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Molecular profiles of tumors and tumor-associated cells hold great promise as biomarkers of 

clinical outcomes. However, existing datasets are fragmented and difficult to analyze 

systematically. Here we present a pan-cancer resource and meta-analysis of expression signatures 

from ~18,000 human tumors with overall survival outcomes across 39 malignancies. Using this 

resource, we identified a FOXM1 regulatory network as a major predictor of adverse outcomes, 

and found that expression of favorably prognostic genes, including KLRB1, largely reflect tumor-

associated leukocytes. By applying CIBERSORT, a computational approach for inferring 

leukocyte representation in bulk tumor transcriptomes, we identified complex associations 

between 22 distinct leukocyte subsets and cancer survival. For example, tumor-associated 

neutrophil and plasma cell signatures emerged as significant but opposite predictors of survival for 

diverse solid tumors, including breast and lung adenocarcinomas. This resource and associated 

analytical tools (http://precog.stanford.edu) may help delineate prognostic genes and leukocyte 

subsets within and across cancers, shed light on the impact of tumor heterogeneity on cancer 

outcomes, and discover biomarkers and therapeutic targets.

Genomic features of tumors and their microenvironments represent promising candidates for 

predictive and prognostic biomarkers1-3. Despite intensive efforts over the past decade to 

leverage emerging high-throughput genomic technologies4,5, heterogeneity in patient 

cohorts, treatment regimens, and technological platforms, among other factors, have led to 

apparently inconsistent results and modest translational impact6-11. To address these issues, 

and to gain new insights into molecular features of tumors with prognostic associations, we 

integrated tumor gene expression profiles (GEPs) and overall survival data from nearly 

18,000 patients within a meta-analytical framework that enhances statistical power and 

improves reproducibility12. This effort differs from previous efforts as the latter have not 

been amenable to meta-analysis13, or were limited to either single cancer types14 or single 

datasets per cancer type15.

We applied to this resource the recently described CIBERSORT method16 to analyze 

associations between clinical outcomes and abundance of diverse tumor-associated 

leukocyte (TAL) subsets, several of which have been linked to tumor growth17,18, cancer 

progression and outcome19. This approach quantifies relative expression of cell type specific 

signatures in bulk tumors, and is largely independent of methods relying on cell isolation, 

preservation, and reagent quality, all of which are difficult to standardize across large 

numbers of tumors.

Using this resource and these analytical tools, we constructed a global pan-cancer map of the 

landscape of both genes and TALs predicting clinical outcomes, integrating with existing 

resources such as ENCODE20. Our findings reveal genome-wide molecular portraits of 

human tumors and identify candidate genes and TALs for prognostic stratification and 

targeted therapy.
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Results

A cancer-wide atlas of prognostic genes

We assembled, curated, and integrated cancer gene expression and clinical outcome data 

from the public domain into a new resource for PREdiction of Clinical Outcomes from 

Genomic profiles (PRECOG, Fig. 1a, Supplementary Table 1, available at http://

precog.stanford.edu). PRECOG encompasses nearly 30,000 expression profiles from 166 

cancer expression datasets covering 39 distinct malignant histologies (Fig. 1b). Importantly, 

all data were manually curated with respect to relevant clinical parameters, including disease 

status, stage, and histology, and key results from selected studies (e.g., survival plots) were 

verified (Methods). To avoid ambiguities in outcome annotation, we restricted the results 

presented herein to the ~18,000 cases with overall survival data. We further confirmed 

consistency and quality of integrated datasets and curated annotations by assessing 

concordance between molecularly-inferred versus clinically-reported patient gender. In all, 

98% of tumors were gender-concordant, with less than 2% of tumors affected by likely 

annotation errors (such as “off-by-one” mismatches) (Supplementary Fig. 1a–c). All 

microarray studies in PRECOG were consistently normalized and pre-processed (Methods) 

and associations between gene expression and survival were assessed by univariate Cox 

regression.

To compare prognostic associations across independent datasets, and to minimize the 

confounding influence of batch effects, the statistical associations between genes and 

clinical outcomes were assessed by z-scores. Z-scores are directly related to P values, but 

conveniently encode both the directionality and robustness of statistical associations 

(Supplementary Fig. 1d). Moreover, z-scores have a straightforward interpretation; they 

represent the number of standard deviations from the mean of a normal distribution. For 

example, |z| > 1.96 is equivalent to a two-sided P < 0.05 (Supplementary Fig. 1d). Unlike 

parameters such as hazard ratios, z-scores are independent of different time-scales 

measuring survival follow-up times, and of the range/scale of predictor variables, permitting 

direct comparison across studies and platforms. To facilitate cross-cancer analyses, z-scores 

for individual studies were combined to yield “meta-z scores” for the prognostic significance 

of each gene in each cancer type (Methods; Supplementary Table 1). We observed high 

concordance between meta-z scores and z-scores, where the latter were obtained by first 

merging expression data from multiple studies of the same cancer (e.g., lung 

adenocarcinoma, Spearman's R = 0.9, P < 2.2×10−16; Methods). To further evaluate the 

robustness of the meta-z metric, we calculated a global meta-z score for each gene across all 

cancers, and compared PRECOG to a validation set of 9 independent studies that were held-

out (Supplementary Table 1). Globally prognostic genes were significantly correlated 

between PRECOG and the validation set (R = 0.55, P < 2.2 × 10−16; Supplementary Fig. 
2a,b). In addition, pan-cancer prognostic genes were significantly concordant between 

PRECOG and another validation set comprised of studies profiled by RNA-seq from The 

Cancer Genome Atlas (TCGA) (R = 0.52, P < 2.2 × 10−16; Supplementary Fig. 2a,b). We 

also evaluated the influence of batch effects21 on z-score values. Notably, only modest 

differences in z-scores were observed following batch effect removal (e.g., for samples run 

on different dates) (Supplementary Fig. 2c–e).
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Pan-cancer prognostic genes

PRECOG provides an unprecedented opportunity to quantify commonalities in prognostic 

genes across a large number of human malignancies. We found that prognostic genes 

(filtered at |meta-z| > 3.09, or nominal one-sided P < 0.001) are significantly more likely to 

be shared by distinct tumor types than expected by random chance (Fig. 1c, Supplementary 
Table 2). This result was reproducible across a broad range of statistical thresholds 

(Supplementary Fig. 3a,b), and is reminiscent of the high cancer-wide concordance 

reported among somatic aberrations influencing genome-wide copy number22. Conversely, 

cancer-specific prognostic genes are less frequent than expected by random chance (Fig. 1c, 
Supplementary Fig. 3a,b), and predominantly reflect tissues of origin (Supplementary 
Fig. 3c, Supplementary Table 2).

To obtain a global map of prognostic patterns, we clustered survival-associated z-scores 

across all 166 PRECOG datasets using AutoSOME, an unsupervised method that is robust 

against outliers and does not require pre-specification of the number of clusters23 (Fig. 1d, 
Supplementary Table 3). Prognostic clusters include genes involved in cell adhesion and 

epithelial-mesenchymal transitions, vascularization, and immunological and proliferative 

processes (Supplementary Table 3). When clusters were ordered by a metric that integrates 

gene-level meta-z scores and cluster size, the two largest clusters were most highly ranked 

(Fig. 1d, left; Methods). One of these two clusters is broadly associated with inferior 

outcomes, and is functionally linked to cell proliferation and cell cycle phase (Fig. 1d, 

right). While this cluster is prognostic in many solid tumors, such as breast and lung 

adenocarcinoma, proliferation genes were not adversely prognostic in some cancers, 

including colon cancer and AML (Supplementary Table 1), two malignancies for which the 

clinical relevance of generally quiescent cancer stem cells has been demonstrated24,25. The 

other large cluster is associated with favorable survival and is highly enriched in 

immunological processes and immune response genes (Fig. 1d, right; Supplementary 
Table 3), suggesting that the immune microenvironment is a key factor contributing to 

favorable survival across cancers.

To further explore cancer-wide prognostic signatures, we used PRECOG to define robust 

pan-cancer survival models. First, we determined the number of histologies needed to 

identify genes with maximal prognostic power. Using a cross-validation approach to avoid 

outliers, we observed quantitative improvements in the significance of pan-cancer prognostic 

genes until ~30 distinct histologies were sampled, after which additional gains were 

marginal (Fig. 2a, left). With this framework, we identified the top ten adverse and top ten 

favorable prognostic genes, largely consisting of genes regulating or oscillating with the 

mitotic cell cycle and markers of distinct lymphocyte subsets (Fig. 2a, right). Expression of 

the proto-oncogene FOXM1 (encoding forkhead box M1)26 was most frequently associated 

with adverse risk, andoutperformed MKI67, which encodes a protein (Ki-67) used clinically 

as a marker of proliferation27 (Supplementary Fig. 4a). Expression of KLRB1 (encoding 

CD161, a surface marker on several T cell subsets28 and NK cells; Supplementary Fig. 4b) 

was most frequently associated with favorable outcomes. Notably, FOXM1 and KLRB1 
were among the top pan-cancer genes in validation sets, including TCGA RNA-seq data 

(Fig. 2b and Supplementary Fig. 2). Bivariate models based on these two genes 
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outperformed either gene alone (Supplementary Table 4). Moreover, when weighted by 

their Cox regression coefficients in a training set (Supplementary Table 4), a FOXM1-
KLRB1 composite score stratified patient survival in diverse internal validation datasets, 

including carcinomas, brain tumors, and hematopoietic neoplasms (Fig. 2c), and was 

prognostic in multivariate models integrating common clinical indices (Supplementary 
Table 4). Furthermore, the FOXM1-KLRB1 composite score remained significant in 

validation datasets held-out from PRECOG, including TCGA RNA-seq datasets 

(Supplementary Fig. 4c,d).

We next asked whether integrating cancers in a meta-analysis might illuminate additional 

functional elements of biological programs impacting survival. To address this, we evaluated 

connectivity among top prognostic genes within protein-protein association networks. For 

adversely prognostic genes, a considerably higher connectivity was achieved when 

considering all cancer histologies together as opposed to separately (Fig. 2d, bottom; 

Supplementary Table 5), suggesting that individual malignancies in PRECOG contribute 

complementary information to a pervasive proliferation program (Fig. 2d, middle). We 

further characterized this network by integrating PRECOG with data from ENCODE20, 

ChEA29, and mSigDB30 for 1,006 gene sets defined by shared transcription factor binding 

sites. Adversely prognostic genes in this network and across PRECOG were most 

significantly enriched in FOXM1 ChIP-Seq binding targets31 (Supplementary Fig. 4e, 
Supplementary Table 5), which together with FOXM1 itself, may be drivers of inferior 

survival. In contrast, we observed no difference in protein-protein connectivity among 

favorably prognostic genes, whether identified from pooled cancers or individual cancers 

(Fig. 2d, bottom; Supplementary Table 5). We hypothesized that transcriptome 

heterogeneity among distinct TALs, which account for the majority of favorable pan-cancer 

prognostic associations, may not be well captured by aggregated protein-protein association 

studies. In addition, several highly prognostic genes, including KLRB1, are expressed by 

multiple immune subsets (Supplementary Fig. 4b). Therefore we performed an “in silico 
dissection” of PRECOG to infer the specific leukocyte subsets associated with survival 

across cancers.

Leukocyte composition in bulk tumors

Infiltration of tumors by specific leukocyte cell subsets such as CD8+ and CD45RO+ 

memory T-lymphocytes has been largely linked with favorable outcomes in different 

cancers2,32, while others such as regulatory T-cells and macrophages can confer good or 

poor prognosis depending on context33-36. To systematically and comprehensively map 

compositional differences in TALs and their relationships to survival, we applied a new 

machine-learning framework for Cell-type Identification By Estimating Relative Subsets Of 

known RNA Transcripts (or CIBERSORT)16. CIBERSORT outperforms previous 

deconvolution methods with respect to noise, unknown mixture content, and closely related 

cell types, in statistically estimating relative proportions of cell subsets from expression 

profiles of complex tissues (e.g., bulk tumors)16. As input, we used purified expression 

profiles for 22 distinct leukocyte subsets, and defined “barcodes” of gene expression 

signatures that robustly distinguish these cell types without requiring cell type-specific 

marker genes16. At a |meta-z score| > 3.3 (corresponding to two-sided P < 0.001), 28% of 
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these barcode genes (152 of 547) are individually significant in PRECOG, out of 2,851 total 

pan-cancer prognostic genes at the same significance threshold. This is higher than expected 

by random chance (P < 0.001, Chi-squared test). Whether directly or indirectly compared 

against flow cytometry and immunohistochemistry, CIBERSORT exhibited robust 

performance on solid tumors, accurately estimating relative fractions of leukocyte subsets in 

colorectal cancer and lung adenocarcinoma (Fig. 3a), and follicular lymphoma16.

Applied to PRECOG, CIBERSORT revealed striking differences in relative leukocyte 

composition between hematopoietic neoplasms, brain cancers, and non-brain solid tumors 

(Fig. 3b, Supplementary Table 6). Variation in TAL content was also consistent and 

reproducible across independent studies of the same cancer type, including solid tumors 

(Supplementary Fig. 5a). Of note, while the majority of tumors profiled within PRECOG 

were unpurified and uncontrolled with respect to tumor content (Supplementary Table 1), 

CIBERSORT correctly inferred high fractions of plasma cells in multiple myeloma-enriched 

specimens (Fig. 3b). Furthermore, as expected, B-cell signatures were found to predominate 

in B-cell malignancies (Fig. 3b), suggesting that CIBERSORT has general utility for 

discerning cell of origin in diverse cancers.

Prognostic associations of TALs

To complement our gene-centric survival analysis, we assembled a global map of prognostic 

associations for 22 immune populations across human malignancies (Supplementary Fig. 
6a). We observed considerable variation between cell subsets and cancer-specific outcomes, 

and many of these associations are statistically significant (Supplementary Fig. 6b–d). 

Pooling cancers yielded significant global leukocyte prognostic patterns, in which higher 

levels of estimated T-cell fractions were found to generally correlate with superior survival 

while increasing levels of myeloid populations primarily correlated with poorer survival. 

Intra-tumoral γδ T-cell37,38 and polymorphonuclear (PMN)39,40 signatures emerged as the 

most significant favorable and adverse cancer-wide prognostic populations, respectively 

(Fig. 3c, left). Moreover, when inferred leukocyte fractions were compared with KLRB1 
expression across cancers, γδ T-cell and CD8 T-cell signatures were most highly correlated 

(Supplementary Fig. 5b), suggesting a link to the prognostic significance of this gene. We 

found no relationship between estimated PMN levels in datasets with annotated necrotic 

tissue content (Methods), suggesting that intra-tumoral PMNs are not simply a correlate of 

tissue necrosis41. Furthermore, consistent with previous reports33,42, signatures of tumor-

associated M2 macrophages were found to predict worse outcomes than pro-inflammatory 

M1 macrophages, and anti-CD3/anti-CD28-costimulated, but not resting, CD45RO+ 

memory helper T-cells were correlated with superior outcomes.

Prognostic TALs in solid tumors

By comparing leukocyte survival signatures in breast and lung cancer—two of the most 

highly profiled cancers in PRECOG—we identified two populations, PMNs and plasma 

cells (PCs), with unexpectedly strong yet reciprocal relationships to survival (Fig. 3d). PC 

signatures are significant predictors of favorable survival across solid tumors in general (Fig. 
3c, right), and were the most inversely correlated prognostic population to PMNs (Fig. 4a) 

when assessed globally in a cross-correlation analysis between human cancers 
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(Supplementary Fig. 5c). Estimated PC levels were not correlated with tumor stage 

(Supplementary Fig. 7a). Since PC signatures were found to be higher in tumors than in 

adjacent normal tissues (Supplementary Fig. 7b), the prognostic value of tumor infiltrating 

PCs is unlikely a proxy for general immunological health, supporting a role for antigen-

driven processes required for their clonal expansion and emergent humoral immune 

responses43. Furthermore, a simple ratio of estimated PMN to PC levels was found to be 

significantly prognostic in diverse solid tumors (Fig. 4b).

To experimentally evaluate the reciprocal survival associations of PMN and PC signatures, 

we assessed their infiltration of 187 lung adenocarcinomas using tissue microarray (TMA) 

analysis (Supplementary Table 7). Characteristics of both cell types were observed by 

H&E staining of tissue sections (Supplementary Fig. 7c,d), and the presence of tumor 

infiltrating plasmacytic cells (i.e., plasmablasts or plasma cells) was confirmed in fresh 

tumor specimens using both flow cytometry (Supplementary Fig. 7e) and morphological 

assessment (Supplementary Fig. 7f). Moreover, we confirmed an elevated presence of 

plasmacytic cells in non-small cell lung cancer (NSCLC) tumors, as compared to normal 

adjacent tissues (Supplementary Fig. 7g,h). In serial lung adenocarcinoma tissue sections, 

we stained for the presence of MPO (myeloperoxidase) and IGKC (Immunoglobulin kappa 

constant), markers of PMNs and PCs, respectively (Supplementary Fig. 8a). Since B-cells 

express varying levels of IGKC, we also tested for CD20, a surface marker of mature B-cells 

but not PCs (Supplementary Fig. 7e). We found <10% overlap with CD20, indicating the 

high specificity of IGKC for PCs (Supplementary Fig. 8b; Methods). Next, we quantitated 

the staining area for each marker in the tissue array (Methods; Supplementary Fig. 8c,d). 

While operating on differing scales and measured on independent tumor specimens, 

fractional levels of these three markers measured in situ on TMAs were comparable to 

relative infiltrate levels inferred by CIBERSORT (Fig. 4c). Moreover, in both continuous 

and binary models, we found a strong relationship between inferior survival and a higher 

ratio of PMN to PC levels in lung adenocarcinoma, whether measured in PRECOG (Fig. 
4d), in held-out microarray validation datasets (Supplementary Fig. 8e), or by surrogate 

markers in tissue microarray specimens (Fig. 4e). Furthermore, TMA results remained 

significant in multivariate models incorporating relevant clinical parameters 

(Supplementary Table 7). Together, these data validate our computational approach, and 

demonstrate that tumor-associated PMNs and PCs exhibit opposite associations with overall 

survival.

Circulating leukocytes, including PMNs and B-lymphocytes contribute to the tumor 

microenvironment44-46, and leukocyte frequencies of innate and adaptive effectors in 

peripheral blood can have prognostic value43,47. Therefore, we examined a subset of 

NSCLC patients from the TMA with available peri-operative complete blood counts to 

assess the concordance between levels of circulating leukocytes and TALs. While intra-

tumoral PMN to PC ratios remained significantly prognostic within this subset, we found no 

significant correlation between circulating and infiltrating compartments, and no prognostic 

value from circulating leukocyte levels (Supplementary Table 7).
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Discussion

Because expression signatures of small numbers of genes48 and cells47 can have utility for 

predicting response to therapy, including anti-tumor agents, we envision that these resources, 

available at http://precog.stanford.edu, will be useful for future discovery of predictive 

biomarkers, including immunotherapies.

PRECOG has unique advantages over related resources49. First, multiple datasets are 

included for most human cancers, and the use of a robust survival meta-z approach to 

integrate studies reduces the potential for erroneous conclusions drawn from single datasets. 

For example, in contrast to one recent study15, we found that molecular markers can indeed 

add significant prognostic information to clinical variables (see Integrated Discrimination 

Improvement (IDI) and Net Reclassification Improvement (NRI) analyses for FOXM1-

KLRB1 in Supplementary Table 4), consistent with our previous work50. Nevertheless, we 

acknowledge that prognostic associations remain modest in some cancers (e.g. lung 

squamous cell carcinoma), and development of clinically applicable molecular models in 

such cases may remain challenging. Second, although recent studies have inferred TAL 

activities in relation to patient outcomes32,51,52, most have focused on one or two cell types 

in multiple cancer histologies32,52, have analyzed a relatively small number of markers that 

are not uniquely expressed by single immune cell types (e.g., granzyme A (GZMA) and 

perforin 1 (PRF1); Supplementary Fig. 4b)52, or have studied multiple infiltrating immune 

cell types in a single cancer histology51.

By applying CIBERSORT, a computational method for inferring leukocyte representation in 

bulk tumors16, we identified complex relationships between 22 immune subset signatures 

and overall survival across 25 cancer histologies. One potential limitation of our approach is 

the fidelity of input reference profiles, which could deviate from the expression programs 

and functional states of tumor-associated leukocytes. However, CIBERSORT was developed 

to be robust to noise, and thus far we have observed strong agreement with ground truth 

assessments in bulk tumors (e.g., Fig. 3a in this work and Fig. 2i in ref. 16). We identified 

and validated an intriguing reciprocal prognostic association of PC and PMN signatures in 

diverse and common solid tumors, though the immunological basis for this observation 

remains unclear. For example, it is unknown whether infiltrating PCs passively reflect non-

specific host immunity or actively contribute to anti-tumor humoral immune responses. 

Future studies could help define novel tumor-associated antigens targeted by these PCs, with 

potential implications for new monoclonal antibody therapies. We also speculate that tumor-

associated PMNs may be functionally related to myeloid derived suppressor cells (MDSCs), 

known to inhibit active T-cell anti-tumor immune responses53. Indeed, our analysis revealed 

several broadly favorable prognostic T cell signatures, including γδ and CD8 T cells, whose 

corresponding cell subsets express KLRB1 (CD161), the top favorable pan-cancer 

prognostic gene across PRECOG and a marker of enhanced innate immune characteristics in 

diverse T cell subsets28.

The favorable prognostic association of specific TALs across cancers, including effector T-

cell subsets, is relevant to emerging cancer immunotherapies. Recently, therapeutic 

antibodies targeting T-cell checkpoints, including PD-1 and PD-L1, have yielded 
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unprecedented successes for immunotherapy in some cancers, but not others54. The 

immunological diversity underlying the presence or absence of such responses in different 

cancers and in individual patients remains poorly understood55. Our approach provides a 

framework for characterizing diverse immune effectors as candidate biomarkers for 

predicting clinical response to these and other novel immunotherapies. It is also amenable to 

pharmacodynamic measurements assessing the recruitment and/or activation of targeted 

immune effectors by specific immunotherapies as a means of better understanding treatment 

responses or failures.

Our results illuminate the prognostic landscape of genes and TALs across human cancers, 

and suggest numerous hypotheses for further investigation and clinical translation. 

Moreover, the data and tools presented here should facilitate a variety of future studies, 

including the investigation of prognostic biomarkers within molecular subtypes and the 

assessment of multivariate interactions between genes, TALs, and other clinical indices.

Online Methods

PRECOG assembly and quality control

To identify cancer gene expression datasets with corresponding patient outcome data we 

queried NCBI Gene Expression Omnibus (GEO), EBI ArrayExpress, NCI caArray, and 

Stanford Microarray Database for the terms, survival, prognosis, prognostic, or outcome. 

Perl scripts were implemented to download processed and raw data, and associated 

annotation. For data within NCBI, the array platform was determined from the SOFT format 

file, and the corresponding annotation file was retrieved from GEO. From these, the Probe 

ID, Genbank accession, HUGO gene symbol and gene description were extracted based on 

the internal headers of the SOFT annotation file. The desired fields were specified manually 

if this automated procedure failed. For older platforms, such as cDNA microarrays, where 

annotations had not been recently updated, we re-mapped the probe sequences to HUGO 

gene symbols via the Genbank or Refseq accession number through the NCBI Entrez gene 

identifier. In cases without available accessions, but with the DNA sequence of the probe, we 

performed the mapping using BLAT to compare probes to a Refseq reference and look for 

unique highest-scoring hits.

Scripts were written to extract sample annotation information from GEO SOFT format files 

and parse them into tables. Since the contents of annotation fields are not semantically 

enforced, sample data can be contained in various fields, including Sample_title, 
Sample_characteristics, Sample_description, and Sample_source. Moreover, not all fields 

are specified for every sample. To parse this information into tabular format, we attempted to 

estimate the correct variable name (column header) by searching for common substrings 

across samples. In some cases, a dataset clearly had survival information, but was not 

deposited with the genomic data. In such cases, we first searched supplementary information 

of corresponding literature for the missing information. Failing this, we contacted 

corresponding and first authors, of which roughly half supplied the requested data.

All tabulations of clinical annotations were further checked and manually curated. This 

process included verification of results in selected studies by direct comparison of Kaplan-
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Meier plots and time scales with those in the corresponding primary publications, as well as 

consistency of prognostic genes across studies. Separately, errors due to technical issues or 

the curation process were estimated by comparing annotated gender to the ratio of RPS4Y1 
to XIST (male:female) expression levels56 after microarray normalization, as detailed below 

(Supplementary Fig. 1a–c). Furthermore, identical samples present in more than one 

dataset were identified using MD5 checksums for Affymetrix data, and by cross-correlation 

analysis of expression vectors, and redundant samples were accordingly eliminated.

We applied the following gene expression normalization strategy to allow unification of data 

from diverse microarray platforms within PRECOG. For Affymetrix GeneChip data, raw 

CEL files were obtained when possible, and were normalized with the MAS5 algorithm 

(affy package v. 1.26 of Bioconductor v. 1.8 in R 2.15.1), using a custom CDF (Chip 

Definition File) for probeset summarization, which updates and maps array oligonucleotides 

to Entrez gene identifiers57-59 (http://brainarray.mbni.med.umich.edu/Brainarray/). Each 

dataset, regardless of platform, was quantile normalized separately. Moreover, each gene 

was log2 transformed if not already in log space, and was then unit mean/variance 

standardized across samples within a given dataset. While alternative microarray 

normalization methods have been proposed (e.g., RMA60, gcRMA61, fRMA62, SCAN-

UPC63), for survival analysis we did not observe any significant benefit in comparing 

Affymetrix data normalized as described above to alternate normalization strategies (data 

not shown). TCGA RNA-seq and clinical data were downloaded from the TCGA Data 

Coordinating Center using TCGA-assembler64. The gene-level RNA-seq data were pre-

processed using TCGA-assembler's ProcessRNASeqData function. RNA-seq and clinical 

data were matched via the patient barcode provided by TCGA.

For each study, the association of each probe on an array platform with survival outcomes 

was assessed via Cox proportional hazards regression using the coxph function of the R 

survival package (v. 2.37). Cox coefficients, hazard ratios with 95% confidence intervals, P 
values, and z-scores were obtained for each array probe. For datasets that had not been 

processed with Custom CDF, which yields a unique per-gene expression value, survival z-

scores for probes were collapsed to the gene level by averaging z-scores of probes that 

matched to the same HUGO gene symbol. Z-scores for each gene were summarized across 

all datasets in each malignancy using Lipták's weighted meta-z test65,66, with weights set to 

the square roots of sample sizes67. To identify genes with cancer-wide prognostic 

significance, and avoid bias due to cancers with different sample sizes, we further combined 

weighted meta-z-scores into a single global meta-z-score for each gene using Stouffer's 

method (unweighted)66.

Validation of z statistics in PRECOG

Using lung adenocarcinoma as a test case, we assessed the relationship between the 

weighted meta-z-score metric and standard z-scores, the latter of which were derived from a 

merged expression matrix consisting of GEPs from lung adenocarcinoma studies in 

PRECOG (Supplementary Table 1). For this purpose, we selected datasets that had at least 

40 stage I samples (indicated in Supplementary Table 1). To mitigate batch effects, we 

standardized each gene in each dataset such that it had unit mean and variance across stage I 
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samples. Sample annotations were manually reviewed to ensure that staging corresponded to 

American Joint Committee on Cancer (AJCC) version 6 (2002), based on TNM (Tumor-

Nodes-Metastasis) information. Many datasets pre-dated version 7 of AJCC, and did not 

contain the required detail for annotating to that standard. These refinements and 

standardizations permitted merging of samples from different datasets comprising different 

array platforms and different distributions of tumor stage across the cohort. In all, we 

compared lung adenocarcinoma GEPs from n = 1,106 patients, and found that weighted 

meta-z scores are significantly correlated with merged z-scores (Spearman's R = 0.9, P < 2.2 

× 10−16). We observed similar results when comparing the meta- and merged-z statistics for 

a compendium of 5 AML studies, thus validating our use of the meta-z statistic. Of note, 

while we applied batch-correction procedures to merge expression datasets prior to 

calculating cross-study z-scores, these steps were not necessary with the meta-z metric, as z-

scores from individual studies were directly integrated. This suggests that the meta-z 

approach effectively overcomes batch differences across datasets.

We further evaluated the influence of batch effects21 within individual datasets using 

Combat68 (Supplementary Fig. 2c–e). Applied to microarray processing dates in four AML 

studies, we observed only a modest effect on prognostic z-scores, as pre- and post-batch-

corrected data were all highly correlated (R ≥ 0.92, P < 2.2 × 10−16; Supplementary Fig. 
2c). To test whether batch correction of samples profiled by different study sites would 

improve data quality, we compared pre- and post-batch-corrected expression data from the 

NCI director's challenge lung adenocarcinoma dataset (ca00182) with a control dataset 

consisting of prognostic meta-z scores from a pooled set of all remaining 19 lung 

adenocarcinoma studies in PRECOG. Little difference in performance was observed for the 

most prognostic genes, with changes primarily affecting genes whose association with 

survival outcomes was subtle. (Supplementary Fig. 2d,e).

PRECOG false discovery rate

While z-scores and meta-z scores were analyzed in this work, Q values for global 

unweighted meta-z and weighted cancer-specific meta-z-scores were estimated using the 

False Discovery Rate (FDR) method of Storey and Tibshirani69, and are available for all 

analyzed z-score matrices online (http://precog.stanford.edu). Notably, of 23,288 HUGO 

gene symbols in PRECOG, 4,385 (19%) have a global meta-z significant at Q < 0.05 (|meta-

z| > 2.6), and 2,986 (13%) are significant at a Q < 0.01 (|meta-z| > 3.22) (Supplementary 
Table 1).

Blinding and sample selection criteria

No blinding was used in this work. Duplicate and non-diagnostic (relapse) samples were 

excluded from analysis.

Statistical analysis of shared prognostic genes

To determine an empirical P value for the fraction of overlapping genes in Figure 1c, we 

randomized gene labels for every cancer, and for each cancer, calculated the fraction of 

prognostic genes shared with at least 1 other cancer (again, using |meta-z| > 3.09). We then 

calculated the median fraction of shared genes across all cancers and repeated the analysis 
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100,000 times. We performed a similar analysis in Supplementary Fig. 3a,b, but used 1,000 

Monte Carlo iterations to test a broad range of P value and Q value thresholds, considering 

prognostic genes shared by at least 2, 3, or 4 tumor types in PRECOG.

Clustering of the PRECOG z-score matrix

To identify groups of genes with similar prognostic patterns across the entire PRECOG 

database (166 cancer datasets and 22,461 gene symbols; 827 genes represented in only a 

small subset of cancers were excluded), we performed unsupervised cluster analysis using 

AutoSOME23. Prior to clustering, columns (i.e., cancer datasets) were pre-processed to unit 

variance, rows (i.e., genes) were median-centered, and sum of squares = 1 normalization was 

applied to rows and then columns23. AutoSOME was run with a P value threshold of 0.01, 

100 ensemble iterations, and otherwise default settings. In all, 665 clusters were identified, 

and ~50% genes were assigned to the 55 largest clusters (Supplementary Table 3). 

Functional annotation for each cluster was assessed using a variety of published gene sets 

and significance of overlap was determined by a hypergeometric test (for PubMed IDs, see 

Supplementary Table 3). Gene sets with a Bonferroni-corrected P < 0.01 were considered 

significant. To further evaluate each cluster, we calculated a global meta-z score for each 

gene (as in Supplementary Table 1), but considered only absolute meta-z scores to avoid 

biasing clusters with pan-cancer prognostic genes with the same survival orientation. We 

then calculated a compound score for each cluster by applying the same formula used for the 

unweighted meta-z score, which weights cluster-wide meta-z scores by cluster size. 

Importantly, this formula is not intended to yield a prognostic score in this context, since 

intra-cluster meta-z scores are not independent variables. Moreover, our approach is not 

simply a proxy for cluster size, as the top 5 ranking clusters were originally ranked 2, 1, 

4,13, and 7 with respect to size. The top 5 clusters ranked by decreasing compound scores 

are shown in Figure 1d.

Cross-validation of top prognostic genes

The utility of PRECOG as a cancer-wide meta-analysis tool was assessed by cross-

validation. Cancer histologies (from Supplementary Table 1) were randomly selected and 

pooled in a training set, with the number of cancers t ranging from 1 to 31 (of 39) total 

cancers. For each t, the top 10 adverse and favorable prognostic genes were identified using 

the mean meta-z score across the training set, and the mean meta-z for the same genes was 

determined in the remaining (39 – t) cancers (validation set). This process was repeated 100 

times for each t, and the results are plotted in Fig. 2a. To determine the top prognostic genes 

across PRECOG, the top 10 adverse and favorable prognostic genes in each validation set 

were recorded at t = 31, and the most frequently occurring genes are shown in Fig. 2a.

Construction and assessment of a FOXM1-KLRB1 prognostic model

In brief, we used the coxph function in the R survival package to test the prognostic 

significance of FOXM1 and KLRB1 in bivariate models across PRECOG (each dataset was 

normalized as described for PRECOG construction). Bivariate models with a P < 0.05 (Wald 

test) were considered significant. Derivation of the FOXM1-KLRB1 composite score is 

described in detail below.

Gentles et al. Page 12

Nat Med. Author manuscript; available in PMC 2016 May 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



To integrate FOXM1 and KLRB1 into a composite score, we analyzed cancer types with at 

least two independent datasets having a FOXM1, KLRB1 bivariate P < 0.05. Of these, we 

extracted bivariate coefficients from a randomly selected group of 20% of the corresponding 

datasets, which served as the training set (n = 8; also see Supplementary Table 5). The 

median value of each coefficient in the training set was used as an independent weight in the 

following formula to define a composite score, (FOXM1 × 0.243) + (KLRB1 × −0.169). The 

median value of the FOXM1-KLRB1 composite score was determined for each left-out 

dataset (validation set), and used to stratify corresponding patients into high and low risk 

groups, which were then aggregated by cancer type, and subjected to Kaplan Meier analysis 

(Fig. 2b). Importantly, each cancer type in Fig. 2b only includes left-out datasets (i.e., 

validation data) for which FOXM1 and KLRB1 expression values were both available (see 

Supplementary Table 1 for datasets used). Moreover, the composite score was not re-

optimized for RNA-seq when applied to TCGA data.

PRECOG network connectivity analysis

We evaluated the functional coherence of top prognostic genes in PRECOG by interrogation 

of human protein-protein associations in STRING version 9.070. STRING integrates 

evidence from multiple sources, including curated databases, experimentally confirmed 

physical interactions, co-expression data, and associations inferred via text mining70. We 

compared the connectivity of STRING networks (for edges with a combined confidence 

level of at least 0.4) for the top 100 adverse and favorable prognostic genes identified from 

all cancers (by mean meta-z score), individual cancers (meta-z score), and individual 

datasets (z-score). For each set of proteins, the largest connected component was assessed by 

two metrics, (1) the average number of associations (i.e., edges) per protein (i.e., node), and 

(2) algebraic connectivity, a graph theoretic measure of overall network connectedness71. 

Only networks with at least 10 nodes were considered. Functional enrichment of global 

networks shown in Fig. 2c was performed with ToppFun72 and P values were determined 

using a Benjamini-Hochberg-corrected hypergeometric test.

Geneset analysis of PRECOG clusters and ranked z-scores

Enrichment of biological processes with respect to survival z-scores was assessed in two 

ways. First, cluster memberships defined by AutoSOME were compared to pre-defined gene 

sets by hypergeometric test. Comparison gene sets were obtained from the Molecular 

Signatures Database (mSigDB)73, and additional sets of genes that are targets of specific 

transcription factors were extracted from CHEA29 and ENCODE20. Ranked lists of gene 

survival z-scores were also analyzed with respect to these gene sets using the PreRanked 
tool of Gene Set Enrichment Analysis74.

Inferring TAL levels in bulk tumor GEPs

The samples profiled within PRECOG primarily represent bulk diagnostic pre-therapy tumor 

specimens, which often contain a variety of cell types, including diverse TALs. Given the 

enrichment of lymphocyte markers in favorably prognostic genes across PRECOG (Figs. 1d, 

2c), a method to systematically “unmix” or deconvolve bulk tumor GEPs in PRECOG may 

reveal new insights into tumor immunobiology. We recently developed a new approach for 
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Cell Type Identification By Estimating Relative Subsets Of RNA Transcripts 

(CIBERSORT), a machine-learning method that outperformed other approaches in 

benchmarking experiments16. CIBERSORT produces an empirical P value for the 

deconvolution using Monte Carlo sampling. Like other linear deconvolution methods, 

CIBERSORT only operates on expression values in non-log linear space75.

TAL heterogeneity and prognostic associations

CIBERSORT was applied to all normalized PRECOG GEPs from Affymetrix HGU133 

platforms (57 studies and 25 cancers; Supplementary Table 6). In all, 5,782 tumor GEPs 

were successfully deconvolved (CIBERSORT P < 0.005). For each dataset, estimated 

mRNA fractions of each leukocyte subset were related to survival using univariate Cox 

regression. Weighted meta-z scores were determined using the same approach described for 

PRECOG in order to build an immune-centric version of PRECOG (iPRECOG, 

Supplementary Fig. 6a), and unweighted global meta-z scores were used to summarize 

pan-cancer leukocyte associations in Figure 3c.

Immune-PRECOG false discovery rate

To differentiate real from stochastic variation in inferred leukocyte prognostic associations, 

we first compared P values and meta-z scores in immune-PRECOG (Supplementary Fig. 
6b), as any deviation from a standard normal distribution must be considered when drawing 

statistical conclusions. We generated 1000 null meta-z matrices by (1) shuffling the cell type 

fractions inferred for each dataset in Supplementary Table 6, and (2) computing z-scores 

and corresponding meta-z scores to capture relationships to overall survival. We found a 

tight correspondence between the distribution of null meta-z scores and a standard normal 

distribution (Supplementary Fig. 6b). Having validated the normality of the meta-z score, 

we then filtered Supplementary Fig. 6a using a range of statistical significance thresholds, 

and at each cutoff, compared observed versus expected fractions for all leukocyte prognostic 

associations (Supplementary Fig. 6c). At a two-sided P value threshold of 0.05 (|z| > 1.96), 

we found nearly three times more prognostic associations than would be expected by 

random chance; at P < 0.01, there is a five-fold enrichment, which continues to increase with 

lower P value cutoffs (Supplementary Fig. 6c).

Separately, we performed a similar analysis on the global meta-z scores shown in Fig. 3c. 

Here, we integrated the null meta-z scores from Supplementary Fig. 6c into null global 

meta-z scores and recomputed the analysis shown for pan-cancer leukocyte prognostic 

associations (plotted as the fraction of leukocyte subsets retained at different significance 

thresholds; Supplementary Fig. 6d). Taken together, these results explicitly quantify 

significant versus stochastic variation in leukocyte prognostic associations at different 

statistical cutoffs, and allow others to tune the nominal statistical threshold to achieve a 

desired false discovery rate.

Relative PMN levels versus necrotic tissue content

Relative RNA fractions of PMNs inferred by CIBERSORT were not correlated with 

annotated necrotic content in lung squamous cell carcinoma (TCGA; R2 = 0.01; P = NS) or 

melanoma (microarray dataset GSE840176; R2 ~ 0; P = NS).
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Flow cytometry versus CIBERSORT

Flow cytometry analysis of non-small cell lung cancer tumor (n = 13) specimens was 

performed as described below, and median fractions of CD4+, CD8+, CD19+, CD56+, and 

CD14+ populations were normalized by overall CD45+ content (Fig. 3a). For comparison 

with CIBERSORT, leukocyte signature matrix populations were grouped into the same 

cluster of differentiation categories: CD14+, monocytes, macrophages, and dendritic cells; 

CD4+, all T cell subsets except CD8 and γδ T cells; CD8+, CD8 T cells; CD19+, naïve and 

memory B-cells, CD56+, resting and activated NK cells. Median CIBERSORT-inferred 

fractions for lung adenocarcinoma GEPs, shown in Fig. 3a, were determined from two 

publicly available microarray datasets, GSE767077 and GSE1007278.

Patient samples

All aspects of this study were approved by the Stanford Institutional Review Board in 

accordance with the Declaration of Helsinki guidelines for the ethical conduct of research, 

and all patients involved provided informed consent. For Fig. 3a, fresh human lung tumor 

samples were obtained from Stanford Tissue Bank. For tissue microarray analyses (Fig. 
4c,e, Supplementary Figs. 7c–h), patient samples were retrieved from the surgical 

pathology archives at the Stanford Department of Pathology and linked to a clinical database 

using the Cancer Center Database and STRIDE Database tools from Stanford.

Human lung dissociation and flow cytometry

Fresh human lung tumor samples were cut into small pieces and dissociated into single cell 

suspensions by 45 minutes of Collagenase I (STEMCELL Technologies) digestion. 

Dissociated single cells were suspended at 1 × 107 per mL in staining buffer (HBSS with 2% 

heat-inactivated calf serum). After 10 minutes of blocking with 10 μg μl−1 rat IgG, the cells 

were stained for at least 10 minutes with the antibodies listed below. After washing, stained 

cells were re-suspended in staining buffer with 1μg/ml DAPI, analyzed, and sorted with a 

FACS Aria II cell sorter (BD Biosciences). Antibodies used for experiments related to Fig. 
3a: CD45-A700, CD14-PE, CD8-APC, CD4-FITC, CD56-PE-cy7, and CD19-PerCP-cy5.5. 

Antibodies used for enumeration of plasmacytic cells: CD45-PE-cy7, CD20-PerCP-cy5.5, 

CD138-PE, CD38-APC, CD19-A700, and CD27-FITC. All antibodies were obtained from 

BioLegend.

Tissue Microarray (TMA) cohort

We reviewed patients with lung cancer who had surgically treated disease and paraffin 

embedded samples from 1995 through June, 2010 for inclusion. Patients with recurrent or 

metastatic disease samples only were excluded. Medical charts were reviewed to clinically 

annotate the tumor specimens with demographic, operative procedures, imaging data, and 

follow-up. Pathology reports were reviewed to confirm specimen type, site, pathology, stage, 

histology, invasion status and operative procedure. Treated samples (neoadjuvant therapy) 

were excluded, resulting in a final analysis cohort of 187 pre-treated lung adenocarcinoma 

tumor specimens with follow-up data.
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TMA cohort follow-up

Recurrence was defined by imaging or biopsy and patients with advanced disease or who did 

not have at least 6 months of follow-up were censored for further analyses. The National 

Death Index (NDI) was used to define vital status through October 30, 2010. Patients not 

dead were assumed to be alive except for those who had left the country or were from other 

countries (who were censored) since the NDI relies on a social security number for vital 

status assessment. Synchronous tumors resected over time were eligible for prognostic 

assessment in patients with two primaries.

TMA construction

The Stanford Lung Cancer TMA was developed from surgical specimens that contained 

viable tumor from duplicate slides that were reviewed by a board-certified pathologist 

(R.B.W.). The pathologist was not blinded to sample identity. The area of highest tumor 

content was marked for coring blocks corresponding to the slides. We used 2 mm cores to 

build the tissue microarray. These cores were aligned by histology and stage and negative 

controls were taken from the West Lab and included a variety of benign and malignant 

tissues (65 cores) that included normal non-lung tissue (12 cores), abnormal non-lung tissue 

(13 cores), placental markers (23 cores) and normal lung (17 cores). Normal lung consisted 

of a specimen adjacent, but distinct, from tumor over the years 1995 through 2010 to assess 

the variability of staining by year. OligoDT analysis was performed on the finished array to 

assess the architecture of selected cores and adequacy of tissue content prior to target IHC 

analysis. A co-registered Hematoxylin & Eosin (H&E) slide was used as well to verify 

tumor location for cases where this was unclear on initial inspection.

TMA immunohistochemistry

MPO (DAKO) and CD20 (clone L26, DAKO) immunohistochemistry performed on 4 mm 

sections using the Ventana BenchMark XT automated immunostaining platform (Ventana 

Medical Systems/Roche, Tucson, AZ).

TMA RNA in situ hybridization

The RNA in situ hybridization probe for IGKC was designed against chr2: 88,937,790–

88,938,290 (hg18) using primer 5′ – CTG TTG TGT GCC TGC TGA AT – 3’ and the T7 

promoter-tagged primer 5’ – CTA ATA CGA CTC ACT ATA GGG TTA AAG CCA AGG 

AGG AGG AG – 3’. RNA in situ hybridizations were performed on TA369, as described 

previously79.

TMA microscopy

All slides were scanned at 20x on an Ariol imaging analysis system (originally built by 

Applied Imaging).

TMA staining quantification and analysis

To facilitate consistency and reproducibility in quantitating TMA staining patterns, we 

evaluated the performance of GemIdent80, a supervised in silico image segmentation system. 

As an initial exercise, we trained GemIdent on a single lung adenocarcinoma specimen to 
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recognize both IGKC stains and non-tissue background (white space). GemIdent was then 

applied to 10 TMA specimens to generate separate image masks of both IGKC localization 

and non-tissue background (i.e., “empty space”). A custom Perl script was used to process 

each image mask and quantify the staining area of IGKC for each specimen (by first 

removing non-tissue white space to calculate the surface area of each tissue). To test the 

utility of this approach, a board-certified pathologist (RBW) scored IGKC for the same 10 

specimens. The pathologist had no knowledge of the results from automated staining, but 

was not blinded to sample identity. Both assessments were highly correlated (R2 = 0.98; 

Supplementary Fig. 8c). In a separate exercise, two independent operators trained 

GemIdent on distinct CD20-stained specimens. CD20-stained fractions were then quantified 

across the entire TMA (n = 187 lung adenocarcinomas) and results were processed as 

described above. The concordance between independent operators was very high (R2 ~ 1; 

Supplementary Fig. 8d). These data support the utility of GemIdent coupled with image 

post-processing for automated scoring of TMA specimens. We applied this approach to 

quantitatively score IGKC, CD20, and MPO for all lung adenocarcinoma TMA specimens 

(e.g., see Supplementary Fig. 8a).

Comparison between TALs and circulating leukocytes

Among patients with available perioperative circulating leukocyte (lymphocyte and PMN) 

counts, we analyzed the sample closest to the date of procedure (DOP), within −120 to +28 

days, where precedence was given to preoperative samples (total n = 48 lung 

adenocarcinoma patients). As shown in Supplementary Table 7, no relationships were 

found between circulating leukocyte (CL) levels and TALs quantified on the TMA. 

Moreover, while the ratio of MPO to IGKC levels remained significantly prognostic within 

this patient subset (P = 0.02), CL levels had no significant relationship to survival.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Prognostic landscape of gene expression across human cancers
(a) Schematic depicting PRECOG data pre-processing and analysis steps. (b) Number of 

patient samples with survival data included in PRECOG, organized by cancer type. Thirty-

nine distinct histologies (e.g. adenocarcinoma and squamous cell carcinoma in lung cancer, 

different types of blood cancer) have been grouped into 18 clusters for concise display. (c) 

Left: Approximately 2/3 of prognostic genes (filtered for |meta-z| > 3.09, or nominal one-

sided P < 0.001) are prognostic in more than one of the 39 distinct cancer histologies for 

which meta-z scores were computed, while the remaining 1/3 are prognostic in only a single 

histology; the latter are cancer-specific. Right: Same analysis shown in the left panel but 

applied to randomly shuffled gene labels for each cancer in PRECOG. Based on 100,000 

trials, the empirical P value for the observed enrichment of shared genes is P < 10−5. (d) 

Left: Heat map showing genes (rows) clustered by association between expression levels and 

survival outcomes across 166 individual cancer studies (columns). Z-scores represent the 

statistical significance of each gene's association with survival, with poor prognosis genes 

colored red, and favorable prognosis genes colored green. All identified clusters were ranked 

by compound scores that integrate cluster size with the prognostic significance of genes 

within each cluster; the top five ranking clusters are shown (left; Methods). Right: 

Representative functional enrichments for each of the five clusters, determined by analyzing 

annotated gene sets with a Bonferroni-corrected hypergeometric test. All clusters, including 

associated datasets and compound scores, are provided in Supplementary Table 3.
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Figure 2. Genes globally associated with adverse and favorable survival
(a) Analysis of the number of cancer types used to identify pan-cancer prognostic genes 

versus the significance of these genes in validation datasets. Left: The top ten adverse and 

favorable pan-cancer prognostic genes were identified in training sets (comprised of t cancer 

types) and assessed by mean meta-z scores in validation sets (remaining 39 – t cancers) 

(Methods). For each value of t, from 1 to 31, histologies were randomly drawn from 

PRECOG 100 times, and the results are presented as means ±95% CI. Right: The 10 most 

frequent cancer-wide adverse and favorable prognostic genes are shown for t = 31 (above 

this threshold, performance gains were marginal). Of note, global meta-z scores (bottom x-

axis) reflect all cancers in PRECOG (Supplementary Table 1). (b) Comparison of global 

meta-z scores between PRECOG (n = 17,808 tumors) and TCGA RNA-seq data (n = 6,663 

tumors), with FOXM1 and KLRB1 indicated. Points lying between parallel gray lines 

represent insignificant genes in PRECOG, TCGA, or both (nominal two-sided P > 0.05). (c) 

Kaplan Meier curves showing differences in overall survival for patients in validation sets 

stratified by a FOXM1 and KLRB1 expression score (Methods). For each cancer, a median 

split was used and curve separation was assessed by a log-rank test. Survival units from 

different studies were standardized to months. Lung cancers were primarily stage I (~2/3), 

and the melanoma data consisted primarily of metastatic samples (Methods). 95% 

confidence intervals are presented in brackets. HR, hazard ratio. (d) Top: Genes ranked by 

mean meta-z scores across all datasets in PRECOG (n = 23,288 genes). Center: Protein-

protein association (PPA) networks for the top 100 genes determined by mean pan-cancer 

meta-z scores. Edges are colored to denote experimentally confirmed interactions and/or 

associations in curated databases (blue edges), and other sources of evidence (gray edges) 

(Methods and Supplementary Table 5). Functional annotation P values were determined 
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using a Benjamini-Hochberg-corrected hypergeometric test. Genes in the pan-cancer 

prognostic networks are colored according to the number of cancer-specific PPA networks in 

which they are also found. 0* indicates genes only found in PPA networks derived from all 

cancers. Bottom: Two metrics of network connectivity are compared among PPA networks 

for the top 100 prognostic genes derived from all cancers (red diamonds) versus individual 

cancers and studies in PRECOG (gray circles): x-axis = node degree, the average number of 

edges e (i.e., PPAs) per node n (i.e., protein); y-axis = algebraic connectivity, a graph 

theoretic measure of overall network connectedness (Methods).
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Figure 3. Inferred leukocyte frequencies and prognostic associations in 25 human cancers
(a) Relative leukocyte fractions enumerated in solid tumors by CIBERSORT versus 

immunohistochemistry (IHC) or flow cytometry (FACS) on independent samples. CRC, 

colorectal cancer; LUAD, lung adenocarcinoma. To approximate ground truth proportions in 

CRC biopsies, levels were inferred by averaging previously reported leukocyte counts from 

the tumor center and invasive margin of 107 patients51. Baseline leukocyte fractions in 

LUAD biopsies were enumerated by FACS (n = 13 tumors; data represented as medians; 

details in Methods). CIBERSORT results are represented as mean leukocyte fractions for 

the corresponding histologies (Supplementary Table 6). (b) Estimated mRNA fractions of 

22 leukocyte subsets across 25 cancers (Affymetrix platforms only; see Methods), pooled 

into 11 immune populations here for clarity (for full details, see Supplementary Table 6). 

(c) Global prognostic associations for 22 leukocyte types across 25 cancers (n = 5,782 

tumors; left) and 14 solid non-brain tumors (n = 3,238 tumors; right), ranked by unweighted 

meta-z score, with a false discovery rate (FDR) threshold of 25% indicated for each plot. 

Additional FDR thresholds are provided in the supplement (Supplementary Fig. 6d). For 

individual cancers, see Supplementary Fig. 6a. (d) Concordance and differences in TAL 

prognostic associations between breast cancers and lung adenocarcinoma (for FDRs, see 
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Supplementary Fig. 6c). Resting and activated subsets in c,d are indicated by − and +, 

respectively. All leukocyte subset abbreviations are defined in Supplementary Table 6. Red 

and blue bars in c,d indicate adverse and favorable prognostic associations, respectively.
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Figure 4. Ratio of infiltrating PMNs to plasma cells is prognostic in diverse solid tumors
(a) Prognostic associations between inferred PMN and plasma cell (PC) frequencies are 

significantly inversely correlated across the cancer landscape (Pearson R = −0.46, P = 0.02). 

Each point represents an individual cancer: triangles, blood cancers; squares, brain cancers; 

circles, remaining cancers. (b) Meta-z scores depict the prognostic significance of 

combining PMN and PC levels into a ratiometric index, for diverse solid tumors (source data 

are provided in Supplementary Table 6). (c) Comparison between CIBERSORT and tissue 

microarray analysis for PC, B-cell, and PMN frequencies in lung adenocarcinoma, using 

IGKC, CD20, and MPO, respectively, as surrogate markers for TMA (n = 187 specimens). 

Lung adenocarcinoma arrays from publicly available datasets (GSE7670 and GSE10072) 

were analyzed with CIBERSORT (n = 85 tumors). (d,e) Kaplan-Meier Plots depict patients 

stratified by (d) the median level of PMN to PC fractions inferred in lung adenocarcinoma 

microarray studies (P = 0.0005, log-rank test; n = 453 high and 453 low patients; 

Supplementary Table 6) and (e) the median level of MPO/IGKC stained positive in lung 

adenocarcinoma tissue sections (P = 0.028, log-rank test; n = 94 high and 93 low patients). 

Hazard ratios were 1.5 (1.2–1.9, 95% CI) for d and 1.7 (1.1–2.6, 95% CI) for e. Inferred 
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PMN to PC levels were also significantly prognostic in continuous models assessed by 

univariate Cox regression in d (P = 0.003, Z = 2.98) and e (P = 0.0005, Z = 3.46). Data in c 
are presented as means ± s.e.m. All patients were right censored after 5 years in d and e.
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