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Abstract
Cancer classification and feature (gene) selection plays an important role in knowledge dis-

covery in genomic data. Although logistic regression is one of the most popular classifica-

tion methods, it does not induce feature selection. In this paper, we presented a new hybrid

L1/2 +2 regularization (HLR) function, a linear combination of L1/2 and L2 penalties, to select

the relevant gene in the logistic regression. The HLR approach inherits some fascinating

characteristics from L1/2 (sparsity) and L2 (grouping effect where highly correlated variables

are in or out a model together) penalties. We also proposed a novel univariate HLR thresh-

olding approach to update the estimated coefficients and developed the coordinate descent

algorithm for the HLR penalized logistic regression model. The empirical results and simula-

tions indicate that the proposed method is highly competitive amongst several state-of-the-

art methods.

1. Introduction
With advances in high-throughput molecular techniques, the researchers can study the expres-
sion of tens of thousands of genes simultaneously. Cancer classification based on gene expres-
sion levels is one of the central problems in genome research. Logistic regression is a popular
classification method and has an explicit statistical interpretation which can obtain probabili-
ties of classification regarding the cancer phenotype. However, in most gene expression studies,
the number of genes typically far exceeds the number of the sample size. This situation is called
high-dimensional and low sample size problem, and the normal logistic regression method
cannot be directly used to estimate the regression parameters.

To deal with the problem of high dimensionality, one of the popular techniques is the regu-
larization method. A well-known regularization method is the L1 penalty [1], which is the least
absolute shrinkage and selection operator (Lasso). It is performing continuous shrinkage and
gene selection at the same time. Other L1 norm type regularization methods typically include
the smoothly-clipped-absolute-deviation (SCAD) penalty [2], which is symmetric, noncon-
cave, and has singularities at the origin to produce sparse solutions. The adaptive Lasso [3]
penalizes the different coefficients with the dynamic weights in the L1 penalty. However, the L1
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type regularization may yield inconsistent feature selections in some situations [3] and often
introduces extra bias in the estimation of the parameters in the logistic regression [4]. Xu et al.
[5] proposed the L1/2 penalty, a method that can be taken as a representative of Lq (0<q< 1)
penalties in both sparsity and computational efficiency, and has demonstrated many attractive
properties, such as unbiasedness, and oracle properties [5–7]. However, similar to most of the reg-
ularization methods, the L1/2 penalty ignores the correlation between features, and consequently
unable to analyze data with dependent structures. If there is a group of variables among which
the pair-wise correlations are very high, then the L1/2 method tends to select only one variable to
represents the corresponding group. In gene expression study, genes are often highly correlated if
they share the same biological pathway [8]. Some efforts had been made to deal with the problem
of highly correlated variables. Zhou and Hastie proposed Elastic net penalty [9] which is a linear
combination of L1 and L2 (the ridge technique) penalties, and such method emphasizes a group-
ing effect, where strongly correlated genes tend to be in or out of the model together. Becker et al.
[10] proposed the Elastic SCAD (SCAD − L2), a combination of SCAD and L2 penalties. By intro-
ducing the L2 penalty term, Elastic SCAD also works for the groups of predictors.

In this article, we proposed the HLR (Hybrid L1/2 + 2 Regularization) approach to fit the
logistic regression models for gene selection, where the regularization is a linear combination
of the L1/2 and L2 penalties. The L1/2 penalty achieves feature selection. In theory, a strictly con-
vex penalty function provides a sufficient condition for the grouping effect of variables and the
L2 penalty guarantees strict convexity [11]. Therefore, the L2 penalty induces the grouping
effect simultaneously in the HLR approach. Experimental results on artificial and real gene
expression data in this paper demonstrate that our proposed method is very promising.

The rest of the article is organized as follows. In Section 2, we first defined the HLR approach
and presented an efficient algorithm for solving the logistic regression model with the HLR pen-
alty. In Section 3, we evaluated the performance of our proposed approach on the simulated data
and five public gene expression datasets. We presented a conclusion of the paper in Section 4.

2. Methods

2.1 Regularization
Suppose that datasetD has n samplesD = {(X1, y1), (X2, y2),. . .,(Xn, yn)}, where Xi = (xi1, xi2, . . ., xip)
is ith sample with p dimensional and yi is the corresponding dependent variable.

For any non-negative λ, the normal regularization form is:

Lðl; bÞ ¼ argmin
1

n

Xn

i¼1 ðy � X 0bÞ2 þ lPðbÞ ð1Þ

where P(β) represents the regularization term. There are many regularization methods pro-
posed in recent years. One of the popular methods is the L1 regularization (Lasso), where

PðbÞ ¼Pp
j¼1 jbjj1. The others L1 type regularizations include SCAD, the adaptive Lasso, Elastic

net, Stage wise Lasso [12], Dantzig selector [13] and Elastic SCAD. However, in genomic
research, the result of the L1 type regularization may not sparse enough for interpretation.
Actually, a typical microarray or RNA-seq data set has many thousands of predictors (genes),
and researchers often desire to select fewer but informative genes. Beside this, the L1 regulariza-

tion is asymptotically biased [14,15]. Although the L0 regularization, where PðbÞ ¼
Pp

j¼1 jbjj0,
yields the sparsest solutions, it has to deal with NP-hard combinatory optimization problem.
To gain a more concise solution and improve the predictive accuracy of the classification
model, we need to think beyond the L1 and L0 regularizations to the Lq (0<q<1) regularization.
The L1/2 regularization can be taken as a representative of the Lq (0<q<1) penalties and has
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permitted an analytically expressive thresholding representation [5]. With the thresholding
representation, solving the L1/2 regularization is much easier than solving the L0 regularization.
Moreover, the L1/2 penalty is unbiasedness and has oracle properties [5–7]. These characteris-
tics are making the L1/2 penalty became an efficient tool for high dimensional problems
[16,17]. However, due to the insensitivity of the highly correlated data, the L1/2 penalty tends to
select only one variable to represent the correlated group. This drawback may deteriorate the
performance of the L1/2 method.

2.2 Hybrid L1/2 +2 Regularization (HLR)
For any fixed non-negative λ1 and λ2, we define the hybrid L1/2 +2 regularization (HLR) criterion:

Lðl1; l2; bÞ ¼ argmin
1

n

Xn

i¼1 ðy � X 0bÞ2 þ l1jbj1=2 þ l2jbj2 ð2Þ

where β = (β1, . . ., βp) are the coefficients to be estimated and

jbj1=2 ¼
Xp

j¼1 jbjj1=2;

jbj2 ¼
Xp

j¼1 jbjj2:

The HLR estimator b̂ is the minimizer of Eq (2):

b̂ ¼ argminbfLðl1; l2; bÞg: ð3Þ

Let α = λ1/(1 + λ2), then solving b̂ in Eq (3) is equivalent to the optimization problem:

b̂ ¼ argminbfj y � X0bj2 þ lðajbj1=2 þ ð1� aÞjbj2Þg ð4Þ

We call the function α|β|1/2 + (1 − α)|β|2 as the HLR, which is a combination of the L1/2 and
L2 penalties. When α = 0, the HLR penalty becomes ridge regularization. When α = 1, the HLR
becomes L1/2 regularization. The L2 penalty is enjoying the grouping effect and the L1/2 penalty
induces sparse solutions. This combination of the both penalties makes the HLR approach not
only capable of dealing with the correlation data, but also able to generate a succinct result.

Fig 1 shows four regularization methods: Lasso, L1/2, Elastic net and HLR penalties with an
orthogonal design matrix in the regression model. The estimators of Lasso and Elastic net are
biased, whereas the L1/2 penalty is asymptotically unbiased. Similar to the L1/2 method, the
HLR approach also performs better than Lasso and Elastic net in the property of unbiasedness.

Fig 2 describes the contour plots on two-dimensional for the penalty functions of Lasso,
Elastic net, L1/2 and HLR approaches. It is suggest that the L1/2 penalty is non-convex, whereas
the HLR is convex for the given α. The following theorem will show how the HLR strengthens
the L1/2 regularization.

Theorem 1. Given dataset (y, X) and (λ1, λ2), then the HLR estimates b̂ are given by

b̂ ¼ argminbb
T XTX þ l2I

1þ l2

� �
b� 2yTXbþ l1jbj1=2 : ð5Þ

The L1/2 regularization can be rewritten as

b̂ðL1=2Þ ¼ argminbb
TðXTXÞb� 2yTXbþ l1jbj1=2 : ð6Þ
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The proof of Theorem 1 can be found in S1 File. Therorem1 shows the HLR approach is a

stabilized version of the L1/2 regularization. Note that
P̂ ¼ XTX is a sample version of the cor-

relation matrix S and

XTX þ l2I
1þ l2

¼ ð1� dÞ
X̂
þ dI;

Fig 1. Exact solutions of (a) Lasso, (b) L1/2, (c) Elastic net, and (d) HLR in an orthogonal design. The regularization parameters are λ = 0.1 and α = 0.8
for Elastic net and HLR. (β-OLS is the ordinary least-squares (OLS) estimator).

doi:10.1371/journal.pone.0149675.g001

Fig 2. Contour plots (two-dimensional) for the regularization methods. The regularization parameters are λ = 1 and α = 0.2 for the HLRmethod.

doi:10.1371/journal.pone.0149675.g002
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where δ = λ2/(1 + λ2) shrinks
P̂

that towards the identity matrix. The classification accuracy can

often be enhanced by replacing
P̂

by a more shrunken estimate in linear discriminate analysis

[18,19]. In other word, the HLR improves the L1/2 technique by regularizing
P̂

in Eq (6).

2.3 The sparse logistic regression with the HLRmethod
Suppose that datasetD has n samplesD = {(X1, y1), (X2, y2), . . ., (Xn, yn)}, where Xi = (xi1, xi2, . . .,
xip) is i

th sample with p genes and yi is the corresponding dependent variable that consist of a binary
value with 0 or 1. Define a classifier f(x) = ex / (1 + ex) and the logistic regression is defined as:

Pðyi ¼ 1jXiÞ ¼ fðX 0ibÞ ¼
expðX 0 ibÞ

1þ expðX 0ibÞ
ð7Þ

Where β = (β1, . . ., βp) are the coefficients to be estimated. With a simple algebra, the regres-
sion model can be presented as:

LðbÞ ¼ �
Xn

i¼1f yilog½fðX
0
ibÞ� þ ð1� yiÞlog½1� fðX 0ibÞ� g ð8Þ

In this paper, we apply the HLR approach to the logistic regression model. For any fixed non-
negative λ and α, the sparse logistic regression model based on the HLR approach is defined as:

Lðl; a; bÞ ¼ �
Xn

i¼1f yi log½fðX
0
ibÞ� þ ð1� yiÞ log½1� fðX 0ibÞ�g þ lðajbj1=2 þ ð1

� aÞjbj2Þ ð9Þ

2.4 Solving algorithm for the sparse logistic regression with the HLR
approach
The coordinate descent algorithm [20] is an efficient method for solving regularization models
because its computational time increases linearly with the dimension of the problems. Its stan-
dard procedure can be showed as follows: for every βj (j = 1,2,. . .,p), to partially optimize the tar-
get function with respect to coefficient with the remaining elements of β fixed at their most
recently updated values, iteratively cycling through all coefficients until meet converged. The spe-
cific form of renewing coefficients is associated with the thresholding operator of the penalty.

Suppose that dataset D has n samples D = {(X1, y1), (X2, y2), . . ., (Xn, yn)}, where Xi = (xi1,
xi2, . . ., xip) is i

th sample with p dimensional and yi is the corresponding dependent variable.
The variables are standardized:

Pn
i¼1 x

2
ij ¼ 1.

Following Friedman et al. [20] and Liang et al. [16], in this paper, we present the original
coordinate-wise update form for the HLR approach:

bj  
Half ðoj; laÞ
1þ lð1� aÞ ð10Þ

where oj ¼
Pn

i¼1 xijðyi � ~yi
ðjÞÞ, and ~yi

ðjÞ ¼Pk 6¼jxikbk as the partial residual for fitting βj.

Half ðz; rÞ is the L1/2 thresholding operator

Half ðoj; lÞ ¼
2

3
oj 1þ cos

2ðp� φlðojÞÞ
3

� �� �
if jojj >

3

4
ðlÞ

2

3

0 otherwise

ð11Þ

8>><
>>:

where φlðoÞ ¼ arccosðl
8
ðjoj

3
Þ�3

2Þ, π = 3.14.
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The Eq (9) can be linearized by one-term Taylor series expansion:

Lðl; a; bÞ � 1

2n

Xn

i¼1 ðZi � XibÞ0WiðZi � XibÞ þ lðajbj1=2 þ ð1� aÞjbj2Þ ð12Þ

where Zi ¼ Xi
~b þ yi�f ðXi ~bÞ

f ðXi ~bÞð1�f ðXi ~bÞ
is the estimated response,Wi ¼ f ðXi

~bÞð1� f ðXi
~bÞ is the weight

for the estimated response. f ðXi
~bÞ ¼ expðXi

~bÞ=ð1þ expðXi
~bÞÞ is the evaluated value under

the current parameters. Thus, we can redefine the partial residual for fitting current ~b as �Z ðjÞi ¼P
k6¼jxik

~bk and oj ¼
Pn

i¼1 WixijðZi � �Z ðjÞi Þ. The procedure of the coordinate descent algorithm
for the HLR penalized logistic model is described as follows.

Algorithm: The coordinate descent approach for the HLR penalized
logistic model

Step 1: Initialize all βj(m) 0 (j = 1, 2,. . .,p) and X, y,

setm 0, λ and α are chosen by cross-validation;

Step 2: Calculate Z(m) andW(m) and approximate the loss function (12) based on the current
β(m);

Step 3: Update each βj(m), and cycle over j = 1,. . ., p;

Step 3.1: Compute �Z i
ðjÞðmÞ  P

k 6¼jxikbkðmÞ and ojðmÞ  
Pn

i¼1 WiðmÞxijðZiðmÞ � �Z i
ðjÞðmÞÞ;

Step 3.2: Update bjðmÞ  Half ðojðmÞ; laÞ
1þlð1�aÞ ;

Step 4: Letm m + 1, β(m + 1) β(m);

If β(m) dose not convergence, then repeat Steps 2, 3;

3. Results and Discussion

3.1 Analyzes of simulated data
The goal of this section is to evaluate the performance of the logistic regression with the HLR
approach in the simulation study. Four approaches are compared with our proposed method:
logistic regression with the Lasso regularization, L1/2 regularization, SCAD − L2 and Elastic net
regularization respectively. We simulate data from the true model

log
y

1� y

� �
¼ Xb þ s�; � � Nð0; 1Þ;

where X* N(0, 1), � is the independent random error and σ is the parameter that controls the
signal to noise. Four scenarios are presented here. In every example, the dimension of predic-
tors is 1000. The notation. /. was represented the number of observations in the training and
test sets respectively, e.g. 100/100. Here are the details of the four scenarios.

1. In scenario 1, the dataset consists of 100/100 observations, we set σ = 0.3 and

b ¼

 
2; 2; 2; 2; 2;|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

5

0; . . . ; 0|fflfflfflffl{zfflfflfflffl}
995

!
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, we simulated a grouped variable situation

xi ¼ r� x1 þ ð1� rÞ � xi; i ¼ 2; 3; 4; 5;

where ρ is the correlation coefficient of the grouped variables.

2. The scenario 2 was defined similarly to the scenario 1, except that we considered the case
when there are other independent factors also contributes to the corresponding classifica-
tion variable y,

b ¼

 
2; 2; 2; 2; 2; 1:5;�2; 1:7; 3;�2:5;|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

10

0; . . . ; 0|fflfflfflfflffl{zfflfflfflfflffl}
990

!
:

3. In scenario 3, we set σ = 0.4 and the dataset consist of 200/200 observations, and

b ¼

 
2; 2; 2; 2; 2; 1:5;�2; 1:7; 3;�2:5;|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

10

3; . . . ; 3;|fflfflfflfflfflffl{zfflfflfflfflfflffl}
20

0; . . . ; 0|fflfflfflfflffl{zfflfflfflfflffl}
970

!

, we defined two grouped variables

xi ¼ r� x1 þ ð1� rÞ � xi; i ¼ 2; 3; 4; 5;

xi ¼ r� x11 þ ð1� rÞ � xi; i ¼ 12; . . . ; 30;

4. In scenario 4, the true features were added up to 20% of the total features, σ = 0.4 and the
dataset consist of 400/400 observations, and

b ¼

 
3; . . . ; 3;|fflfflfflfflfflffl{zfflfflfflfflfflffl}

30

�2:5; 2;�1:5; 1:8;�2:5;|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
5

3; . . . ; 3;|fflfflfflfflfflffl{zfflfflfflfflfflffl}
40

2; . . . ; 2;|fflfflfflfflfflffl{zfflfflfflfflfflffl}
25

3; . . . ; 3;|fflfflfflfflfflffl{zfflfflfflfflfflffl}
30

2; . . . ; 2;|fflfflfflfflfflffl{zfflfflfflfflfflffl}
70

0; . . . ; 0|fflfflfflfflffl{zfflfflfflfflffl}
800

!

, we defined three grouped variables

xi ¼ r� x1 þ ð1� rÞ � xi; i ¼ 2; . . . ; 30;

xi ¼ r� x36 þ ð1� rÞ � xi; i ¼ 37; . . . ; 75;

xi ¼ r� x101 þ ð1� rÞ � xi; i ¼ 102; . . . ; 130;

In this example, there were three groups of the correlated features and some single indepen-
dent features. An ideal sparse regression method would select only the 200 true features and set
the coefficients of the 800 noise features to zero.

In our experiment, we set the correlation coefficient ρ of features are 0.3, 0.6, 0.9 respec-
tively. The Lasso and Elastic net were conducted by Glmnet (a Matlab package, version 2014-
04-28, download at http://web.stanford.edu/~hastie/glmnet_matlab/). The optimal
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regularization parameters or tuning parameters (balance the tradeoff between data fit and
model complexity) of the Lasso, L1/2, SCAD − L2, Elastic net and the HLR approaches were
tuned by the 10-fold cross-validation (CV) approach in the training set. Note that, the Elastic
net and HLR methods were tuned by the 10-CV approach on the two-dimensional parameter
surfaces. The SCAD − L2 were tuned by the 10-CV approach on the three-dimensional param-
eter surfaces. Then, the different classifiers were built by these sparse logistic regressions with
the estimated tuning parameters. Finally, the obtained classifiers were applied to the test set for
classification and prediction.

We repeated the simulations 500 times for each penalty method and computed the mean
classification accuracy on the test sets. To evaluate the quality of the selected features for the
regularization approaches, the sensitivity and specificity of the feature selection performance
[21] were defined as the follows:

True Negative ðTNÞ≔j�b: � �̂bj0; False Positive ðFPÞ≔j�b: � b̂j0

False Negative ðFNÞ≔jb: � �̂bj0; True Positive ðTPÞ≔jb: � b̂j0

Sensitivity≔
TP

TPþ FN
; Specificity≔

TN
TNþ FP

:

where the .� is the element-wise product, and |.|0 calculates the number of non-zero elements

in a vector, �b and �̂b are the logical “not” operators on the vectors β and b̂.
As showed in Table 1, for all scenarios, our proposed HLR procedure generally gave higher

or comparable classification accuracy than the Lasso, SCAD − L2, Elastic net and L1/2 methods.
Also, the HLR approach results in much higher sensitivity for identifying true features com-
pared to the other four algorithms. For example, in the scenario 1 with ρ = 0.9, our proposed
method gained the impressive performance (accuracy 99.87% with perfect sensitivity and spec-
ificity). The specificity of the HLR approach is somewhat decreased, but not greatly as com-
pared to the achieved in sensitivity.

3.2 Analyzes of real data
To further evaluate the effectiveness of our proposed method, in this section, we used several
publicly available datasets: Prostate, DLBCL and Lung cancer. The prostate and DLBCL data-
sets were both downloaded from http://ico2s.org/datasets/microarray.html, and the lung can-
cer dataset can be downloaded at http://www.ncbi.nlm.nih.gov/geo with access number
[GSE40419].

More information on these datasets is given in Table 2.
Prostate. This dataset was originally proposed by Singh et al. [22]; it is contains the

expression profiles of 12,600 genes for 50 normal tissues and 52 prostate tumor tissues.
Lymphoma. This dataset (Shipp et al. [23]) contains 77 microarray gene expression pro-

files of the two most prevalent adult lymphoid malignancies: 58 samples of diffuse large B-cell
lymphomas (DLBCL) and 19 follicular lymphomas (FL). The original data contains 7,129 gene
expression values.

Lung cancer. As RNA- sequencing (RNA-seq) technique widely used, therefore, it is
important to test the proposed method whether it has the ability to handle the RNA-seq data.
To verify it, one dataset that used the next-generation sequencing was involved in our analysis.
This dataset [24] contains 164 samples with 87 lung adenocarcinomas and 77 adjacent normal
tissues.
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We evaluate the performance of the HLR penalized logistic regression models using the ran-
dom partition. This means that we divide the datasets at random such that approximate 75% of
the datasets becomes the training samples and the other 25% as the test samples. The optimal
tuning parameters were found by using the 10-fold cross-validation in the training set. Then,
the classification model was built by the sparse logistic regression with the estimated tuning
parameters. Finally, application of the classifier to the test set provides the prediction character-
istics such as classification accuracy, AUC under the receiver operating characteristic (ROC)
analysis. The above procedures were repeated 500 times with different random dataset parti-
tions. The mean number of the selected genes, the training and the testing classification accura-
cies, were summarized in Table 3 and the averaged AUC performances were showed in Fig 3.

As showed in Table 3, for prostate dataset, the classifier with the HLR approach gives the
average 10-fold CV accuracy of 97.61% and the average test accuracy of 93.68% with about
12.6 genes selected. The classifiers with Lasso, L1/2, SCAD − L2 and Elastic net methods give
the average 10-fold CV accuracy of 96.22%, 96.13%, 95.99%, 96.28% and the average test accu-
racy of 92.4%, 92.18%, 91.33%, 91.35% with 13.7, 8.2, 22 and 15.2 genes selected respectively.
For lymphoma datasets, it can be seen that the HLR method also achieves the best classification
performances with the highest accuracy rates in the training and test sets. For lung cancer, our
method gained the best training accuracy. The testing performance of Elastic net was slightly

Table 1. Mean results of the simulation. In bold–the best performance amongst all the methods.

Scenario

ρ Method 1 2 3 4 1 2 3 4 1 2 3 4

Sensitivity of feature selection Specificity of feature selection Accuracy of classification (test set)

Lasso 0.966 0.798 0.344 0.361 0.996 0.968 0.967 0.966 89.26% 81.47% 84.76% 80.26%

L1/2 0.971 0.888 0.411 0.355 0.998 0.974 0.975 0.970 92.05% 82.22% 85.11% 81.45%

0.3 SCAD − L2 1.000 0.913 0.722 0.674 0.995 0.928 0.890 0.723 93.21% 82.90% 84.51% 82.51%

EN 0.997 0.916 0.737 0.662 0.994 0.926 0.886 0.735 91.03% 81.34% 84.47% 80.27%

HLR 1.000 0.924 0.791 0.708 0.999 0.931 0.892 0.769 95.27% 82.66% 84.99% 85.05%

Lasso 0.887 0.723 0.351 0.270 0.995 0.975 0.981 0.923 94.24% 84.10% 91.88% 85.88%

L1/2 0.755 0.630 0.275 0.220 1.000 0.974 0.988 0.928 95.90% 86.50% 90.20% 84.20%

0.6 SCAD − L2 1.000 0.866 0.800 0.629 1.000 0.949 0.929 0.849 96.33% 86.43% 89.20% 93.03%

EN 1.000 0.854 0.795 0.621 1.000 0.953 0.939 0.837 96.22% 86.41% 92.12% 91.01%

HLR 1.000 0.875 0.816 0.636 1.000 0.968 0.942 0.841 99.53% 87.16% 92.71% 92.82%

Lasso 0.548 0.548 0.174 0.145 0.938 0.972 0.987 0.934 96.05% 86.79% 93.22% 91.15%

L1/2 0.337 0.495 0.159 0.139 0.999 0.977 0.991 0.944 97.89% 87.90% 93.70% 92.70%

0.9 SCAD − L2 1.000 0.872 0.809 0.636 1.000 0.954 0.952 0.861 97.28% 88.60% 93.70% 93.19%

EN 1.000 0.856 0.818 0.622 0.995 0.951 0.949 0.875 98.22% 88.14% 93.52% 93.82%

HLR 1.000 0.897 0.824 0.645 1.000 0.966 0.956 0.880 99.87% 89.40% 94.76% 94.40%

Mean results are based on 500 repeats. The sensitivity and specificity are both dedicated to measures the quality of the selected features, the accuracy

evaluates the classification performance of the different regularization approaches on the test sets.

doi:10.1371/journal.pone.0149675.t001

Table 2. Real datasets used in this paper.

Dataset No. of Samples (Total) No. of Genes Classes

Prostate 102 12600 Normal/Tumor

Lymphoma 77 7129 DLBCL/FL

Lung cancer 164 22401 Normal/Tumor

doi:10.1371/journal.pone.0149675.t002
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better than our method. However, the HLR method achieved its success using only about 15.6
predictors (genes), compared to 28.9 genes for the Elastic net method. Although the Lasso or
L1/2 methods gained the sparsest solutions, the classification performance of these two
approaches were worse than the HLR method. This is an important consideration for screening
and diagnostic applications, where the goal is often to develop an accurate test using as few fea-
tures as possible in order to control cost.

As showed in Fig 3, our proposed method achieved the best classification performances in
these three real datasets amongst all the competitors. For example, the AUC from ROC analysis
of the HLR method for datasets prostate, lymphoma and lung cancer datasets were estimated
to be 0.9353, 0.9347 and 0.9932 respectively. AUC results of the Lasso method for the three
datasets were calculated to be 0.9327, 0.9253 and 0.9813 respectively, which were worse than
the proposed HLR method.

Table 3. Mean results of empirical datasets. In bold–the best performance.

Dataset Method Training accuracy (10-CV) Accuracy (testing) No. of selected genes

Lasso 96.22% 92.40% 13.7

L1/2 96.13% 92.18% 8.2

Prostate SCAD − L2 95.99% 91.33% 22

ElasticNet 96.28% 91.35% 15.2

HLR 97.61% 93.68% 12.6

Lymphom Lasso 96.03% 91.11% 13.2

L1/2 95.15% 91.20% 10.7

SCAD − L2 95.78% 92.99% 20.9

ElasticNet 96.01% 92.17% 21.2

HLR 96.55% 94.23% 15.1

Lung cancer Lasso 96.32% 96.99% 13.8

L1/2 97.17% 97.20% 11.5

SCAD − L2 97.95% 98.17% 25.1

ElasticNet 97.21% 98.38% 28.9

HLR 98.59% 98.35% 15.6

Mean results are based on 500 repeats.

doi:10.1371/journal.pone.0149675.t003

Fig 3. The performance of the AUC from ROC analyzes of eachmethod on prostate, lymphoma and lung cancer datasets.

doi:10.1371/journal.pone.0149675.g003
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We summarized the top 10 ranked (most frequently) genes selected by the five regulariza-
tion methods for the lung cancer gene expression dataset in Table 4, the information of top 10
ranked genes for the other datasets could be found in S2 File. Note that in Table 1, the proposed
HLR method has the impressive performances to select the true features in the simulation data.
It is implied that the genes selected by the HLR method in these three cancer datasets are valu-
able to the researchers who want to find out the key factors that associated with the cancer
development. For example, in Table 4, the biomarkers selected by our HLR method include
advanced glycosylation end product receptor (AGER), which is a member of the immunoglob-
ulin superfamily predominantly expressed in the lung. AGER plays a role in epithelial organi-
zation, and decreased express of AGER in lung tumors may conduce to loss of epithelial tissue
structure, potentially leading to malignant transformation [25]. The unique function of AGER
in lung, making it could be used as an additional diagnostic tool for lung cancer [26], and even
a target [27]. GATA2 (GATA binding protein 2) are expressed principally in hematopoietic
lineages, and have essential roles in the development of multiple hematopoietic cells, including
erythrocytes and megakaryocytes. It is crucial for the proliferation and maintenance of
hematopoietic stem cells and multi-potential progenitors [28]. Kumar et al. [29] showed a
strong relationship between GATA2 and RAS-pathway mutant lung tumor cells.

Table 4. The most frequently selected 10 genes found by the five sparse logistic regression methods from the lung cancer dataset.

Rank Lasso L1/2 SCAD − L2 ElasticNet HLR

1 STX11 A2M ABCA8 CCDC69 ACADL

2 GABARAPL1 ACADL ADH1B STX11 CCDC69

3 PDLIM2 PNLIP CAT GABARAPL1 STX11

4 CAV1 AAAS CAV1 TNXB ABCA8

5 ABCA8 A4GALT CCDC69 PDLIM2 PAEP

6 GPM6A ABHD8 GABARAPL1 FAM13C AGER

7 GRK5 ADD2 GPM6A GPM6A GATA2

8 TNXB SLN GRK5 SFTPC PNLIP

9 ADH1B ACTL7B PDLIM2 ARHGAP44 A2M

10 PTRF ADAR PTRF CAT ACAN

doi:10.1371/journal.pone.0149675.t004

Table 5. The validation results of the classifiers based on the top rank selected genes from lung cancer dataset. In bold–the best performance.

Dataset Method SVM with the top genes

2 5 10

GSE19804 Lasso 89.17% 93.33% 92.50%

L1/2 85.83% 90.83% 91.67%

SCAD − L2 89.17% 89.17% 93.33%

ElasticNet 86.67% 87.50% 89.17%

HLR 90.83% 92.50% 94.17%

GSE32863 Lasso 93.10% 95.69% 93.97%

L1/2 93.97% 94.83% 95.69%

SCAD − L2 90.28% 92.24% 94.83%

ElasticNet 89.66% 91.38% 93.97%

HLR 94.83% 96.55% 97.41%

We used the SVM approach to build the classifiers based on the first two, first five and first ten genes selected by the different regularization approaches

from the lung cancer dataset (Table 4), and were trained on the lung cancer dataset (Table 2) respectively. These classifiers then were applied to the two

independent lung cancer datasets, GSE19804 and GSE32863, respectively.

doi:10.1371/journal.pone.0149675.t005
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To further verify the biomarkers selected by our method, we had collected two independent
lung cancer datasets for validation. The GSE19804 [30] contains 120 samples with 60 lung ade-
nocarcinomas and 60 adjacent normal tissues. The GSE32863 [31] contains 116 samples
include 58 lung adenocarcinomas and 58 healthy controls. These two datasets are available
from the GEO series accession number [GSE19804] and [GSE32863].

We used the support vector machine (SVM) approach to build the classifiers based on the
first two, first five and first ten genes selected by the different regularization approaches from
the lung cancer dataset (Table 4), and were trained on the lung cancer dataset (Table 2) respec-
tively. These classifiers then were applied to the two independent lung cancer datasets,
GSE19804 and GSE32863, respectively.

It is known that the obtained prediction models may be only applicable to samples from the
same platform, cell type, environmental conditions and experimental procedure. However,
interestingly, as demonstrated in Table 5, we can see that all the classification accuracies pre-
dicted by the classifiers with the selected genes by the HLR approach, are higher than 90%.
Especially the classification accuracy on the GSE32863 dataset is 97.41% with the classifier
based on the first ten genes. Such performances are better than the genes selected by other
methods. For example, the accuracy of the classifier with the first two genes selected by Elastic
net, for GSE19804, was estimated to be 86.67% that was worse than the classifier with the genes
selected by our method, 90.83%. The performance of the classifier with the first five genes
selected by SCAD − L2, for GSE32863, was calculated to be 92.24% that was worse than the
classifier with the genes selected by our HLR method, 96.55%. The results indicate that the
sparse logistic regression with the HLR approach can select powerful discriminatory genes.

In addition to comparing with the Lasso, L1/2, SCAD − L2 and Elastic net techniques, we also
make a comparison with the results of other methods for datasets prostate and lymphoma pub-
lished in the literature. Note that we only considered methods using the CV approach for evalua-
tion, since approaches based on a mere training/test set partition are now widely known as
unreliable [32]. Table 6 displays the best classification accuracy of other methods. In Table 6,
classification accuracy achieved by the HLR approach is greater than other methods. Meanwhile,
the number of selected genes is smaller than other methods except on the Lymphoma dataset.

Table 6. The result of the literature. In bold–the best performance.

Dataset Author Accuracy (CV) No. of selected features

T.K. Paul et al. [33] 96.60% 48.5

Wessels et al. [34] 93.40% 14

Shen et al. [35] 94.60% unknown

prostate Lecocke et al. [36] 90.10% unknown

Dagliyan et al. [37] 94.80% unknown

Glaab et al. [38] 94.00% 30

HLR 97.61% 12.6

Lymphoma Wessels et al. [34] 95.70% 80

Liu et al. [39] 93.50% 6

Shipp et al. [23] 92.20% 30

Goh et al. [40] 91.00% 10

Lecocke et al. [36] 90.20% unknown

Hu et al. [41] 87.01% unknown

Dagliyan et al. [37] 92.25% unknown

Glaab et al. [38] 95.00% 30

HLR 96.55% 15.1

doi:10.1371/journal.pone.0149675.t006
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4. Conclusion
In this paper, we have proposed the HLR function, a new shrinkage and selection method. The
HLR approach is inherited some valuable characteristics from the L1/2 (sparsity) and L2 (group-
ing effect where highly correlated variables are in or out a model together) penalties. We also
proposed a novel univariate HLR thresholding function to update the estimated coefficients
and developed the coordinate descent algorithm for the HLR penalized logistic regression
model.

The empirical results and simulations show the HLR method was highly competitive
amongst Lasso, L1/2, SCAD − L2 and Elastic net in analyzing high dimensional and low sample
sizes data (microarray and RNA-seq data). Thus, logistic regression with the HLR approach is
the promising tool for feature selection in the classification problem. Source code of sparse
logistic regression with the HLR approach was provided in S3 File.
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HLR approach.
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