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Abstract

Mycobacterium avium subsp. paratuberculosis (MAP) purified protein derivatives (PPDs)
are immunologic reagents prepared from cultured filtrates of the type strain. Traditional pro-
duction consists of floating culture incubation at 37°C, organism inactivation by autoclaving,
coarse filtration, and protein precipitation. Three traditional production PPDs were used in
this study including lot 9801, which served as a reference and has been used in the field for
decades. Alternative production PPDs (0902A and 0902B), in which the autoclaving step
was removed, were also analyzed in this study. SDS-PAGE analysis revealed protein
smearing in traditional PPDs, but distinct bands were observed in the alternative PPD prep-
arations. Antibody bound distinct protein bands in the alternative PPDs by immunoblot anal-
ysis, whereas an immunoreactive smear was observed with the traditional PPDs. Mass
spectrometry identified 194 proteins among three PPD lots representing the two different
production methods, ten of which were present in all PPDs examined. Selected proteins
identified by mass spectrometry were recombinantly expressed and purified from E. coli
and evaluated by the guinea pig potency test. Seven recombinant proteins showed greater
erythema as compared to the reference PPD lot 9801 in paired guinea pigs and were able
to stimulate interferon-gamma production in blood from Johne’s positive animals. These
results suggest that autoclaving culture suspensions is not a necessary step in PPD produc-
tion and specific proteins could supplant the PPD antigen for intradermal skin testing proce-
dures and for use as in-vitro assay reagents.

Introduction

Johne’s disease is a chronic disease of cattle, causing major economic losses to the dairy and
beef industry. The economic impact of Johne’s disease is estimated to reach into the millions of
dollars annually. A United States Department of Agriculture (USDA) study showed a loss of
approximately $200 per cow each year with an annual economic loss of between $200 million
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to $250 million dollars to the U.S. dairy industry [1]. In addition, Johne’s disease can afflict
sheep and various ruminant and non-ruminant wildlife species [2, 3], providing additional res-
ervoirs for the disease causing pathogen, Mycobacterium avium subsp. paratuberculosis
(MAP).

An immunologic reagent was developed in the early 1900s for skin testing of cattle as a sim-
ple way to determine exposure to MAP. This reagent, referred to as Johnin, consisted of heat-
concentrated culture filtrate proteins obtained after long-term MAP culture in defined condi-
tions. Advances to the production process with the addition of a protein precipitation step led
to an improved product, termed purified protein derivative or PPD. When PPD was injected
into the skin of a cow, a large erythema due to a delayed-type hypersensitivity (DTH) response
measured 72 hours later would indicate MAP exposure. Testing methods that involve the use
of PPD include skin testing [4, 5] and more recently it has been routinely incorporated as a
stimulating antigen in the gamma interferon test for Johne’s disease [6-11].

The National Veterinary Services Laboratories (NVSL) has been involved in M. bovis PPD
and MAP PPD production since the early 1970’s. All production lots must be tested for
potency in guinea pigs prior to distribution and use for skin testing cattle. Historical produc-
tion methods consisted of obtaining floating MAP cultures in Povitsky bottles, which was how
the reference field lot 9801 was prepared, but have more recently transitioned to using Erlen-
meyer flasks. Distribution of MAP PPD domestically is minor in comparison to M. bovis PPD
and is used in the field on a limited basis. Contributing to the reduced demand for MAP PPD
is the requirement for producers to use either serological assays or fecal culture, or a combina-
tion of both for determining a herd’s eligibility in the USDA Voluntary Johne’s Disease Control
Program, which is no longer funded. With the emphasis on culture and serology as the
approved testing methods, the number of U.S. dairy herds skin tested is projected to decrease.
In contrast to lower domestic requests, the NVSL has had increased requests for MAP PPD
from India and the United Kingdom. Having a consistent, well-characterized MAP PPD as
part of an intradermal skin testing program or as an antigen in the IFN-y assay is important for
more accurate detection of preclinical stages of infection [10, 12], and may increase confidence
for use of intradermal skin testing.

Proteomic analysis has been conducted on MAP PPD preparations previously [13, 14]. An
analysis of PPD products from various laboratories and facilities revealed that the proteomic
composition was highly similar and that variability observed was due to production protocols
specifying differing MAP strains as well as the age of the MAP cultures at harvest [14]. The
identified proteins in each PPD preparation varied greatly which may be related to its complex-
ity, production processes or the MAP isolate used. Since the 1980s, the NVSL has used a single
strain of MAP (ATCC 19698) for its PPD production, and that strain has not changed signifi-
cantly with time due to defined culture limits that are set at five passages. Only six proteins
were identified in the USDA NVSL PPD [14], but it is hypothesized that MAP PPD contains
hundreds of proteins. Another study did not examine PPD produced from the ATCC 19698
strain [13], but did identify 156 proteins in the MAP 3+5/C strain.

The objectives of this investigation were to expand on the quantity of proteins identified in
the NVSL MAP PPD preparations and determine if removal of the heating step improves the
reagent. Furthermore, we examined if recombinant proteins could potentially replace PPD.
Importantly, NVSL MAP PPD suspensions that have been used in the field for decades were
selected for identification of the specific protein components. In addition, proteins were identi-
fied in other MAP PPD preps to determine which proteins were consistently detected by mass
spectrometry. Specific proteins identified by mass spectrometry were further evaluated using
potency and IFN-y assays to determine reactivity as possible diagnostic reagents. Information
from this study can be used toward improved production methods for a well characterized and
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consistent PPD as well as reveal specific proteins useful for in-vitro testing. Use of an improved
reagent could also improve cell mediated immune response tests for earlier detection of MAP
infected animals.

Materials and Methods
Bacteria, PPD Preparation and Source

MAP strain ATCC 19698 was used in all the MAP PPD production processes. PPD lots pro-
duced at the NVSL in 1998 (9801), and ten years later in 2008 (0802, 0803A) were produced by
traditional production methods involving autoclaving of production flasks containing floating
cultures with subsequent protein precipitation using trichloroacetic acid (TCA) as described
previously [15, 16]. Lot 9801 currently serves as a reference lot and has been used in the field
for cattle skin testing purposes since its production in 1998. Lot 0902 was produced by an alter-
native production method involving sterile filtration through a 0.2 um membrane (Millipore)
in place of autoclaving followed by protein precipitation using TCA. Lots 0902A and 0902B,
which comprised the larger PPD 0902 bulk preparation, were harvested on different days from
the same culture inoculum. In production of large PPD batches (lots), multiple concentrated
harvest bulks are commonly combined to reduce the number of potency tests conducted and
allow for larger final product release volumes. Due to the alternative production process used
for PPD 0902 these two smaller bulks were held as reserve on each harvest date to evaluate pos-
sible differences in this revised procedure. Purity testing was conducted in accordance with the
Code of Federal Regulations, 9CFR part 113.26.

Protein concentration assay

Protein measurements of the final PPD preparations were conducted utilizing the Pierce
microplate BCA protein assay procedure according to the manufacturer’s directions (Thermo
Scientific), with one modification. The compatibility reagent contained within the assay kit was
not used because there were no interfering compounds present within the PPD preparations.
Assay plates were read on a VersaMax microplate reader at a wavelength of 562 nm. Protein
concentrations were calculated using SoftMax Pro software from a standard curve of bovine
serum albumin protein standards.

SDS-PAGE and immunoblot analysis

Pre-cast 4-12% Novex Bis-Tris gels (Invitrogen, 12 well, 1 mm thickness) or precast 10%
Novex Bis-Tris gels (Invitrogen, 12 well, 1 mm thickness) were used for SDS-PAGE separation
of PPD lots. MAP PPDs, M. bovis PPD, and Mycobacterium avium subsp avium (M. avium)
PPD were standardized to approximately 1.0 mg/ml before loading 15 pg/well onto SDS-PAGE
gels. MAP PPD’s were prepared by the addition of 175 pl of sample buffer (4x NuPage LDS
Sample Buffer, ThermoFisher Scientific) to 325 pl of PPD for each 500 pl of preparation and
then heated at 70°C for ten minutes before loading onto gels.

Electrophoresis was conducted in an Invitrogen XCell SureLock Mini-Cell system at a con-
stant current of 125 mA for 35 minutes. Invitrogen SeeBlue Plus2 prestained molecular weight
standards served as markers for molecular weight determination. Gels were stained with Invi-
trogen Novex Colloidal Blue Stain according to the manufacturer’s directions.

Pre-cast 4-12% Novex Bis-Tris gels (Invitrogen, 1 well, 1-mm thickness) were used for
immunoblot analysis. A single, long well was loaded with 500 pl of reduced sample to provide
an even distribution of antigen across the entire gel. Electrophoresis was conducted in an Invi-
trogen XCell SureLock Mini-Cell system at a constant current of 125 mA for 35 minutes.
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Electrophoretic transfer of proteins onto nitrocellulose was performed using the Invitrogen
XCell IT Blot Module and Invitrogen NuPAGE transfer buffer at 160 mA for 1 h. After transfer,
membranes were blocked with Sigma Western Blocker solution at room temperature for 1-2
hours with rocking. Membranes were washed three times with Trizma-Buffered Saline plus
0.5% Tween 20 (TBS-T). Cattle sera were diluted 1:20 in Phosphate-Buffered Saline plus 0.5%
Tween 20 (PBS-T) and incubated with the membranes at room temperature on a rocker plat-
form for approximately 60 min. Membranes were washed three times with TBS-T.

Membranes were incubated for approximately 60 minutes at room temperature on a rocker
with peroxidase labeled rabbit anti-bovine IgG (Jackson Immunoresearch Affini-Pure) diluted
1:2000 in PBS-T. Membranes were then washed three times with TBS-T. Membranes were
developed in Sigma TMB Substrate according to the manufacturer’s directions.

Cattle Sera

Whole blood samples were obtained from cattle housed at the NVSL and also from naturally
infected animals on dairy farms located around the US. The dairy farm blood samples were col-
lected by herd veterinarians from traditional dairy cow breeds managed within privately owned
herds. Herd owner consent was given for participation in sample collection for later use by the
NVSL. Blood was collected via jugular puncture using standard animal welfare handling methods
into blood collection bags and later processed for serum. Sera from these animals were used in
the annual nationwide NVSL Johne’s disease serology proficiency test program, and thus repre-
sent a well-characterized and standardized serum set. Naturally infected cattle were confirmed
serologically positive on both the Parachek™ (ThermoFisher Scientific) and IDEXX MAP ELISA
assays (Table 1). Positive cattle were also confirmed positive by fecal culture on Herrold’s Egg
Yolk with Mycobactin ] (HEY-MJ). Negative sera were from negative control source animals
within the NVSL and also from MAP negative confirmed production herds participating in the
USDA Voluntary Bovine Johne’s Disease Control Program. Negative animals were confirmed by
bacterial culture and serology using the same diagnostic tests as the positive cattle.

Recombinant Protein Production

The cloning, production, and purification of recombinant MAP proteins was performed as previ-
ously described [17]. Briefly, maltose binding protein (MBP) fusions of MAP predicted coding
sequences were constructed in Escherichia coli DH50. using the pMAL-c2 vector (New England
Biolabs, Beverly, MA). Primers designed from the reading frame of each coding sequence con-
tained an Xbal site in the 5’ primer and a HindlII site in the 3’ primer for cloning. Ligation of the
DNA fragments was followed by transformation into ClearColi BL21(DE3) (Lucigen) and selec-
tion on Luria-Bertani (LB) agar plates containing 100 pg/ml ampicillin. PCR screening of ampicil-
lin resistant colonies was conducted with primers used to amplify the sequence from MAP DNA.
Each MBP fusion protein was overexpressed in E. coli by induction of 1-L LB broth cultures
with 0.3 mM isopropyl-p-D-thiogalactopyranoside (IPTG, Sigma Chemical Company,
St. Louis, MO) for 2.5 hr with shaking at 37°C. Cells were harvested by centrifugation and
resuspended in column buffer for sonication. Affinity chromatography purified protein frac-
tions were eluted and analyzed using a NanoDrop spectrophotometer at 280 nm. The most
concentrated fractions were pooled and dialyzed at 4°C against 1.5 L phosphate buffered saline.
Purified proteins were finally aliquoted and stored at -20°C for future use.

Mass Spectrometry

Proteomics experiments were accomplished using previously published methods [18]. Total
protein concentrations were determined using the Biorad Protein Assay Kit (BioRad, Hercules
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Table 1. Cattle Sera used in this study.

Lane in Fig 2

0 N o o b~ WON =

©

10
11
12
13
14
15
16
17
N/A®
N/A°
N/A°
N/A°
N/A°
N/A°
N/A°
N/A°
N/A°
N/A®
N/A®
N/A°

Animal ID

Lindenhoff 90 (PA)
Meyer 1688 (PA)
Calf1 (IA)
$900 (IA)
1266SS CA (CA)
2075 (PA)
874 (MN)

34 (MN)
Horst 256 (PA)
834 (IA)

E22 (IA)
Charity (WI)
Cow 5 (IA)
Meyer 70 (PA)
Lindenhoff 90 (PA)
Lizzie (1A)
1823 (I1A)
790
2407
2222
8339
1211
1044
4
11
1081
212
61
1392

Serological Status?® IDEXX ELISA Value Prionics ELISA Value Fecal Culture Status®

Pos 0.712 0.465 Moderate
Pos 1.895 1.34 Moderate
Pos 2.233 1.599 Neg
Pos 2.55 1.073 Moderate
Pos 1.914 0.749 High
Pos 1.938 1.681 High
Pos 1.565 0.822 Neg
Pos 2.875 3.443 Low
Pos 1.046 0.5125 High
Pos 1.049 0.234 Low
Pos 1.92 1.28 Moderate
Pos 2.146 2.975 Low
Pos 1.506 0.979 High
Pos 2.57 2.982 Low
Pos 0.712 0.465 Moderate
Neg 0.006 0.036 Neg
Neg 0.158 0.089 Neg
Neg 0.189 N/A Neg
Neg 0.260 N/A Neg
Pos 2.32 N/A Moderate
Pos 1.93 N/A Low
Neg 0.036 N/A Neg
Neg 0.079 N/A Neg
Neg® N/A N/A Neg
Neg® N/A N/A Neg
Neg 0.036 N/A Neg
Neg 0.067 N/A Neg
Neg® N/A N/A Neg
Neg® N/A N/A Neg

@ Serological status determined by IDEXX and Parachek ELISA test results.
® 1-10 CFU/gr feces = low shedder; 11-50 CFU/gr feces = moderate shedder; >50 CFU/gram of feces = high shedder

¢ Serum samples used in IFN-y testing only.

9 Based upon previous IFN-y testing.

doi:10.1371/journal.pone.0154685.t001

CA), along with a known BSA standard. Briefly, 100 pg of each sample was resuspended in
250 ul PBS, 3 ul of 10% sodium deoxycholate acid, and 1 ul of 2% SDS. Samples were heated at
90°C for 20 minutes, then cooled on ice for 5 minutes. Next, 2 ul of 50 mM tris-(2-carbox-
yethyl) phosphine and 1.5 pl fresh 1M iodoacetimide were added and the samples were incu-
bated 1 hour in the dark at room temperature. An equal volume of methanol was added to the
protein sample. Proteins were then digested using 10 pg of trypsin gold (Promega) and incu-
bated overnight at 37°C. Formic acid (10 ul) was added, the sample vortexed, and then centri-
fuged (14,000 x g for 10 minutes at 4°C) to precipitate detergents. Supernatants were
transferred to clean tubes and then dried in a vacuum centrifuge. Peptides were dried in one
tube, and held at -80°C until use.

Samples were injected onto nano-LC chromatography using a Proxeon Easy-nLC (Thermo-
Fisher Scientific, West Palm Beach, FL) connected to the mass spectrometer. The
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chromatography used a trapping column (Proxeon Easy-Column, 2 cm, ID 100 um, 5um,
120A, C18) and an analytical column (Proxeon Easy-Column, 10 cm, ID 75 pm, 3um, 120A,
C18). The gradient using a mobile phase A (95% H2O: 5% acetonitrile and 0.1% formic acid)
and mobile phase B (5% H,O: 95% acetonitrile and 0.1% formic acid). The gradient was: 0% B
for 3 minutes, 0%-8% B from 3-5 minutes, 8-18% B from 5-85 minutes, 18-30% B from 85-
100 minutes, 30-90% B from 100-105 minutes, and held at 90% B from 105-120 minutes at
continuous flow rate throughout the gradient of 300 nl/min.

The analytical column was connected to a PicoTip Emitter (New Objectives, Woburn, MA;
FS360-75-15-N-20) cut to size. The column and Emitter were attached to a LTQ OrbiTrap Velos
Pro (ThermoFisher Scientific, West Palm Beach, FL) mass spectrometer using the Proxeon
Nanospray Flex Ion Source. The capillary temperature was set at 275°C and spray voltage was 2.8
kV. The mass spectrometer used a data dependent method. In MS mode the instrument was set
to scan 300-2000 m/z with a resolution of 30,000 FWHM. A minimal signal of 20,000 could trig-
ger MSMS and 10 consecutive MSMS were possible. The activation type used was HCD. The
normalized collision energy was set to 35 and repeat mass exclusion was set to 120 seconds.

Tandem mass spectra were extracted and charge state deconvoluted by Proteome Discov-
erer version 1.4.0.288 (ThermoFisher Scientific, San Jose, CA, USA; version 1.3.0.339). All MS/
MS samples were analyzed using Sequest assuming digestion with trypsin. Sequest was set up
to search a combined FASTA database of Mycobacterium avium complex (taxon #120793) and
Mpycobacterium tuberculosis complex (taxon #77643) databases generated in July of 2013.
Sequest was searched with a fragment ion mass tolerance of 0.800 Da and a parent ion toler-
ance of 10.0 PPM.

Guinea Pig Potency Testing of PPDs

Conventional guinea pigs weighing between 450 and 600 grams were paired into cages and
acclimated for 1 week to the National Centers for Animal Health vivarium housing conditions
prior to testing. Guinea pigs were sensitized by injecting a Johne’s bacterin preparation (NVSL
lot #0601) consisting of 23 grams, wet weight, of heat-killed MAP cells homogenized in 180 ml
of mineral oil.

Prior to inoculation, the Johne’s bacterin was further diluted 1:4.55 in mineral oil and held
at 45°C on a hotplate. Each guinea pig was inoculated intramuscularly with 0.1 ml of the
warmed suspension. Control guinea pigs were inoculated intramuscularly with 0.1 ml of phos-
phate chloride buffer. The sensitization period after inoculation was 35 days after which PPD
lot numbers 9801, 0802, 0803A, 0902A were prepared for animal inoculation. Each preparation
was diluted to 10 ug/ml and 2 ug/ml in phosphate chloride buffer (34 mM Na,HPO,, 86 mM
NaCl).

After the sensitization period and prior to inoculation all guinea pigs had both sides shaved.
The shaved area was divided into two equal blocks. Each block contained four randomized
injection sites resulting in eight total injections. This resulted in replicate injections of each
PPD in each guinea pig. Guinea pigs were injected intradermally with a volume of 0.1 ml of the
designated MAP PPDs. No adverse affects resulted from the procedures used and animals were
monitored daily by the animal care staff.

A total of 12 guinea pigs (6 guinea pigs for each PPD concentration) were used for PPD
inoculation. An additional 4 guinea pigs were used as negative non-sensitized controls.
Twenty-four hours post-injection, test responses were measured to the closest square millime-
ter by measuring the greater and lesser dimensions of the erythema.

All animal work was approved by the NVSL Institutional Animal Care and Use Committee
under protocol numbers 2202 and 2738.
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Guinea Pig Potency Testing of Recombinant Proteins

Forty-seven MAP proteins identified by mass spectrometry were recombinantly expressed in
E. coli for further evaluation in the guinea pig potency assay. Eighteen guinea pigs, sensitized as
described previously, were used in the screening of selected proteins.

After the 35-day sensitization period and prior to inoculation, all 16 guinea pigs had both
sides shaved. There was a single row of four injections sites blocked out on each side of each
animal. This allowed for the injection of 6 proteins and two control proteins in each animal.
Seven pair of guinea pigs each received six proteins (42 proteins total) and the final pair of ani-
mals received five proteins. One guinea pig in each pair also received either PPD 9801 or PPD
0902, whereas the second guinea pig received the MBP/LacZ control peptide diluted to 10 pg/
ml in phosphate chloride buffer. This configuration enabled each of the 47 recombinant pro-
teins to be injected twice. Guinea pigs were injected intradermally with a 0.1-ml volume of the
designated antigen.

Twelve recombinant proteins were evaluated further in a second guinea pig potency test.
Thirty guinea pigs were sensitized as previously described and four guinea pigs served as non-
sensitized control animals. Recombinant proteins were randomized and assigned to respective
guinea pig groupings. PPD 9801 served as a positive control and phosphate chloride buffer
served as a negative control. Suspensions were randomized utilizing a Microsoft Excel random-
ization program. Sensitized guinea pigs were assigned to four groups of five animals per group.

After the sensitization period and prior to inoculation all guinea pigs had both sides shaved
as before. Each side contained four randomized injection sites resulting in eight total injections
for each animal. Each sensitized animal received replicate inoculations of two recombinant
proteins divided between the left and right sides. Each animal also received one inoculation of
lot 9801 and one inoculation of phosphate chloride buffer. Paired non-sensitized control ani-
mals received one inoculation of designated recombinant proteins as well as control suspen-
sions. Guinea pigs were injected intradermally with a 0.1-ml volume of the designated MAP
recombinant protein or control suspension. Guinea pigs were housed with 5 animals per cage
with each of the five animals from different treatment groups within a cage. Test responses
were again measured to the closest square millimeter 24-h post injection. Recombinant protein
measurements were compared against the positive control within each animal.

Gamma-interferon Testing Using Recombinant Proteins

Evaluation of recombinant MAP proteins was conducted using blood from 6 Johne’s positive
cattle, 2 M. bovis sensitized cattle, and 4 non-infected control cattle. Approximately 40-50 ml
of blood were collected from each animal into vacutainer blood tubes containing sodium hepa-
rin. Blood samples were held at room temperature prior to stimulation.

Between 6-7 hours after collection, blood tubes for each individual animal were mixed well
and combined into a sterile 50 ml conical tube. For each animal, 1.5 ml aliquots of whole blood
were dispensed into each well of a 24-well tissue culture plate. Blood was cultured either alone
as non-stimulated controls or with pokeweed at a concentration of 10 pg/ml to serve as a posi-
tive control. Whole blood was also cultured with designated mitogens at 10 pg/ml. Mitogens
used for evaluation were as follows: MAP PPD 9801 (PPD-J), M. bovis PPD (PPD-B), M.
avium PPD (PPD-A), MAP_1997, MAP_4143, MAP_1138c, MAP_3567, MAP_3061c,
MAP_2121¢c, and MAP_3651c. For all mitogens, 100 pul was dispensed into each designated
well and each mitogen was cultured in duplicate wells.

Plates were covered and incubated at 37°C for 21-22 hours. Plates were centrifuged at 500 x
g for 15 minutes and the plasma from each well was harvested and refrigerated. Plasma samples
were tested for IFN-y production over the next 72 hours.
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The IFN-y ELISA was conducted according to the manufacturer’s directions (BOVIGAM™,
ThermoFisher Scientific). Samples from each well were incubated in duplicate for one hour at
room temperature in a 96-well plate that is pre-coated with anti-bovine IFN-y antibody. Plates
were washed six times with wash solution and then incubated with an anti-bovine IFN-y-horserad-
ish peroxidase conjugate for 30 minutes at room temperature. Plates were again washed six times
with wash solution and incubated with peroxidase substrate for 30 minutes at room temperature.
Enzyme stopping solution was added to each well and the plates were read at A4so and Agso nm.

Statistical Analysis

The PPD mean skin test responses from the guinea pig potency test were compared by
ANOVA. Differences were considered statistically significant at a P value of < 0.05.

Results for the recombinant protein guinea pig potency testing were evaluated by calculating
the treatment group mean erythema value using the measurements for each individual animal
comprising the treatment group. Paired comparisons calculating the difference between the
response of the treatment to the response of the positive control for each animal were com-
pleted. The five injections (same protein) were then averaged and ranked based on the average
differences. A positive difference indicates the average response from the treatment is higher
than the average response from the positive control. For this difference data a 95% confidence
interval was also calculated for each treatment group.

Results
PPD Potency Testing in guinea pigs

Potency testing of the traditional and alternate PPD production lots resulted in significant dif-
ferences (P < 0.05) when compared against the reference standard (lot 9801; Table 2). Tradi-
tional lot 0803A and alternate lot 0902 resulted in the greatest skin test responses and all
responses showed a larger erythema as PPD concentration increased. The average area of the
erythema at the injection sites for lot numbers 0803 A and 0902 were much greater than the
average area for the reference standard (261% and 177%, respectively,). Traditional PPD lot
0802 resulted in a measurement that was 79% of the average area compared to the reference
standard. An acceptable potency test result for new production lots must have a response that
is a minimum of 75% compared to the reference response. Using these criteria, all three PPD
lots demonstrated acceptable potency, although 0802 is marginal. These data suggest that the
potency was not adversely affected by removal of the autoclave step.

SDS-PAGE analysis of PPD from different production methods

Aberrant migration or protein smearing was observed by SDS-PAGE analysis of reference PPD
Lot 9801; and this resulted in the lack of any discernable protein bands (Fig 1). This result is

Table 2. Guinea pig potency skin test responses at 24 hours post-inoculation of MAP PPD.

PPD Concentration PPD 9801 PPD 0802 PPD 0803A PPD 0902
10 ug/ml 143.22 + 48.82 93.63 + 15.59 264.25 + 39.72 202.07 + 39.63
2 ug/ml 4552 + 32.13? 53.45 + 15.49 228.41 + 41.91 132.50 + 67.79

& PPD 9801, 2 ug/ml sample data, contained one inoculation of one guinea pig which had no measureable skin reaction. This resulted in an elevated
standard deviation value. All guinea pigs were sensitized with MAP Strain 19698 killed cells.
Values represent the average response (mm? # standard deviation) of six guinea pigs used for evaluating each PPD concentration.

doi:10.1371/journal.pone.0154685.1002
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Fig 1. Coomassie blue stained Bis-Tris gel showing 7 PPD preparations. Note the striking differences in traditional
production PPDs (lanes 2, 4 and 5 for example) in comparison to the alternative production method (lanes 6 and 7). Lane
assignments include: 1 and 10-protein standards; 2-Lot #9801 PPD; 3-Lot 9801 at a 1:10 dilution; 4-Lot 0802; 5-Lot 0803A;
6-Lot 0902A; 7-Lot 0902B; 8-M. bovis PPD; 9 —M. avium PPD. Molecular mass standards are indicated in the left margin in
kilodaltons.

doi:10.1371/journal.pone.0154685.g001

similar to that observed in other laboratories studying M. bovis and M. tuberculosis PPDs [19,
20]. Smearing was also observed on lanes containing lots 0801A, 0801B, 0802, and 0803A from
the traditional production method (Fig 1). Similar protein smearing characteristics have also
been noted in M. bovis and M. avium PPD preparations at the NVSL (unpublished data). The
appearance of these “dirty” gel tracks (Fig 1) suggest the autoclaving step may have contributed
to this unusual migration pattern, because PPDs produced by the alternate production method
each yielded distinct protein bands (Fig 1, lanes 6 and 7). Serial dilution of PPD lot 9801 also
failed to display distinct protein bands (Fig 1), suggesting that the smearing was not due to
overloading. Protein bands less than 28 kDa were observed in the M. bovis PPD despite signifi-
cant smearing, but no protein bands were observed in the M. avium PPD preparation (Fig 1).
Collectively, these data suggest autoclaving modified this reagent by denaturation and/or
hydrolysis.
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Fig 2. Comparative antibody responses between the PPD production methods. Immunoblots of PPD
0902 produced by an alternative production method on the left and PPD 9801 produced by the traditional
method on the right. Both blots were exposed to identical bovine serum samples loaded into independent
slots. Note that distinct antigenic bands appear in the alternate PPD preparation. Lanes 1-15 cattle positive
for Johne’s disease, Lanes 16 & 17 cattle negative for Johne’s disease. Lane numbers correspond to cattle
listed in Table 1.

doi:10.1371/journal.pone.0154685.9002

Humoral immune response against PPD preparations

The affect of autoclaving on the antigenicity of PPDs was next examined. Immunoblots using
cattle sera (Table 1) yielded distinct differences between lot 9801 and lot 0902. Immunoreactive
protein bands were present in lot 0902, but absent in the reference lot 9801 (Fig 2). Serum from
cow 34 in lane 8 had the highest antibody titer to MAP (Table 1) and reactivity was predomi-
nant throughout regardless of the PPD production method. However, other sera readily
detected protein bands in the alternate PPD but not the traditional PPD. At least one protein
band was observed in the alternate PPD from 7 of 15 positive cattle sera. Lanes 4, 11, and 12
containing alternate PPDs all appear to react with a protein of similar size (Fig 2). These results
suggest that removing the autoclaving step in the production process may preserve antigenic
properties.

Analysis of PPD preparations by Mass Spectrometry

Mass spectrometry analysis was performed on three PPDs, including the reference (9801) and
alternative lots (0902A and 0902B). The total number of proteins identified among all three
PPDs was 194, 78% of which were unique to an individual PPD (Fig 3). All 194 proteins,
including peptide matches and molecular weights are listed in S1 Table. Ten proteins were
detected in all three PPD suspensions (Fig 4). These 10 proteins may represent the best candi-
dates for development of a consistent recombinant PPD and are listed at the top of S1 Table.
MAP_3840 had the greatest number of peptide matches among all the PPDs, and was also one
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Fig 3. Number of proteins identified by LC-MS/MS for each PPD preparation analyzed. Proteins found in two or three PPD
preparations are indicated by the black bars and proteins unique to each individual PPD preparation are indicated by the grey bars.

doi:10.1371/journal.pone.0154685.g003

of the most common proteins observed among PPDs analyzed in the Wynne et al., 2012 and
Santema et al., 2009 studies. Furthermore, it was identified as a cell surface protein using a tryp-
sin shaving technique [21]. These results suggest that MAP_3840, which encodes a 70-kDa
heat shock protein, is present in high abundance in MAP. Also present among all PPDs were
MAP_1588c and MAP_1589c¢, which are tandemly located on the K-10 genome [22] and have
been examined as potential diagnostic antigens long ago [23]. Furthermore, both have been
reported as a stress protein [24] and MAP_1589c was also found to be surface located [21].

Potency Testing of recombinant proteins in guinea pigs

Forty-seven of the 194 proteins identified by mass spectrometry were cloned, expressed and
purified in E. coli. Five of these purified proteins are among the 10 PPD proteins identified
from all three preparations. All 47 recombinant proteins are highlighted in red in S1 Table and
were used for potency testing to determine if they substantially contribute to the skin test
response observed with PPDs. Seven proteins showed reproducible skin test responses that
were stronger than or equivalent to the reference lot 9801 (Table 3, highlighted in bold). The
strongest skin test response among all recombinant proteins was elicited by MAP_1997, which
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Fig 4. Venn diagram illustrating protein overlaps between PPD 9801, PPD 0902A, and PPD 0902B. The
numbers of proteins identified for each PPD are indicated. Although the majority of proteins identified were
unique to a given production lot, 10 proteins were present in all three lots analyzed (see S1 Table).

doi:10.1371/journal.pone.0154685.g004

is annotated as an acyl-carrier protein (Table 3). This protein has not been previously described
as an antigen in the literature, although it was listed among surface exposed proteins in MAP
[21]. Known antigens that are among these seven proteins include the major membrane pro-
tein [25, 26] and the LrpG protein [13, 27]. Seventeen additional proteins produced a measure-
able skin test response in one of two replicate intradermal inoculations. The MBP/Lac-Z
control protein showed no visible reactivity at any inoculation site. Two of the 10 PPD proteins
present in all three preparations generated positive skin test responses with MAP_4143 show-
ing the second strongest response.

Twelve recombinant proteins that showed the largest skin test responses listed in Table 3
were evaluated further in a second guinea pig potency test. Even the four best proteins were
still not considered significantly different from the reference 9801 PPD based upon results
from the ranking by difference calculations (Table 4). Those recombinant proteins were
MAP_1997, MAP_4143, MAP_3567, and MAP_1138c. The only recombinant protein that
elicited responses greater than the reference PPD was MAP_1997, but this difference was not
significant.
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Table 3. Positive skin test responses in a guinea pig potency test of 24 MAP recombinant proteins from 47 total proteins tested.

Protein Description Locus Tag Area Measurement (mm?) Standard Deviation®
Acyl carrier protein MAP_1997 231.52 87.70
Elongation factor Tu MAP_4143 209.08 124.13
Electron transfer flavoprotein (Beta-subunit) FixA MAP_3061c 192.36 87.68
Putative uncharacterized protein MAP_2694 171.72 56.83
Putative acyl-CoA dehydrogenase MAP_3651c 166.53 77.51
LprG protein MAP_1138c 161.79 50.09
Major membrane protein 1 MAP_2121c 128.90 11.11
Peroxisomal multifunctional enzyme type 2 MAP_3567 242.51 N/A
Chaperone protein DnaK MAP_3840 221.81 N/A
Putative uncharacterized protein MAP_3692c 148.58 N/A
Lipoprotein LprC MAP_2497c 141.95 N/A
Superoxide dismutase (Fragment) MAP_0187¢c 131.90 N/A
Fructose-bisphosphate aldolase class-I MAP_4308c 122.33 N/A
LppZ protein MAP_3041 104.28 N/A
DNA-binding protein HU MAP_3024c 68.78 N/A
Peptidyl-prolyl cis-trans isomerase MAP_1693c 48.52 N/A
Fatty acid desaturase MAP_2698c 44.25 N/A
Antigen 85-B MAP_1609c 41.96 N/A
ATP synthase subunit alpha MAP_2453c 41.49 N/A
Serine/threonine protein kinase MAP_0016¢c 38.83 N/A
Wag31 protein MAP_1889c 36.72 N/A
Putative uncharacterized protein MAP_2020 29.59 N/A
Peroxiredoxin MAP_1589c 26.12 N/A
6-phosphogluconolactonase MAP_1174c 16.32 N/A
MBP/Lac-Z 0.00 N/A
PPD 9801 149.14 10.82
PPD 0902 241.84 37.60

2 For the proteins which resulted in skin test responses for both inoculation sites the values represent the average response (mm?) and the standard

deviation from two guinea pigs.

For the 17 proteins, which exhibited only one positive skin test reaction the value represents the response from the single reactive inoculation and the

standard deviation is not available (N/A).

doi:10.1371/journal.pone.0154685.t003

Gamma-interferon Testing using MAP recombinant proteins

Seven recombinant proteins having the best performance in the guinea pig potency test were
further evaluated as mitogens in an IFN-y stimulation assay. The proteins were evaluated
against Johne’s positive animals (#790, #2407, #2222, #8339, #1211, and #1044) based upon
results of serological and fecal shedding, M. bovis sensitized animals (#4 and #11), and negative
control animals (#1081, #212, #61, and #1392). MAP_3651c and MAP_3567 demonstrated the
greatest IFN-y stimulation within the Johne’s positive animals with responses in some animals
being greater than the stimulation values from MAP PPD 9801 (Fig 5). MAP_1997, which
resulted in the greatest skin test response in the guinea pig potency test, showed the least IFN-y
stimulation. Each MAP recombinant protein resulted in negative stimulation values against
samples from the M. bovis sensitized animals (Fig 5). All negative control samples remained
negative for [FN-y stimulation using MAP recombinant proteins or PPD suspensions, indicat-
ing good specificity.
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Table 4. Guinea pig potency testing of MAP recombinant proteins ranked by subtracted differences.

MAP Protein (Locus

tag)
MAP_1997

MAP_4143
MAP_3567
MAP_1138c
MAP_3061c
MAP_3651c
MAP_2121c
MAP_2497¢c
MAP_3692c
MAP_2694
MAP_3840

MAP_0187¢c

Rec Protein

Mean
328.93

199.68

192.05

173.70

106.80

72.57

74.40

50.25

34.73

42.20

47.95

15.31

MAP PPD 9801 Difference® Cl Upper Cl Lower Guinea Pig ID’s

Mean Range® Range®

248.89 80.04 212.00 -51.93 306, 312, 318, 324,
530

27711 -77.43 0.83 -155.69 304, 310, 316, 322,
528

272.39 -80.33 88.62 -249.28 305, 311, 317, 323,
529

264.41 -90.72 24.25 -205.68 301, 307, 313, 319,
325

27711 -170.32 -73.52 -267.12 304, 310, 316, 322,
528

256.51 -183.94 -132.90 -234.99 302, 308, 314, 320,
526

272.39 -197.98 -63.20 -332.77 305, 311, 317, 323,
529

248.89 -198.65 -176.95 -220.34 306, 312, 318, 324,
530

243.82 -209.08 -141.21 -276.95 303, 309, 315, 321,
527

256.51 -214.31 -133.99 -294.64 302, 308, 314, 320,
526

264.41 -216.46 -92.78 -340.14 301, 307, 313, 319,
325

243.82 -228.51 -184.33 -272.68 303, 309, 315, 321,
527

aDifferences were calculated by subtracting the MAP protein skin test response from the PPD skin test response for each animal and then averaging the
calculated differences for all animals in each treatment group.
PUpper and lower range values represent 95% confidence interval (Cl) calculations.

doi:10.1371/journal.pone.0154685.1004

In summary, recombinant proteins can be equivalent or a more potent immunological
reagent in skin testing than PPD based on guinea pig potency test results. In addition, these
recombinant proteins may serve as mitogens in an IFN-vy assay resulting in cytokine stimula-
tion comparable to or greater than that from MAP PPD.

Discussion

This study had two objectives with the overall goal of analysing a little studied but very impor-
tant antigen used in Johne’s disease diagnosis and research. One objective was to compare the
effect of autoclaving on MAP PPD preparations and measure this affect by SDS-PAGE, immu-
noblot analysis and guinea pig potency testing. The data collectively suggest that removal of
the autoclaving step may enhance antigenicity and prevent protein degradation, but does not
negatively affect the potency. A second objective was to define the components present in each
preparation through a proteomic analysis and determine proteins commonly present in the dif-
ferent production lots. A subset of the identified PPD proteins was then selected for evaluation
in a guinea pig potency test to determine skin test responsiveness in sensitized animals. In addi-
tion these proteins were further evaluated to determine their use as antigens in I[FN-y testing.
These objectives worked toward the long-term goal of obtaining a more consistent and equally
potent PPD that may be composed entirely of recombinant proteins. This reagent could then
circumvent the problems inherent in obtaining potent PPDs. Finally, a “recombinant PPD”
may avoid cross reactivity issues in cattle vaccinated against M. bovis or MAP.
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Fig 5. Secretion of IFN-y using whole blood from Johne’s positive animals, M. bovis sensitized animals, and negative control animals. Whole
blood was incubated with selected recombinant proteins and mycobacterial PPDs for 20—22 hrs as indicated in the materials and methods. Absorbance
was measured at 450 nm.

doi:10.1371/journal.pone.0154685.9005

The use of high pressure heat inherent in the autoclaving process results in lysis and the
appearance of cytosolic proteins that may not be present when autoclaving is eliminated. The
presence of the 70-kDa heat shock protein (MAP_3840) in both traditional and alternate PPDs
argues against this idea since it is considered a cytosolic protein. However, because this protein
is present in high abundance in MAP, it appears at some level in all cell fractions including
membrane and secreted fractions [21, 28]. Since secreted or surface proteins should be the first
antigenic components encountered in an infected animal, this may allow for more specific
responses as well as earlier detection. Multiple studies have shown that many strong antigens
are also secreted proteins in MAP [29, 30]. The interest in secreted antigens has primarily
involved their significance for use in enzyme-linked immunosorbent assays [28, 31]. In addi-
tion, the 10 proteins identified by mass spectrometry and common to all three NVSL PPD
preparations were also identified as part of the culture filtrate protein composition character-
ized by Facciuolo et al [28]. In total there were 58 proteins in the NVSL PPD preparations iden-
tified by mass spectrometry that were in common with the Facciuolo et al. study. Furthermore,
of the seven recombinant proteins resulting in the greatest skin erythema in the guinea pig
potency test, four of those proteins were also identified in the culture filtrate found by Fac-
ciuolo et al. [28]. Three of the four proteins, which include MAP_1997, MAP_4143 and
MAP_3061c, were also the most reactive in the guinea pig potency test, with MAP_4143 being
one of the proteins present in all three PPDs. Therefore, any work toward development of a
consistent, recombinant PPD should start with inclusion of MAP_4143 among other proteins.

Potency testing of four MAP PPD lots (9801, 0802, 0803A and 0902) was conducted to
ensure that PPDs produced by both methods retained acceptable potency in sensitized guinea
pigs. Replacing the autoclaving step with a sterile filtration process would avoid protein degra-
dation, but it was uncertain how this change might affect the potency. Results from potency
testing suggest there was no significant effect on potency regardless of whether the culture
material was subjected to autoclaving or sterile filtration. This is the first study to examine
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effect of heating on PPD performance in guinea pig potency testing. However, our results sug-
gest that age of the PPDs might have an effect on potency because the skin test responses
where much stronger in the recently made PPDs (0803A and 0902) compared to the reference
lot made in 1998. Thus either potency of the new PPDs is significantly better or the age of the
reference PPD resulted in decreased potency over time.

Mass spectrometry analysis of PPD preps has revealed several protein identities in these
complex protein mixtures. In a separate study, proteomic analysis of M. bovis, M. avium sub-
species avium, and MAP derived PPD suspensions identified 156 proteins among all PPDs
[13]. Three of these proteins (MAP_1718c, MAP_3515¢, and MAP_1138c) were further ana-
lyzed in a serum antibody ELISA with MAP1138c¢ (LprG) emerging as the strongest antigen in
high fecal shedding cattle. MAP LprG was also previously identified from a MAP gene fusion
library screening study and found to be antigenic in bovine paratuberculosis serum samples by
Western blot analysis [32]. Our study also identified LprG and it was among the strongest stim-
ulators in guinea pigs (Table 3). However, LprG showed no significant reactivity in a lympho-
cyte proliferative assay [13] decreasing its consideration for use in cell-mediated immune
response based assays. LprG elicited IFN-y responses in eight of nine sheep that had been vac-
cinated with an attenuated MAP strain in the study by Dupont et al. [32]. Using LprG as a
mitogen in the IFN-y assay 50% of Johne’s positive cows, and all M. bovis sensitized and MAP
negative animals were identified correctly, whereas in the Santema et al. [13] study there was
no significant difference between positive and negative animals. While results varied for use as
an antigen for in-vitro IFN-y stimulation, its ability to elicit immunological responses in both
humoral and cell-mediated assays may be indicative that MAP LprG is a highly expressed pro-
tein during all stages of Johne’s disease and could prove to be a more versatile candidate for
diagnostic assay improvements.

A total of 194 proteins were identified among all preparations with 110 of these identified
from lot 9801. This greatly adds to a previous study which identified only six proteins in this
same NVSL lot 9801 [14]. It is interesting to note that reference PPD 9801 had the most pro-
teins identified by LC-MS/MS, yet was migrating as a smear in denaturing protein gels and did
not appear antigenic by Western blot analysis or as potent by guinea pig sensitization. This
shows that while proteins were modified in the heating process, it did not destroy peptides,
which are essential for MS identification. Fewer proteins were identified in the alternate PPD
lots, with 67 and 74 proteins being identified in each production lot. Although a number of
proteins were identified in two of the three preparations analysed, only ten proteins were
detected in all three preparations. Combining the results from the Wynne et al. [14] and San-
tema et al. [13] studies shows the number of proteins consistently appearing in PPD prepara-
tions among all three studies is only three. They include MAP_4143, MAP_1595, and
MAP_3840. The total number of MAP proteins identified at least once in any of the three stud-
ies was 214, which suggests a starting point for the complete PPD proteome of MAP. Although
some variability may be attributed to the methodology used for protein identification, the
small overlap of proteins nonetheless further suggests the inconsistencies that can be encoun-
tered in PPD production processes and the need to improve such processes to reduce or elimi-
nate such variability.

MAP recombinant proteins used as antigens in an IFN-y assay showed five proteins as
potential candidate antigens. MAP_3651c and MAP_3567 were the strongest antigens with
Johne’s positive samples and they correctly identified four of the six animals as positive.
MAP_3061c, MAP_1138¢, and MAP_4143 were comparable to each other, and also identified
three of the same four animals identified by MAP_3651c and MAP_3567. These results were
comparable to animals identified as positive using MAP PPD 9801 with differences noted for
two animals. Cow #2407 was identified as positive by MAP PPD 9801, but was negative by all
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individual proteins. In contrast, cow #8339 was negative using MAP 9801, but was positive by
five of the seven individual proteins. These results were in contrast to the guinea pig potency
test results in which MAP_3651c and MAP_3061c did not stimulate skin test responses com-
parable to MAP PPD 9801. Also in contrast to the strong skin test response in the guinea pig
potency test, MAP_1997 was not a strong mitogen in the IFN-y stimulation assay. These con-
trasting results between the two tests demonstrate that neither test is a good predictor of suc-
cess in the other and may be due to the additional immunological responses ongoing at skin
test sites that involve more than IFN-y alone.

There are a number of false positive tuberculin skin test results, particularly in developing
countries, due to BCG vaccination and non-tuberculous mycobacteria [33]. The issue of false
positive skin tests has been a long-term concern due to the conserved antigenic characteristics
of mycobacteria. This situation is similar in the veterinary field with caudal fold tests using M.
bovis PPD and skin tests with MAP PPD giving false positive results if animals are exposed to
other mycobacteria. By developing a recombinant PPD-type reagent, it may now be feasible to
not only avoid false positive reactions but to have a consistent reagent that could be evaluated
in the gamma-interferon assay as well.

Conclusions

Our results suggest that autoclaving during PPD preparations, though performed for decades,
is an unnecessary step in PPD production. Over 100 proteins have now been identified from
NVSL PPDs that have been used in field studies for decades. Results from this study have also
identified a number of proteins that are reactive to skin testing in sensitized guinea pigs and as
antigens in IFN-y assays. These proteins may contribute to improvements for a well-defined,
consistent PPD for diagnostic purposes that may not cross react with TB skin testing. Further
research is needed to confirm the DTH responses of these proteins and examine specificity
characteristics to differentiate MAP immunological responses from M. bovis infected animals.

Supporting Information

S1 Table. Proteins identified by mass spectrometry from Mycobacterium avium subsp.
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