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The NF-κB subunit c-Rel regulates Bach2 tumour suppressor
expression in B-cell lymphoma
JE Hunter1, JA Butterworth1, B Zhao2, H Sellier1, KJ Campbell3, HD Thomas4, CM Bacon4, SJ Cockell5, BE Gewurz2 and ND Perkins1

The REL gene, encoding the NF-κB subunit c-Rel, is frequently amplified in B-cell lymphoma and functions as a tumour-promoting
transcription factor. Here we report the surprising result that c-rel–/– mice display significantly earlier lymphomagenesis in the
c-Myc driven, Eμ-Myc model of B-cell lymphoma. c-Rel loss also led to earlier onset of disease in a separate TCL1-Tg-driven
lymphoma model. Tumour reimplantation experiments indicated that this is an effect intrinsic to the Eμ-Myc lymphoma cells but,
counterintuitively, c-rel–/– Eμ-Myc lymphoma cells were more sensitive to apoptotic stimuli. To learn more about why loss of c-Rel
led to earlier onset of disease, microarray gene expression analysis was performed on B cells from 4-week-old, wild-type and c-rel–/–
Eμ-Myc mice. Extensive changes in gene expression were not seen at this age, but among those transcripts significantly
downregulated by the loss of c-Rel was the B-cell tumour suppressor BTB and CNC homology 2 (Bach2). Quantitative PCR and
western blot analysis confirmed loss of Bach2 in c-Rel mutant Eμ-Myc tumours at both 4 weeks and the terminal stages of disease.
Moreover, Bach2 expression was also downregulated in c-rel–/– TCL1-Tg mice and RelA Thr505Ala mutant Eμ-Myc mice. Analysis of
wild-type Eμ-Myc mice demonstrated that the population expressing low levels of Bach2 exhibited the earlier onset of lymphoma
seen in c-rel–/– mice. Confirming the relevance of these findings to human disease, analysis of chromatin immunoprecipitation
sequencing data revealed that Bach2 is a c-Rel and NF-κB target gene in transformed human B cells, whereas treatment of Burkitt's
lymphoma cells with inhibitors of the NF-κB/IκB kinase pathway or deletion of c-Rel or RelA resulted in loss of Bach2 expression.
These data reveal a surprising tumour suppressor role for c-Rel in lymphoma development explained by regulation of Bach2
expression, underlining the context-dependent complexity of NF-κB signalling in cancer.
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INTRODUCTION
The tumour-promoting role of the NF-κB pathway is well
established and results from its ability to regulate the expression
of genes involved in multiple aspects of cancer cell biology.1 This
is also true in haematological malignancies2 and in several B-cell
lymphoma types, such as activated B-cell-like-diffuse large B-cell
lymphomas,3 primary mediastinal large B-cell lymphoma4,5 and
classical Hodgkin lymphoma6 NF-κB activity is required for survival
and proliferation. However, the contribution of individual NF-κB
subunits is generally not known. In particular, whereas NF-κB
subunits have been reported to exhibit characteristics of tumour
suppressors in vitro,1 it has not been investigated whether these
properties have relevance to lymphoma development in vivo.
There are five NF-κB subunits in mammalian cells, RelA/p65, RelB,

c-Rel, p50/p105 (NF-κB1) and p52/p100 (NF-κB2). RelA and c-Rel
function as effector subunits for the IκB kinase β-dependent,
canonical NF-κB pathway.7 Of these NF-κB subunits, c-Rel is most
closely associated with lymphoma and was first identified as the
cellular homologue of the avian Rev-T retroviral oncogene v-Rel.8–10

c-Rel is ubiquitously expressed in B cells regardless of develop-
mental stage, although the highest levels are observed in mature B
cells.11–13 c-rel knockout mice developed normally with no effects
on B-cell maturation but do exhibit some immunological defects,
including reduced B-cell proliferation and activation, abnormal
germinal centres and reduced number of marginal zone B cells.14–17

c-Rel is distinct from other NF-κB family members in its ability to
transform chicken lymphoid cells in vitro.8,18–20 Moreover, genomic
and cytogenetic studies of human lymphomas have shown gains of
chromosome 2p13, which encodes the REL gene. Amplifications
and gains of REL have been detected in ~ 50% of HL21–23 and
10–25% or 50% in two studies of primary mediastinal large B-cell
lymphoma.4,24 REL has also been identified as a susceptibility locus
for HL,25 whereas c-Rel nuclear localisation has been identified as a
poor prognostic factor in both activated B-cell-like- and germinal
centre B-cell-like-diffuse large B-cell lymphomas.26

Despite this, relatively little is known about the role of c-Rel or
other NF-κB subunits in c-Myc-driven lymphomas. However, a
recent study of Myc-driven B-cell lymphoma in mice revealed a
tumour suppressor role for RelA.27 Here, short hairpin RNA
silencing of RelA did not affect progression of established
lymphomas, but after cyclophosphamide treatment its loss
resulted in chemoresistance as a consequence of impaired
induction of senescence.27 Similarly, NF-κB was required for both
therapy-induced senescence and resistance to cell death in the
Eμ-Myc mouse model of B-cell lymphoma upon expression of a
degradation-resistant form of IκBα.28 c-Myc can also inhibit
expression of NF-κB2, and loss of this NF-κB subunit in the
Eμ-Myc mouse model resulted in moderately earlier onset of
disease as a consequence of impaired apoptosis.29 By contrast,
deletion of NF-κB1 displayed no effects on Eμ-Myc lymphoma
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development.30 These results imply a more complicated role for
NF-κB in Myc-driven lymphoma, with both tumour-promoting and
-suppressing functions being reported, although any role for c-Rel
has not been established.

Here, we have investigated the role of c-Rel in mouse models of
B-cell lymphomagenesis. We demonstrate that, opposite to the
expected result, c-rel–/– Eμ-Myc and TCL1-Tg mice exhibit earlier
onset of lymphoma and that this result can be explained by c-Rel-

0 200 400 600 800
0

50

100

Days

P
er

ce
nt

 s
ur

vi
va

l

n=34 n=31

p=0.0005***
HR:3

0 100 200 300 400 500
0

50

100

P
er

ce
nt

 s
ur

vi
va

l

Days

n=27 n=41

p=0.9401
HR:1

0 100 200 300 400 500
0

50

100

P
er

ce
nt

 s
ur

vi
va

l

Days

n=16 n=41

p=0.2069
HR:1.5

0 100 200 300 400
0

50

100

P
er

ce
nt

 s
ur

vi
va

l

n=19
n=27

p<0.0001****
HR:6

0 100 200 300 400
0

50

100

P
er

ce
nt

 s
ur

vi
va

l

n=27n=14

p=0.0024**
HR:8

0 100 200 300 400 500
0

50

100

P
er

ce
nt

 s
ur

vi
va

l

n=35 n=68

p=0.0346*
HR:3

2.2.1.1.0.

Male & Female

Eμ-Myc (115 days)
Eμ-Myc crel-/- (79 days)

Male

Eμ-Myc (122 days)
Eμ-Myc crel-/- (77 days)

Male

Eμ-Myc (122 days)
Eμ-Myc crel+/- (75.5 days)

Female

Eμ-Myc (106 days)
Eμ-Myc crel-/- (83 days)

Eμ-Myc mouseControl mouse

c-REL

β-ACTIN

Eμ-Myc

50kDa -
65kDa -

98kDa -

Eμ-Myc
c-rel+/-

Eμ-Myc
c-rel-/-

Eμ-Myc Eμ-Myc
c-rel+/-

Eμ-Myc
c-rel-/-

TCL-1 (512 days)
TCL-1 crel-/- (397.5 days)

Male & Female

Eμ-Myc males (122 days)
Eμ-Myc females (106 days)

NF-κB luciferase 
Reporter mouse

Eμ-myc/NF-κB luciferase 
Reporter mice

Un-injected 
control mouse

0

500000

1000000

1500000

To
ta

l f
lu

x 
(R

ad
ia

nc
e)

p=0.0019 **

c-REL

RELA

c-MYC

RELB

β-ACTIN

p50

p100

p52

ns

36kDa -

50kDa -

65kDa -

50kDa -

50kDa -

65kDa -

65kDa -

98kDa -

98kDa -

65kDa -

50kDa -

NF-�B mouse

0.00

0.01

0.02

0.03

Δ
Δ

C
t R

el
/G

ap
dh

Days Days

Days

Figure 1. For caption see page 3478.
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dependent regulation of the B-cell tumour suppressor BTB and
CNC homology 2 (Bach2).

RESULTS
NF-κB is active in Eμ-Myc-derived lymphoma
To determine if there are significant levels of NF-κB activity in
Myc-driven B-cell lymphoma, with the potential to affect disease
driven by this oncogene, we crossed 3 × κB-luc (NF-κB-Luc)
reporter mice onto Eμ-Myc transgenic mice, allowing in vivo
visualisation of NF-κB activity.31 The median onset of aggressive
lymphoma in Eμ-Myc mice is between the ages of 3 and 6 months
but they exhibit the hallmarks of Myc overexpression by 4
weeks.32 This analysis revealed significantly higher levels of NF-κB
activity in Eμ-Myc mice at 8 weeks of age, in lymphoid organ sites,
including mesenteric/inguinal lymph nodes and thymus
(Figures 1a and b).

Loss of c-Rel results in earlier onset of Eμ-Myc-driven lymphoma
To investigate the role of c-Rel in MYC-induced lymphomagenesis,
Eμ-Myc/c-rel–/– mice were generated. Western blot analysis
confirmed no significant effects on the other NF-κB subunits or
c-Myc in splenic tumour B cells, although slightly lower levels of
the non-canonical NF-κB subunits p52 and RelB were found in
c-rel–/– cells (Figure 1c). Eμ-Myc/c-rel+/– mice, despite having
intermediate levels of c-Rel mRNA (Figure 1d), had almost no
detectable c-Rel protein in Eμ-Myc lymphoma cells (Figure 1e).
Given the known tumour-promoting role of c-Rel in B-cell

lymphoma, we were surprised to find that Eμ-Myc/c-rel–/– mice
had a significantly shorter overall survival (median survival 79 days)
than Eμ-Myc mice (median survival 115 days; Figure 1f). Earlier
onset of disease was also seen in heterozygote Eμ-Myc/c-rel+/–
male mice (median onset 75.5 days; Figure 1g). Although survival
times of male and female Eμ-Myc/c-rel–/– mice were similar (77 vs
83 days, respectively; Figures 1h and i), this effect appeared more
pronounced in male c-Rel mutant mice due to gender differences

in wild-type Eμ-Myc mice (122 days in males vs 106 days in
females), although this difference was not statistically significant
(Figure 1j).
To determine if earlier onset of disease could be seen in other

lymphoma models, we generated c-rel–/– strains of pEμ-B29-TCL1
(TCL1-Tg) transgenic mice.33 These mice exhibit slower disease
progression than in the Eμ-Myc model and in our experiments
many mice developed tumours at non-lymphoid sites (not shown).
Nonetheless, c-rel–/– mice again displayed significantly reduced
survival relative to wild-type TCL1 mice, confirming that this effect
is not restricted to the Eμ-Myc model (Figure 1k).

Reimplanted Eμ-Myc tumours grow equally well in wild-type and
c-rel–/– mice
These results revealed an apparent tumour suppressor role for
c-Rel, but it was unclear if this resulted from an effect intrinsic to
the tumour cells or from other effects of the c-rel–/– mice.
Therefore, to investigate whether non-tumour cells in the wild-
type and c-rel–/– mice might contribute to earlier onset of disease
in c-Rel null mice, we performed a series of reciprocal tumour
reimplantation studies. Tumours derived from either wild-type or
c-rel–/–male Eμ-Mycmice were transplanted into either C57Bl/6 or
c-rel–/– male host mice. Importantly, whether the host mice were
wild type or c-rel–/– did not affect the rate of c-rel–/– lymphoma
growth (Figures 2a and c). A more mixed effect was seen with
reimplanted wild-type Eμ-Myc cells, where increased lymphoma
growth was seen at some sites but not others in the c-rel–/– host
mice (Figure 2c). Reimplanted c-rel–/– lymphomas were also
slower to develop than wild type (~4 weeks vs 2 weeks) but this
may reflect the reduced viability of Eμ-Myc/c-rel–/– tumour cells
after thawing frozen samples (Figure 2d). This analysis does not
rule out a contribution from the non-tumour background in the
development of Eμ-Myc lymphoma in these mice. However, given
that we saw no effects of the host animal on the growth of
reimplanted c-rel–/– cells, we investigated if there were intrinsic
differences between wild-type and c-rel–/– lymphoma cells.

Figure 1. c-Rel functions as a tumour suppressor in Eμ-Myc-driven B-cell lymphoma in mice. (a) Representative image of in vivo NF-κB
bioluminescence (radiance) of age-matched littermates of NF-κB-Luc and Eμ-Myc/NF-κB-Luc mice. Eight-week-old mice underwent in vivo
imaging using the IVIS Spectrum system (Perkin Elmer, Beaconsfield, UK) after being intraperitoneally administration with 150mg/kg VivoGlo
D-luciferin (Promega, Southampton, UK) dissolved in sterile phosphate-buffered saline. Ten-min post-D-luciferin-administration, mice were
imaged using a photon emission over 5min, under isoflurane anaesthesia. Luminescence was seen in the thymic area and also in the tails and
other exposed regions of the Eμ-Myc/NF-κB-Luc mice, the latter likely due to a higher number of circulating lymphocytes with increased NF-κB
activity. (b) Quantification of NF-κB bioluminescence (radiance) of thymic regions in NF-κB-Luc (n= 12) and Eμ-Myc/NF-κB-Luc (n= 13) mice.
Bioluminescence was quantified using the Living Image software version 4.3.1 (Perkins Elmer) and region of interest tool. Data shown as
mean± s.e.m., **Po0.01, unpaired Student’s t-tests. For all tests, where appropriate, analyses were undertaken to test for normal distribution.
(c) Western blot analysis of the NF-κB subunits, c-REL, RELA, RELB, p100/p52 and p50 together with c-MYC in extracts prepared from Eμ-Myc
and Eμ-Myc/c-rel–/– mouse tumorigenic spleens. Whole-cell extracts were prepared from Eμ-Myc or Eμ-Myc/c-rel–/– tumour cell suspensions.
Cell pellets were washed with ice-cold phosphate-buffered saline and lysed using PhosphoSafe Extraction Reagent (Merck Millipore, Watford,
UK). Antibodies used were c-Rel (sc-71 Santa Cruz, Insight Biotechnology, Wembley, UK), c-Myc (sc-42 Santa Cruz), RelA (sc-372 Santa Cruz),
RelB (4954 Cell Signaling, Hitchin, UK), p50 (06-886 Merck Millipore), p100/p52 (sc-848 Santa Cruz) and β-Actin (A5441 Sigma-Aldrich,
Gillingham, UK). (d) Quantitative-PCR analysis showing relative Rel expression in end-stage tumorigenic spleens from Eμ-Myc (n= 20), Eμ-Myc/c-
rel+/– (n= 12) and Eμ-Myc/c-rel–/– (n= 11) mice. Data shown as mean± s.e.m., each point is an individual mouse. (e) Western blot analysis of
c-REL levels in tumorigenic spleens from Eμ-Myc, Eμ-Myc/c-rel+/– and Eμ-Myc/c-rel–/–mice. (f–j) Reduced survival of Eμ-Myc/c-rel+/– and Eμ-Myc/c-rel–/
– mice. Kaplan–Meier plots showing survival curves for Eμ-Myc and (f) Eμ-Myc/c-rel–/– mice, (g) Eμ-Myc/c-rel+/– male mice, (h) Eμ-Myc/c-rel–/–
male mice, (i) Eμ-Myc/c-rel–/– female mice and relative survival of male versus female Eμ-Myc mice is shown in (j). P-values (Mantel–Cox test)
and hazard ratios are shown. (k) Kaplan–Meier plot showing reduced survival of TCL1/c-rel–/– mice. Animal handling, husbandry and
experimentation were undertaken in compliance with UK Home Office regulations under project licences and approved by the local ethical
review committee. All mice used in these experiments were on C57BL/6 background and bred at the Comparative Biology Centre, Newcastle
University. c-rel–/– mice were provided by Dr Fiona Oakley (Newcastle University). NF-κB-luc (NF-κB-Luc–/+) reporter mice were a gift from
Professor Matthew Wright (Newcastle) and originated in the laboratory of Professor Harald Carlsen (Norwegian University of Life Sciences). Eμ-
Myc and TCL1-Tg mice were purchased from The Jackson Laboratory (Bar Harbor, ME, USA). Eμ-Myc/c-rel+/– offspring were generated by
mating c-rel–/– female mice with Eμ-Myc male mice. Eμ-Myc/c-rel–/– mice were then generated by crossing Eμ-Myc/c-rel+/– males with c-rel–/–
female mice. In TCL1-Tg mice, a human TCL1 coding sequence is expressed from a B29 minimal promoter, coupled with the IgH intronic
enhancer resulting in B- and T-cell expression. TCL1/c-rel–/– offspring were generated as for Eμ-Myc by mating c-rel–/– female mice with TCL1-
Tg male mice. All mice were designated to an experimental group-dependent on their strain and no blinding was undertaken during analysis.
For survival analysis, mice were monitored daily and were killed at predetermined end points, defined as the animal becoming moribund,
losing bodyweight/condition and/or having palpable tumour burden at any lymphoid organ site, at which point animals underwent necropsy.
Kaplan–Meier survival curves were drawn using GraphPad Prism (Version 5.0, GraphPad Software, La Joll, CA, USA).
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Figure 2. Eμ-Myc/c-rel–/– tumours grow equally well in wild-type and c-rel–/– mice and are more sensitive to apoptotic stimuli. (a, b)
Reimplanted Eμ-Myc/c-rel–/– tumours grow equally well in wild-type and c-rel–/– mice. Lymph node tumours derived from three different Eμ-
Myc/c-rel–/– mice were reimplanted in parallel into either three wild-type (C57Bl/6) or three c-rel–/– host mice. Four weeks after implantation,
the mice were killed and tumour sizes at different sites were assessed. Data shown here are from the spleen (a) and cervical lymph nodes (b).
Data representing mean± s.e.m. and P-values were calculated using Student’s unpaired t-tests. (c) Tumour burden in lymphoid organs (weight
of organ/bodyweight of animal in gram) following reimplantation of either Eμ-Myc or Eμ-Myc c-rel–/– tumour cells into either C57Bl/6 or
c-rel–/– mice. Data shown are the means of three independent tumours each implanted into three mice± s.e.m. *Po0.05 in an unpaired
Student’s t-test, but otherwise there were no significant differences between tumour burden in wild-type and c-rel knock-out animals at any of
the sites assessed. (d) Cell viability of Eμ-Myc and Eμ-Myc/c-rel–/– tumour cells grown ex vivo. Cell viability was measured using the trypan blue
exclusion assay over a 4-h period after freeze thawing. (e) Eμ-Myc/c-rel–/– tumour cells are more sensitive to apoptotic stimuli. Freshly isolated
Eμ-Myc or Eμ-Myc/c-rel–/– lymph node tumour cells (5 × 105 per well) were seeded into 96-well plates. Increasing concentrations of the
chemotherapeutic agents, doxorubicin (Sigma-Aldrich) or vincristine (Sigma-Aldrich) or solvent controls were added to three replicate wells.
After 96 h, viability was quantified using the CellTiter96 AQueous One Solution Cell Proliferation Assay (MTS; Promega), according to the
manufacturer’s instructions. Single-cell suspensions were prepared from tumour-bearing organs of Eμ-Myc and Eμ-Myc/c-rel–/– mice upon
necropsy. These were then used for downstream analyses or frozen in 90% fetal bovine serum/10% dimethyl sulfoxide for long-term storage
and transplantation. For reciprocal microenvironment experiments, 2 × 106 Eμ-Myc/c-rel–/– lymph node tumour cells from male mice were
transplanted intravenously via the lateral tail vein into 8-week-old male C57BL/6 or c-rel–/– recipients. Mice were necropsied when they
became moribund and the tumour burden assessed. C57BL/6 mice used for reimplantation studies were purchased from Charles River
(Margate, UK).
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c-rel–/– B-cell lymphomas are more sensitive to apoptotic stimuli
c-Rel and the other NF-κB subunits can contribute towards
tumorigenesis by inducing the expression of antiapoptotic
genes34 and, consistent with this and the results in Figure 2d,

we found that when cultured ex vivo, tumour cell isolates from Eμ-
Myc/c-rel–/– mice showed increased sensitivity to the R-CHOP
therapy components doxorubicin and vincristine (Figure 2e).
Therefore, Eμ-Myc/c-rel− /− cells appear more prone to apoptosis
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when compared with their wild-type equivalents. These effects are
consistent with the known antiapoptotic effects of c-Rel but did
not explain the earlier onset of disease in c-Rel null mice.

The tumour suppressor Bach2 is a c-Rel target gene
The p53 and ARF pathways are frequently disrupted in Eμ-Myc
lymphoma.35 However, we found that mRNA levels of p53 target
genes, such as Mdm2 and Bax, as well as the CDKN2A gene that
encodes the ARF protein were similar across end-stage Eμ-Myc
and Eμ-Myc/c-rel–/– tumour cells (not shown), suggesting that
c-Rel loss does not lead to further disruption of these pathways.
Moreover, no significant differences in BCL2L1 mRNA, an NF-κB
target gene that encodes the antiapoptotic protein Bcl-xL,34 were
observed (not shown).
We therefore wanted to learn more about other changes in gene

expression associated with the earlier onset of lymphoma in the Eμ-
Myc/c-rel–/– mice. Consequently, we decided to perform microarray-
based genome-wide mRNA expression analyses on B cells from 4-
week-old Eμ-Myc, Eμ-Myc/c-rel+/– and Eμ-Myc/c-rel–/– mice.
Analysis of these microarray data identified a number of genes

misregulated in Eμ-Myc/c-rel–/– mice (Figure 3a). Of these, the loss
of expression of Bach2 in c-Rel mutant mice was of particular
interest. Bach2 is a lymphoid-specific transcription factor with a
role in B-cell development36 and the response to oxidative
stress.37,38 Bach2 has also been identified as a tumour suppressor
in acute lymphoblastic leukaemia.39 Importantly, quantitative PCR
analysis confirmed that Bach2 mRNA expression is lost in B cells
from 4-week-old Eμ-Myc/c-rel+/– and Eμ-Myc/c-rel–/– mice
(Figure 3b), and also from the tumours taken from mice killed
with end-stage disease (Figure 3c). Bach2 protein levels were also
significantly reduced in the Eμ-Myc/c-rel− /− tumours (Figure 3d).
Quantitative PCR also validated a number of other potential
targets identified in the microarray, including Cyclin D1 and Lima1
(not shown). Although Bach2 levels were reduced in normal,
untransformed B cells from c-rel–/– 4-week-old mice, this was not
a statistically significant effect (not shown).

Although Bach2 mRNA levels are uniformly low in all Eμ-Myc/c-
rel–/– and c-rel+/– lymphoma samples analysed, we observed a
wide range of Bach2 mRNA expression in end-stage wild-type Eμ-
Myc tumours (Figure 3c). We were therefore interested in
whether this would correlate with survival of these wild-type
Eμ-Myc mice. Significantly, we found that Eμ-Myc mice with
below-the-median level of Bach2 mRNA displayed decreased
survival, with a median survival of 85.5 versus 135 days for mice
with high Bach2 levels (Figure 3e). Therefore, wild-type mice with
reduced levels of Bach2 have a very similar pattern of lymphoma
onset to that seen in the c-rel–/– mice, providing a potential
mechanism that allows this NF-κB subunit to function as a
tumour suppressor in this model of c-Myc-driven B-cell
lymphoma (Figure 3e).
To determine the generality of these effects we also analysed

Bach2 levels in the spleens of TCL1-Tg mice, where we observed a
reduction in mRNA and protein levels (Figures 3f and g).
Furthermore, in a separate NF-κB knock in mouse model, where
the RelA subunit was engineered to contain a Thr505Ala mutation
in its transactivation domain, a site previously shown to affect NF-
κB function,40 loss of Bach2 expression was also seen in end-stage
lymphoma cells (Figure 3h) but not in 4-week B cells from Eμ-Myc
mice (Figure 3i). The RelA T505A mouse will be described in more
detail elsewhere.
Although these data indicated that Bach2 expression is

regulated by c-Rel, Bach2 has not been previously described as
a direct NF-κB target gene. To address this, we analysed
chromatin immunoprecipitation sequencing (ChIP-Seq) data
from the Epstein–Barr-virus-transformed human lymphoblastoid
B-cell line GM12878.41 This revealed that the Bach2 promoter is
bound by c-Rel together with the other NF-κB subunits, RelA, RelB
and p52 (Figure 4a). Moreover, further analysis of ChIP-Seq data
obtained for the RelA NF-κB subunit by the Encode consortium
confirmed that Bach2 is an NF-κB target gene in multiple B-cell lines
(not shown). Consistent with these data, analysis of the human
Burkitt lymphoma cell line Daudi, where NF-κB subunits had been
depleted by CRISPR/Cas9 mutagenesis, revealed that loss of either

Figure 3. Expression of the B-cell tumour suppressor Bach2 is dependent on c-Rel in Eμ-Myc lymphoma. (a) Table showing genes whose
expression is regulated by c-Rel from microarray analysis of bone marrow-derived B cells from 4-week-old Eμ-Myc, Eμ-Myc/c-rel+/– and Eμ-Myc/
c-rel–/– mice. Fold changes shown are compared with equivalent wild-type cells and are in log2 (a positive number indicates higher
expression in wild-type cells). Bone marrow-derived B cells were purified from 4-week-old Eμ-Myc or Eμ-Myc/c-rel+/–, Eμ-Myc/c-rel+/–mice using
CD19 microbeads (MACS Miltenyi Biotec, Surrey, UK). Total B-cell RNA, purified using the PeqGold total RNA extraction kit (Peqlab, VWR,
Lutterworth, UK), was then used for microarray analysis at Cambridge Genomic Services (University of Cambridge, Cambridge, UK) using the
Illumina mouse WG-6 Expression BeadChip system (San Diego, CA, USA). These data were background corrected in Illumina GenomeStudio
and subsequent analysis proceeded using the lumi and limma packages in R (Bioconductor, Seattle, WA, USA).46–48 Variant stabilisation
transform and robust spline normalisation were applied in lumi. Differential expression was detected using linear models and empirical Bayes
statistics in limma. A list of genes for each comparison was generated using a Benjamini–Hochberg false discovery rate-corrected P-value of
0.05 as a cutoff. (b, c) Confirmation that Bach2 mRNA levels are c-Rel regulated. Quantitative-PCR (q-PCR) showing relative Bach2 expression in
(b) bone marrow-derived B cells from Eμ-Myc (n= 10), Eμ-Myc/c-rel+/– (n= 9) and Eμ-Myc/c-rel–/– (n= 9) mice and (c) end-stage tumorigenic
spleens from Eμ-Myc (n= 30), Eμ-Myc/c-rel+/– (n= 12) and Eμ-Myc/c-rel–/– (n= 11) mice. q-PCR was performed in triplicate on 20 ng cDNA
(Reverse Transcriptase kit, Qiagen, Crawley, UK), using predesigned Bach2 Quanititect Primer assays (Qiagen). Samples were run and analysed
on a Rotor-gene Q system (Qiagen), using murine Gapdh primers as an internal control. All cycle threshold values were normalised to Gapdh
levels using the Pfaffl method.49 Data represent mean± s.e.m. **Po0.01, ***Po0.001 (unpaired Student’s t-test). (d) Bach2 protein levels are
reduced in Eμ-Myc/c-rel–/– mice. Whole-cell extracts were prepared from Eμ-Myc or Eμ-Myc/c-rel–/– tumourigenic spleens. Cell pellets were
washed with ice-cold phosphate-buffered saline, and lysed using PhosphoSafe Extraction Reagent (Merck Millipore), according to the
manufacturer’s protocols. Western blot analysis was performed using antibodies to BACH2 (ab83364 Abcam, Cambridge, UK) or the loading
control β-ACTIN (A5441 Sigma-Aldrich). (e) Low levels of Bach2 mRNA correlate with poor survival in wild-type Eμ-Myc mice. Kaplan–Meier
analysis of the survival of mice with below and above the median levels of Bach2 mRNA (from data in c). Also shown for comparison is the
survival data from Eμ-Myc/c-rel–/– mice shown in Figure 1f. (f) Bach2 mRNA levels are c-Rel regulated in TCL1-Tg mice. q-PCR showing relative
Bach2 expression in end-stage tumorigenic spleens from TCL1-Tg (n= 11) and TCL1-Tg/c-rel–/– (n= 7) mice. Data represent mean± s.e.m.
*Po0.05. (g) Bach2 protein levels are reduced in TCL1/c-rel–/– mice. Whole-cell extracts were prepared from TCL1-Tg or TCL1/c-rel–/–
tumourigenic spleens and western blot analysis was performed as indcated. (h, i) Low Bach2 mRNA levels in RelA T505A mice. q-PCR showing
relative Bach2 expression in (h) end-stage tumorigenic spleens from Eμ-Myc (n= 30) and Eμ-Myc/relaT505A (n= 8) mice and (i) bone marrow-
derived B cells from Eμ-Myc (n= 10) and Eμ-Myc/relaT505A (n= 8) mice. Note, data from wild-type Eμ-Myc mice are the same as shown in c. Data
represent mean± s.e.m. **Po0.01 (unpaired Student’s t-test). RelA T505A knock-in mice were generated by Taconic Artemis (Cologne,
Germany) using C57Bl/6 ES cells.
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c-Rel or RelA reduced Bach2 mRNA levels (Figures 4b and c).
However, no effect on Bach2 protein level was seen (not shown)
suggesting functional compensation between c-Rel and RelA in
these cells, as has been reported previously for these subunits.42

Treatment of Daudi cells with the IκB kinase-β inhibitors
BMS 345541 or TPCA-1, which inhibit the classical NF-κB pathway
and so target both RelA and c-Rel, did result in loss of both
Bach2 mRNA and protein (Figures 4d and g), and similar results
were seen in the Burkitt cell line BL41 treated with TPCA-1
(Figures 4h and i).

The role of c-Rel in B-cell lymphoma
Given the large number of studies indicating tumour-promoting
roles for c-Rel in lymphoma,2–6,21–26,43 our results showing earlier
onset of disease in c-Rel mutant mice were surprising. However, a
number of in vitro studies have, in addition to their known
tumour-promoting activities, revealed tumour suppressor func-
tions for NF-κB subunits.1 Moreover, previous reports using mouse
models of c-Myc-driven lymphoma have demonstrated that
through induction of therapy-induced senescence, NF-κB can
function as a tumour suppressor in this context.27,28 Importantly,
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previous studies of the role of c-Rel in lymphoma have used either
patient cells or established laboratory cell lines. In both cases, by
analysing 'end-stage' cancer cells, these investigations will have
focused on the antiapoptotic effects of NF-κB, which we also see,
but will have missed any more complex roles that might occur
during the process of lymphomagenesis itself. Our study has
therefore allowed the description of a previously unknown role for
c-Rel in the prevention of B-cell lymphoma development by
regulating the expression of Bach2. However, NF-κB regulation of
Bach2 is not restricted to c-Rel and our data also support a role for
RelA. Interestingly, in Eμ-Myc mice RelA regulation of Bach2 was
only seen in the 'end-stage' lymphomas (Figures 3h and i),
suggesting that c-Rel is the primary driver of Bach2 expression.
Nonetheless, this demonstrates the complex interplay between NF-
κB subunits, as well as the potential for stage-specific regulation of
gene expression during lymphomagenesis. It will be of interest to
see if c-Rel can also contribute to the regulation of NF-κB-
dependent senescence reported in Eμ-Myc lymphoma cells.27,28

Bach2 is a transcription factor and known as B-cell tumour
suppressor. Interestingly, a recent report illustrated that Bach2 is
required for c-Myc-dependent induction of p53 in pre-B cells.39

Moreover, loss of Bach2 is associated with the development of
pre-B acute lymphoblastic leukaemia.39 Bach2 promoter activity
is also reduced upon BCR-ABL expression in chronic myeloid
leukaemia, through regulation by the transcription factor, Pax5,
suggesting that suppression of Bach2 may contribute to
lymphoid blast crisis in chronic myeloid leukaemia.44 Although
we cannot rule out contributions from the other c-Rel-regulated
genes we identified, we propose that induction of Bach2
expression by c-Rel/NF-κB provides one mechanism that allows
these factors to function as tumour suppressors in the early
stages of B-cell lymphoma development. However, some reports
have suggested that Bach2 may also contribute towards
malignancy in some contexts.45 Since the tumour suppressor
functions of Bach2 are associated with p53, it is possible that p53
loss or mutation is also the trigger for a change in Bach2
function. Therefore, the consequences of NF-κB regulation of

Bach2 expression may vary depending on the stage of
lymphoma development.

Accession numbers
NF-κB ChIP-Seq data sets have been published41 (gene expression
omnibus, accession code GSE55105).
Microarray data have been submitted to ArrayExpress, accession

code E-MTAB-2774.
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Figure 4. Bach2 is an NF-κB target gene on human B-cell malignancies. (a) ChIP-Seq data showing NF-κB subunit binding in the region of the
human BACH2 gene in the Epstein–Barr-virus-transformed lymphoblastoid B-cell line (LCL) GM12878. ChIP-Seq data were extracted from a
previously published analysis of the Epstein–Barr-virus-transformed LCL GM12878 using validated anti-RelA, RelB, c-Rel, p52 and p50
antibodies.41 Reads from all ChIP-Seq experiments were mapped to the hg19/GRCh37 build of the human genome using the UCSC genome
browser. (b, c) c-Rel and RelA regulate Bach2 mRNA levels in Daudi cells. In b western blot analysis shows depletion of NF-κB subunits in the
Daudi Burkitt's lymphoma cell line using CRISPR/Cas9 mutagenesis. In c q-PCR shows relative Bach2 expression in the Daudi cells with mutated
NF-κB subunits. Data are obtained from separately derived pools of Daudi Cas9+ cells that express either a control single-guide RNA (sgRNA)
against GFP (pXPR) or an sgRNA against the indicated NF-κB subunit. RNA or protein was extracted for either q-PCR (b) or western blot (c)
analysis, as indicated. Daudi Cas9/CRISPR analysis: Daudi cells with stable Cas9 expression were derived as previously described.50 Briefly,
Daudi cells with stable Streptococcus pyogenes Cas9 expression were established by infection with lentiviral transduction and blasticidin
selection, using pLentiCas9-Blast (Addgene plasmid #52962). Cas9 activity was validated by transduction of the Daudi Cas9+ cells with a test
lentivirus, which encodes a GFP and a sgRNA that targets GFP.51 The PXPR-011 plasmid (provided by John Doench, Broad Institute, Cambridge,
MA, USA) was used to construct this test virus. Cas9 activity was evident in 485% of the selected Daudi cells by flow cytometry analysis (the
residual 15% of cells that continue to express GFP may be cells where the non-homologous end-joining pathway correctly repaired the Cas9-
induced DNA double-strand break).51 To obtain NF-κB subunit knockdown by CRISPR/Cas9 genome editing, the following sgRNAs were
designed using CRISPRdirect (http://crispr.dbcls.jp/):52 RelA 5´-AGTCCTTTCCTACAAGCTCG-3´ and 5´-AGCTGATGTGCACCGACAAG-3´; RelB
5´-GGTCTGGCGACGCGGCGACT-3´ and 5´-AGCGGCCCTCGCACTCGTAG-3´; c-Rel 5´-AAATGTGAAGGGCGATCAGC-3´ and 5´-ATTGGGTTCGAGACA
ACAGG-3´; p52 5´-TAGGCTGTTCCACGATCACC-3´. Oligonucleotides were synthesized by Life Technologies (Paisley, UK), were individually
cloned into the lentiGuide-Puro vector (Addgene plasmid #52963), according to the protocol from the Zhang laboratory (http://genome-
engineering.org/),53 and were sequence verified. VSV-G pseudotyped lentiviruses encoding a sgRNA were produced in 293 T cells and used to
transduce Daudi Cas9+ cells. Cells transduced with sgRNA-encoding lentivirus were selected by puromycin. (d–g) Treatment of the Daudi
Burkitt's lymphoma cell line with the IκB kinase inhibitors BMS 345541 and TPCA-1 reduces BACH2 mRNA and protein levels. Daudi cells were
treated with either 5 μM BMS 345541 (Calbiochem, San Diego, CA, USA) or 10 μM TPCA-1 (Calbiochem) for the times shown. RNA or protein
was extracted for either q-PCR (d, f) or western blot (e, g) analysis using the Bach2 antibody, ABN171 (Merck Millipore). (h, i) Treatment of the
BL41 Burkitt's lymphoma cell lines with the IκB kinase inhibitor TPCA-1 reduces BACH2 mRNA and protein levels. BL41 cells were treated with
10μM TPCA-1 for the times shown. RNA or protein was extracted for either q-PCR (h) or western blot (i) analysis. q-PCR data represent the mean of
three independent experiments± s.e.m., *Po0.05, **Po0.01, ***Po0.001, ****Po0.0001 (unpaired Student’s t-test). Daudi and BL41 cells were
obtained from the American Type Culture Collection (Teddington, UK) and grown in RPMI-1640 medium (Lonza, Basel, Switzerland;
supplemented with 10% (v/v) fetal bovine serum (Invitrogen, Paisley, UK) and 2mM L-glutamine (Lonza)). Cell lines were sent to LGC Standards
for authentication by short tandem repeat profiling.
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