inborn errors
of metabolism, suggesting that diets with re-

duced dietary protein or specific amino acids
may be a sustainable intervention for a large
population.

CONCLUSION

There has been significant excitement over the
discovery that rapamycin can prolong rodent
life span and may be a potent antiaging drug.
Although rapamycin is very promising, its side-
effect profile may limit its clinical use for the
treatment of diseases of aging in humans. Al-
though it is still unclear how mTOR inhibition
extends life span, it appears that many of the side
effects are mediated by the “off-target” inhibi-
tion of mTORC2, whose beneficial effects are
primarily mediated by inhibition of mTORC1.
Alternative dosing strategies for rapamycin that
limit its effects on mTORC2, or the devel-
opment of compounds that specifically inhib-
it mTORC1, may allow us to fully realize the
health, social, and economic benefits of slowed
aging. While we await these developments, con-
sumption of a low-protein diet may promote
health, perhaps in part by inhibiting mTORC1
signaling.
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