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ORIGINAL ARTICLE

Associations of short-term exposure to traffic-related
air pollution with cardiovascular and respiratory
hospital admissions in London, UK

Evangelia Samoli," Richard W Atkinson,? Antonis Analitis," Gary W Fuller,?
David C Green,? lan Mudway,® H Ross Anderson,*> Frank J Kelly®

ABSTRACT

Objectives There is evidence of adverse associations
between short-term exposure to traffic-related pollution
and health, but little is known about the relative
contribution of the various sources and particulate
constituents.

Methods For each day for 2011-2012 in London, UK
over 100 air pollutant metrics were assembled using
monitors, modelling and chemical analyses. We selected
a priori metrics indicative of traffic sources: general
traffic, petrol exhaust, diesel exhaust and non-exhaust
(mineral dust, brake and tyre wear). Using Poisson
regression models, controlling for time-varying
confounders, we derived effect estimates for
cardiovascular and respiratory hospital admissions at
prespecified lags and evaluated the sensitivity of
estimates to multipollutant modelling and effect
modification by season.

Results For single day exposure, we found consistent
associations between adult (15-64 years) cardiovascular
and paediatric (0—14 years) respiratory admissions with
elemental and black carbon (EC/BC), ranging from
0.56% to 1.65% increase per IQR change, and to a
lesser degree with carbon monoxide (CO) and aluminium
(Al). The average of past 7 days EC/BC exposure was
associated with elderly (65+ years) cardiovascular
admissions. Indicated associations were higher during
the warm period of the year. Although effect estimates
were sensitive to the adjustment for other pollutants
they remained consistent in direction, indicating
independence of associations from different sources,
especially between diesel and petrol engines, as well as
mineral dust.

Conclusions Our results suggest that exhaust related
pollutants are associated with increased numbers of
adult cardiovascular and paediatric respiratory
hospitalisations. More extensive monitoring in urban
centres is required to further elucidate the associations.

INTRODUCTION

Epidemiological research has provided ample evi-
dence for the adverse health effects of outdoor air
pollution, mostly related to particulate pollution.’
Nevertheless, there remain significant gaps in our
understanding of the most harmful constituents of
ambient particles and their sources." ? In urban
areas, traffic-related pollution, comprising primary
exhaust emissions from motor vehicles, road

What this paper adds

» Little is known about the relative contribution
of the sources and constituents to
traffic-related exposure health effects.

» We selected metrics, from an extensive
database, indicative of traffic sources.

» Exhaust-related metrics were associated with
adult (15-64 years) cardiovascular and
paediatric (0—14 years) respiratory
hospitalisations.

» Aluminium, mineral dust tracer, was associated
with adult cardiovascular admissions and
respiratory hospitalisations mainly among those
>15 years.

» Multipollutant models indicate independence of
associations from different sources.

abrasion and tyre and brake wear, is of particular
concern.’

While earlier epidemiological studies had identi-
fied associations between residence proximity to
busy roads with outcomes such as cardiovascular
and respiratory mortality,’ cardiovascular disease
(CVD),* lung function,’ the large scale European
Study of Cohorts for Air Pollution Effects
(ESCAPE) using near traffic exposure metrics such
as particulate matter (PM) absorbance, nitrogen
oxides (NOx) or traffic load and intensity failed to
confirm associations with mortality,® incidence of
lung cancer,” cerebrovascular® or acute coronary
events.” Instead, this multicohort study provided
evidence that traffic exposure metrics were asso-
ciated with adverse paediatric respiratory out-
comes, ' and elevated blood pressure or prevalent
hypertension among adults."* Epidemiological time
series studies of short-term exposure and health
effects have also reported mixed results for a range
of health end points with individual pollutants,
such as particles with aerodynamic diameter
<2.5 um (PM,s), nitrogen dioxide (NO,), carbon
monoxide (CO) or black carbon (BC)."*" A previ-
ous study in London, UK'® suggested that certain
particle components might be more important to
specific diseases, pointing to particle number con-
centrations for CVD and secondary pollutants for
respiratory outcomes. The biological mechanism
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for the traffic-related associations remains poorly understood,
although some toxicological studies have suggested pulmonary
and vascular inflammation as the relevant mechanism.' 2
Previous investigation of the relative contribution of pollu-
tants and sources using daily time-series analysis methods has
been limited by dependence on data from routine monitors.'
The ClearfLo project'® characterised, in detail, the air pollution
mixture in London between 2011 and 2012 and provided the
opportunity to conduct daily time-series analyses focusing on
specific sources, utilising data on the chemical composition of
particles, estimation of the urban increment, as well as routine
and study specific pollutant measurements. We selected a priori
those metrics that best represented general traffic sources, diesel
and petrol combustion, and non-exhaust sources (brake, tyre
and road resuspension) for inclusion in a time-series analysis of
respiratory and CVD daily emergency hospital admissions.

DATA AND METHODS

Data

Daily counts of emergency hospital admissions in London, UK
between 2011 and 2012 were constructed from individual
records of hospital admission obtained from the Hospital
Episode Statistics (HES) system. Outpatient visits, elective
admissions and visits to emergency department were not
included. Based on the primary discharge diagnosis, daily
numbers of admissions for CVD (International Classification of
Diseases, 10th revision—ICD-10: 100-199) for those aged 15-
64 (adult) and 65+ vyears (elderly), and respiratory diseases
(ICD-10: J00-J99) for those aged 0-14 years (paediatric), adult
and the elderly were calculated.

Using data collected from the ClearfLo project,'® supplemen-
ted by local measurements made at the North Kensington urban
background site, we assembled a database of metrics for 2011-
2012, that included daily concentrations of particle mass (for
particles with aerodynamic diameter <10um (PM;o), or
PM,s), as well as particle composition (carbon, anions and
metals) and gases (NO,, NOx, CO, sulfur dioxide (SO,) and
ozone (Oj3)). All concentrations were based on 24 h averages
except for CO and O; for which the maximum 8 h moving
average was computed. Daily concentrations of NOx, CO, BC
and EC attributable to London sources rather than air mass
transport were estimated by calculating the urban increment
between North Kensington and two monitoring sites in the
rural area around London dependent on wind direction each
day.ZO

We then adopted a hypothesis-driven approach to the ana-
lyses. Based on a review of the literature on source identifica-
tion, the London atmospheric emissions inventory?’ and
analysis of temporal trends and correlations we selected, a
priori, pollutants to represent specific traffic sources (see online
supplementary annexes 1-3 for detailed description and justifi-
cation of selected pollutants, including correlation coefficients).
In brief: (1) NOx was selected as a general traffic indicator, as
47% of it is emitted by road transport;*! (2) CO was selected as
a proxy for emissions from petrol vehicles in London, as the
contribution from petrol cars ranges from 0.07% to 0.9%, as
compared with 0.01% to 0.07% for diesel vehicles;>* (3) elem-
ental carbon (EC) in PM;q and black carbon (BC) in PM, s
were chosen as indicators of diesel exhaust as studies of real-
world vehicle emissions in London have demonstrated that
diesel vehicles are overwhelmingly the largest emitters of EC
and BC;** (4) copper (Cu) in PM;, was selected as the indicator
of brake-generated particles, as it is the most abundant element
in brake linings and is found in high abundance in brake dust;**

(5) zinc (Zn) to reflect tyre-generated particles;** and (6) alu-
minium (Al) as a marker of dust resuspension, as it occurs in
sufficient quantities and is not identified in other sources.”
Regulated pollutants (PM;g, PM, 5, NO,, SO, and O3) were
also selected for comparability with previous findings and
mutual control in multipollutants’ models. There were few
missing values in the pollution time-series (ranging from 0% for
particle mass concentrations and CO to 19% for EC urban
increment).

Time series of daily temperature (°C, mean) and relative
humidity (%) were obtained from a meteorological tower
located close to the North Kensington monitoring site.

METHODS

We investigated the associations between short-term exposure to
traffic-related pollutants and daily hospital admissions using
Poisson regression models allowing for overdispersion. The
model was of the form:

logE[Y.] = By + b x Pol, + s(time;) + Zi s(X;t)

where E[Y] is the expected value of the Poisson distributed vari-
able Y, indicating the daily outcome count on day t with Var(Y,)
=¢@E[Y,], ¢ being the overdispersion parameter, time, the con-
tinuous variable indicating the time (day) of event (from 1 to
731), Pol, the pollutant concentration on day t, X;, the value of
confounder X; on day t, and s denotes smoothing functions. We
used penalised regression splines®® as smoothing functions s to
capture the association between time-varying covariates, calen-
dar time and health outcome. Degrees of freedom (df) for long-
term trends were based on the minimisation of the absolute
value of the sum of the partial autocorrelations function (PACF)
of the residuals from lags 1 to 30, imposing a minimum of 3 df
per year. We also included dummy variables for the day of the
week and public holidays. For the analysis of respiratory admis-
sions among ages 0-14 and 15-64 years we included an extra
dummy variable denoting the month of August, as the decrease
in the respiratory admissions at this period could not be suffi-
ciently captured by the smooth term of seasonality. We con-
trolled for mean daily temperature and relative humidity to
address any potential confounding effects of weather. For tem-
perature control we applied a natural spline with 3 df for same
day’s exposure (lag 0) to capture the effect of high temperatures
on health, while to capture the health effects of lower tempera-
tures we used the corresponding function on the average of the
six previous days exposure (lags 1-6), as these terms minimised
the Akaike’s Information Criterion. For relative humidity adjust-
ment, we included a linear term for the average of the same and
the two previous days, sufficient to capture any residual weather
confounding. When we investigated the associations with EC/
BC and metal components of particles, we also controlled for
particle mass (PM;, for EC and metals and PM, 5 for BC), as a
way to distinguish the effect of the particular constituent from
the rest.””

We decided a priori which lags of the pollutants to be
included in the models: previous day’s exposure for CVD
admissions (lag1) and previous 2 days’ exposure for respiratory
admissions (lag2), based on prior indications of longer lags for
respiratory outcomes.'® To investigate any prolonged effects, we
additionally applied unconstrained distributed lag models for
the previous week’s exposure (lags 0-6).

We applied multipollutant models after considering the
correlations between pollutant pairs (see online supplementary

Samoli E, et al. Occup Environ Med 2016;73:300-307. doi:10.1136/0oemed-2015-103136

301



Table 1 Descriptive characteristics of hospital admissions counts, traffic-related pollutants and meteorological variables in London, UK for
2011-2012
Number of days Mean Median IQR (75th-25th centile) 90th Centile

Hospital admissions
Cardiovascular (years)

15-64 731 56 57 25 Al

65+ 731 102 104 37 124
Respiratory (years)

0-14 731 46 45 23 72

15-64 731 64 63 16 81

65+ 731 96 91 28 125
Pollutants (ug/m>; CO in mg/m’)
General traffic indicator

NOx 706 55.3 41.2 413 106.5

NOXx urban increment 703 425 30.8 33.1 84.4
Petrol vehicle exhaust

(«0] 729 0.3 0.3 0.2 0.5

CO urban increment 724 0.10 0.08 0.09 0.21
Diesel vehicle exhaust

EC (in PM;) 682 1.0 0.8 0.8 1.9

EC urban (in PM;) 590 0.8 0.6 0.5 1.4

BC (in PM; 5) 702 1.5 1.2 1 2.8

BC urban (in PM, s) 629 0.9 0.7 0.6 1.8
Vehicle non-exhaust

Cu (in PM;q) 677 0.0093 0.0072 0.0075 0.0176

Zn (in PM;) 677 0.012 0.0087 0.0091 0.0246

Al (in PM;q) 677 0.076 0.0555 0.0605 0.1528
Regulated pollutants (ug/m?)

PM;qo 729 18.4 15.0 10 325

PM, 5 730 12.2 9.0 8 25.0

NO, 706 36.3 333 23.7 58.1

SO, 717 1.8 1.8 2.2 3.6

03 716 55.4 54.7 30.3 85.9
Meteorological parameters

Mean temperature (°C) 731 11.70 11.70 7.5 18.10

Relative humidity (%) 731 76.43 78.00 14.6 88.50

PM, particulate matter; PM, 5, particles with aerodynamic diameter <2.5 um; PM;, particles with aerodynamic diameter <10 um.

annex 3). We included pollutants in a model in cases when the
correlation was below 0.7. Specifically we applied two pollutant
models to test the robustness of the associations with gases and
three pollutant models for EC/BC and metal components of
particles. For gases, the second pollutant entered in the model
was selected in order to test the hypothesis of independent
effects between traffic or long-range transport-related metrics
(NOx or CO controlling for PM, s or EC, SO, and O3). For
EC/BC and metals, for which already the corresponding particle
mass was controlled in the model, we additionally adjusted for
NOx and CO. In order to minimise the correlation between the
three metrics, instead of adding the third metric in the model,
we initially regressed the gaseous pollutant on particle mass
(PM; or PM,5) and consequently entered the model residuals
in the model to adjust for any remaining effect not attributed to
particles.””

We investigated the associations by season defined as warm
(April-September) and cool (October—-March) period to test the
hypothesis of effect modification due to differential sources and
exposure misclassification between periods. For these analyses
we controlled for seasonality and long-term trends using indica-
tor variables per month per year of the study, while the rest of
the confounding control was the same as in the annual model.

All models were fit in R V.3.0.3 (R development Core Team
(2011), ISBN 3-900051-07-0, URL http:/www.R-project.org)
using the package mgcv (V.1.7-28). Results in tables and plots
are presented as per cent change associated with an IQR
increase in the pollutant’s concentration.

RESULTS

Table 1 presents descriptive statistics for the daily number of
hospital admissions, daily concentrations for the pollutants and
meteorological parameters. The greater London area had a
population of 9 787 426 inhabitants (2011 Census). The mean
number of hospital admissions per day varied from 104 for
CVD in the elderly to 46 for paediatric respiratory diseases.
Mean PM concentrations were 18.4 ug/m®> for PM;, and
12.2 ug/m3 for PM, 5, while mean concentrations of gaseous
pollutants were 55.3 pg/m’® for NOx, 1.8 ug/m® for SO, and
0.3 mg/m® for CO. The urban increment of NOx, CO, EC and
BC accounted for most of the measured concentration, showing
them to be dominated by urban sources, with the exception of
CO (mean concentration 0.3 mg/m’, with estimated urban
increment of 0.1 mg/m’). Higher concentrations of
traffic-related pollutants were recorded during the cool period
(see online supplementary annex 3), however the roadside
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Table 2  Per cent change (and 95% Cls) in cardiovascular and respiratory hospital admissions associated with an IQR increase in traffic-related

pollutants after acute exposure (lag 1 for cardiovascular and lag 2 for respiratory diagnoses) in London, UK for 2011-2012

Indicator/pollutants

CVD admissions % (95% CI)

Respiratory admissions % (95% CI)

15-64 years

65+ years

0-14 years

15-64 years

65+ years

General traffic

NOx 0.86 (—0.28 to 2.02) —0.32 (-1.19 to 0.56)

NOx—urban 0.92 (—0.15 to 2.00) —0.15 (—0.97 to 0.67)
Petrol vehicle exhaust

(€0] 1.59 (0.12 to 3.07) —0.60 (—1.71 to 0.52)

CO—urban 0.95 (—0.06 to 1.98) —0.16 (—0.93 to 0.62)
Diesel vehicle exhaust

EC 1.63 (0.15 to 3.13) 0.18 (—0.94 to 1.32)

EC—urban 1.28 (0.17 to 2.40) 0.14 (—0.72 to 1.00)

BC 1.65 (0.11 to 3.21) 0.56 (—0.61 to 1.74)

BC—urban 0.74 (—0.47 t0 1.97) —0.04 (—0.97 to 0.89)
Vehicle non-exhaust

Cu 1.39 (—0.03 to 2.83) 0.06 (—1.02 to 1.16)

Zn 0.08 (—1.25 to 1.42) 0.16 (—0.85 to 1.18)

Al 0.43 (—1.18 to 2.07) —1.14 (-2.35 to 0.09)

1.06 (—0.43 to 2.57)
1.07 (-0.31 to 2.46)

1.05 (—0.96 to 3.10)
0.97 (-0.40 to 2.36)

0.72 (—1.22 to 2.70)
1.27 (-0.21 to 2.78)
0.86 (—1.13 to 2.88)
1.08 (—0.50 to 2.68)

0.08 (—1.81 to 2.01)
—0.92 (-2.72 to 1.47)
0.19 (-2.22 to 2.66)

—0.81 (-1.92 to 0.31)
—0.60 (—1.64 to 0.46)

—1.11 (-=2.57 to 0.36)
0.21 (-0.80 to 1.24)

—0.19 (-1.63 to 1.27)
—0.03 (—1.12 to 1.08)
—0.20 (-1.71 to 1.33)

0.44 (—0.78 to 1.66)

—1.18 (-2.60 to 0.26)
—0.38 (—1.73 to 1.00)
0.82 (—0.84 to 2.50)

—1.76 (=2.77 to —0.74)
—1.51 (-2.45 to —0.55)

—2.10 (-3.43 to —0.75)
—0.59 (-1.52 to 0.34)

—0.88 (=2.19 to 0.45)
—0.05 (—1.04 to 0.96)
—1.09 (-2.47 t0 0.31)
—0.01 (-1.10 to 1.09)

—1.60 (—2.89 to —0.28)
—0.73 (-1.96 to 0.52)
1.38 (=0.15 to 2.94)

EC/BC and metals are adjusted for PM mass.
CVD, cardiovascular disease; PM, particulate matter.

enrichment factors were lower, when compared with the warm
period. Cool period enrichment factors for NOx, BC, EC and
CO were 3.5, 4.5, 4.2 and 1.1 respectively, increasing to 6.8,
7.2, 7.3 and 1.8 during the warm months, implying that road-
side sources were more dominant in the warm period, even
though total pollutant concentrations were lower. Overall
period correlations among pollutants ranged from 0.2 (correla-
tions with O3) to >0.9 (see online supplementary annex 3).
Specifically, correlations of CO were: 0.83 with NOx, 0.77 with
BC and 0.62 with Cu. Correlations using the urban increment
of the pollutants were substantially smaller than those with the
total measured concentration; for example, the correlation
between NOx and CO was 0.83, but was reduced to 0.41 when
only the urban increment was considered.

Table 2 presents the per cent change in hospital admissions
for an IQR increase in the concentrations of the traffic-related
pollutants following single day exposure (lagl for CVD and
lag2 for respiratory diagnoses). Associations with regulated pol-
lutants are presented in online supplementary annex 4 as these
were not the focus of the present analysis. Table 3 presents the
per cent change following weekly exposure (lags 0-6).

General traffic indicator

Both the total measured concentration at North Kensington and
the urban increment of NOx displayed positive associations
(table 2) with CVD adult admissions and paediatric respiratory
admissions. Moreover, when considering longer lags of expos-
ure (lags 0-6, table 3) NOx presented an adverse association

Table 3 Per cent change (and 95% Cls) in cardiovascular and respiratory hospital admissions associated with an IQR increase in traffic-related
pollutants after weekly exposure (lags 0-6) in London, UK for 2011-2012

Indicator/pollutants

CVD admissions % (95% Cl)

Respiratory admissions % (95% Cl)

15-64 years

65+ years

0-14 years

15-64 years

65+ years

General traffic

NOx —0.92 (-2.98 t0 1.18) 0.20 (—1.38 to 1.80)

NOx—urban —0.37 (—2.43 to 1.73) 0.45 (—1.12 to 2.04)
Petrol vehicle exhaust

(€0] 1.03 (—1.85 to 3.99) —1.18 (-3.31 to 1.01)

CO—urban 2.52 (0.17 to0 4.92) —1.08 (—2.82 t0 0.69)
Diesel vehicle exhaust

EC 1.39 (—1.59 to 4.45) 2.36 (0.05 to 4.73)

EC—urban 1.46 (—0.93 to 3.91) 1.65 (—0.18 to 3.52)

BC 0.13 (—2.84 to 3.19) 1.49 (—0.82 to 3.86)

BC—urban 0.49 (—3.00 to 4.11) 2.13 (=0.57 t0 4.91)
Vehicle non-exhaust

Cu 2.23 (—0.39 to 4.91) 1.11 (-0.88 to 3.14)

Zn 0.91 (—1.96 to 3.87) 0.12 (-2.08 to 2.37)

Al 0.75 (-2.01 to 3.59) 0.32 (—1.78 to 2.47)

4.01 (0.76 to 7.37)
3.86 (0.67 to 7.16)

4.94 (0.1 to 10.00)
4.02 (0.24 to 7.93)

1.64 (—2.85 to 6.35)
2.59 (—1.45 to0 6.79)
4.01 (—0.70 to 8.94)
1.34 (-3.76 to 6.70)

—5.60 (-9.28 to —1.77)
—4.26 (—8.24 to —0.11)

—6.43 (—11.08 to —1.55)

—1.67 (—3.70 to 0.39)
—0.95 (=2.97 to 1.11)

—2.51 (=5.29 to 0.36)
—0.31 (-2.64 to0 2.07)

—1.62 (—4.54 to 1.39)
0.56 (—1.96 to 3.14)
—0.87 (-3.84 t0 2.21)
0.64 (—2.88 to 4.29)

—1.98 (—4.58 to 0.70)
—3.17 (=6.00 to —0.25)
2.46 (—0.50 to 5.50)

—5.13 (-6.98 to —3.24)
—4.77 (-6.61 to —2.90)

—8.81 (—11.28 to —6.28)
—3.68 (-5.87 to —1.43)

—2.97 (-5.69 to —0.18)
—0.02 (—2.38 to 2.40)
—3.11 (=5.91 to —0.23)
—0.40 (-3.61 to0 2.91)

—2.13 (-4.57 to0 0.36)
—2.53 (=5.15 to 0.16)
4.49 (1.62 to 7.473)

EC/BC and metals are adjusted for PM mass.
CVD, cardiovascular disease; PM, particulate matter.
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with CVD admissions in the elderly, 0.20% increase (95% CI
—1.38% to 1.80%) for an IQR increase in total measured NOx
and 0.45% increase (95% CI —1.12% to 2.04%) for its urban
increment. Associations between measured concentrations of
NOx, and its urban increment, and paediatric respiratory hos-
pital admissions were also observed, 4.01% (95% CI 0.76% to
7.37%) and 3.86% (95% CI 0.67% to 7.16%) respectively.
Negative associations, for both the total and the urban part con-
centration, irrespective of the lag structure, were observed for
respiratory admissions in the elderly population.

Petrol vehicle exhaust indicator

CO, total concentration and urban increment, was associated
with CVD adult admissions, more strongly following lag 1
exposure for CO (1.59% increase (95% CI 0.12% to 3.07%),
table 2) and lags 0-6 exposure for its urban increment (2.52%
increase (95% CI 0.17% to 4.92%), table 3). Positive associa-
tions were also estimated for paediatric respiratory admissions
that became higher for longer exposures, while the opposite pat-
terns were observed for respiratory admissions in the elderly.

Diesel vehicle exhaust indicators

Adverse associations with all CVD outcomes were estimated for
EC following acute exposure (table 2) among adults for the
total measured mass (1.63% increase, 95% CI 0.15% to 3.13%)
and for the urban increment (1.28%, 95% CI 0.17% to
2.40%). Similar adverse associations were also observed after
prolonged exposure (lags 0-6, table 3) among the elderly for
total measured mass (2.36% increase, 95% CI 0.05% to 4.73%)
and the urban increment (1.65%, 95% CI —0.18% to 3.52%).
Positive associations were also estimated for paediatric respira-
tory hospital admissions (tables 2 and 3); while adverse associa-
tions among the adult and elderly age groups were estimated
only for weekly exposures to the urban increment (table 3).

BC, both total and urban increment, also displayed positive
associations with all CVD outcomes (tables 2 and 3), except
with CVD admissions in the elderly group for lag 1, for which
no association was observed. Consistent positive associations
were also noted for all respiratory outcomes following either
acute (table 2) or weekly (table 3) exposure to the urban BC
contribution, while exposure to the total measured BC was asso-
ciated with paediatric respiratory admissions.

Vehicle non-exhaust (mineral dust, brake and tyre wear)
indicators

We found positive associations between Cu, Zn and Al in PMy
and CVD hospital admissions in adults (tables 2 and 3). Al was
positively associated with respiratory hospital admissions across
all age groups and exposure periods studied (tables 2 and 3)
with the single exception for lags 0-6 exposure and paediatric
respiratory admissions. Conversely, we observed negative asso-
ciations between Cu and respiratory hospitalisations irrespective
of age and lag.

In summary, all traffic-related pollutants displayed adverse
associations with CVD admissions in adults after a single day
exposure, while positive effect estimates for EC and BC were
observed for CVD admissions among the elderly. Considering
weekly exposures, effect estimates for CVD admissions were
generally lower for adults compared with the elderly. We
observed positive associations with all pollutants except Zn on
paediatric respiratory admissions. The highest effect estimates
were for the association with the EC (1.27% increase) and BC
(1.08%) urban increment concentrations. Longer exposure
resulted in higher estimates for paediatric respiratory admissions

(except for metals). Only the urban increments of CO and BC,
and Al displayed an association with respiratory admissions
among adults, with only Al showing an association in the
elderly (1.38% increase).

In general, effect estimates of traffic pollutants on hospital
admissions displayed a consistent decreasing trend with increas-
ing age, while associations were higher with CVD as compared
with respiratory emergency admissions. For example an IQR
increase in BC was associated 1.65% increase in CVD admis-
sions in adults compared with a 0.56% increase in the corre-
sponding age group for respiratory admissions.

Effect estimates for regulated pollutants (PMyy, PM, 5, NO,
and SO,) also supported findings of effects only within the
younger age group, namely for adult CVD and paediatric
respiratory admissions (see online supplementary annex 4),
while only exposure to O3 was related to effects among the
older age groups (CVD 65+ years and respiratory >15 years).

The effect estimates derived from single pollutant models
were robust to adjustment of other pollutants (see online sup-
plementary annex 5). EC and Al presented the most consistent
associations, while there was indication of confounding between
CO and EC/BC that lowered the estimates; these nevertheless
remained positive.

Figure 1 presents the per cent change in hospital admissions
by warm and cool period of the year for an IQR following
single day exposure in traffic-related pollutants. Effect estimates
(and 95% ClIs) are presented in the online supplementary annex
6. The seasonal analysis revealed higher effect estimates during
the warmer period of the year, except for CVD admissions in
the elderly, although in general there was no difference in the
estimates between periods. The associations of EC with CVD
admissions for adult and paediatric respiratory admissions were
higher during the warm period, as was also the case for Al on
the latter outcome.

DISCUSSION
We investigated associations between short-term exposure to an
a priori selection of traffic-related pollutants and CVD and
respiratory hospital admissions in London, UK. We found con-
sistent positive associations between EC, BC and Al in PMyq
after a single day exposure and CVD outcomes in adults and
with paediatric respiratory admissions. Furthermore, 7 days
averages for these pollutants were associated with CVD admis-
sions in the elderly. These particular associations were larger in
the warm period of the year compared with the cooler period
although the differences did not achieve statistical significance.
The main strengths of our study are the range and the quality
of the pollution metrics assembled from routine and augmented
monitoring at a central urban background site, plus the capacity
to address the urban increment for metrics where parallel moni-
toring was performed at rural locations. Assembling a database
with such an extensive range of constituents is a major, and pos-
sibly unique, aspect of our study—an example of translational
research linking laboratory with epidemiology. Moreover,
London, due to its large size, provides the adequate number of
mean daily counts necessary for the variability of the time
series. We adopted a hypothesis-driven approach to select a
limited number of the available metrics to reflect potential
traffic sources to the urban air shed. This selection was informed
by a detailed review of the literature, data completeness and the
observed correlation structure between the available metrics.
This a priori selection of traffic indicators, as well as predefined
lags for CVD and respiratory admissions limited the number of
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uninformed comparisons performed and we believe strengthens
the robustness of our findings.

Although a limitation of the present study is the relatively
small sample size (2 years) for a time-series design, this was
compensated for by the completeness of the pollutant measure-
ments over the study period and the large baseline population.
An inherent drawback of time-series studies is the misclassifica-
tion induced due to the use of fixed monitors to estimate the
population’s exposure; in this case a single fixed site in North
Kensington, in inner London. Nevertheless, previous analyses
have identified positive associations using this urban background
site.”> We tested the sensitivity of the effect estimates of the regu-
lated pollutants (PM;o, PM, 5, NO,, CO and O3) obtained from
the North Kensington site to the ones from the average of the
daily measurements from available fixed monitoring stations scat-
tered around London and the results were comparable, for
example, an IQR increase in NO, from North Kensington was
associated with 1.00% (95% CI —0.87% to 2.91%) change in
CVD admissions 15-64 years, while the average of all urban and
suburban background monitors was associated with a 0.77%
(95% CI (-1.01% to 2.58%)) change. Nevertheless, due to pos-
sible differences in the spatial variability of the traffic-derived
pollutants measured in North Kensington, there remains a
chance of residual confounding, though these are not likely to
rule out causation, especially in pollutants that display consistent
associations.”® Although multiple comparisons for detection of
associations may have resulted in inflation of type I error, we
chose not to correct for this but instead identified associations

with pollutants that were consistent across different outcomes.
Finally, the chosen metrics did not entirely represent traffic
sources as they partly originate from other sources. The degrees
of specificity for traffic sources can be gauged from the roadside
enrichment factors (see online supplementary annex 1) which
varied from 1.3 for Al and Zn and 1.4 for CO, indicating a rela-
tively low contribution from traffic, to 4.6 for NOx, 4.7 for Cu
and 5.6 for BC, where traffic sources made a greater contribu-
tion. The contribution from traffic also varies by season; for
instance it was lower for NOx in winter when space heating also
contributed. Differential pollutant dispersion between seasons
also has an effect in addition to source changes.

The urban increments of EC and BC provided lower effect esti-
mates for CVD admissions and higher estimates for respiratory
admissions compared with the corresponding total concentra-
tions. There were indications of associations with both pollutants
among people below 65 years, while more prolonged exposure
was associated with CVD outcomes among the elderly (65+
years). In general, the BC urban increment revealed a more con-
sistent pattern. BC and EC were selected a priori as diesel
exhaust markers (see online supplementary annex 1) and the
results from the multipollutants’ analysis indicated that although
there was some confounding when adjusting for CO, as a petrol
exhaust marker, the adverse associations generally remained,
pointing towards independent effects of different sources. Recent
reviews>! 28 on BC health effects concluded that, although there
is sufficient evidence on short-term exposure and effects on car-
diopulmonary admissions, the toxicological evidence suggested
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that BC may not be a the major directly toxic component of fine
PM. BC may operate as a universal carrier of a wide variety of
chemicals of varying toxicity to the lungs, which may then
induce adverse effects within and beyond the respiratory system,
the body’s major defence cells and possibly the systemic blood
circulation. Alternatively, BC may act as a surrogate of true causal
pollutants correlated through a common source. Recent experi-
mental studies have demonstrated systemic effects of BC on arter-
ial blood pressure responses”® and of diesel exhaust itself on
haemoconcentration and thrombocytosis—potentially important
determinants of acute CVD events.*’

CO, selected as a petrol indicator, was associated with an
increased risk of CVD admissions among adults. The urban
increment in CO also provided consistent associations with adult
respiratory admissions. There was some indication of confound-
ing with EC and BC (as diesel markers) but the association was
still apparent. A meta-analysis of single or multicities results®’
reported evidence for adverse effects of short-term CO exposures
on hospitalisations due to respiratory or diagnoses-specific CVD
admissions, and Bell et a/>* also found evidence of an association
with risk of CVD hospitalisations in 126 US counties. Notably,
although in both studies concentrations of CO were well below
the EU air quality standards (http:/ec.europa.eu/environment/air/
quality/standards.htm) the associated health effect estimates were
high compared with the other pollutants.

We found little evidence of effects of NOx as a general traffic
marker, although there were positive associations with CVD
adult admissions that persisted in two pollutant models. The
increase in CVD is compatible with the higher systolic blood
pressure reported by Kubesch et al*’ following short-term
exposure to traffic-related air pollution. We also observed posi-
tive but not statistically significant associations with paediatric
respiratory admissions (1.06% increase per IQR). Previous panel
studies on children with asthma have reported adverse effects of
exposure to NOx,' while Iskandar et al*® using a time-series
design also reported increases in hospital admissions for asthma
among 0-18 years. On the other hand, consistent protective
associations were found with respiratory admissions among the
elderly. Protective associations are not supported by plausible
biological mechanisms, but it is possible that elderly patients
with respiratory conditions may avoid outdoor exposure as a
result of public health warning messages (air pollution forecasts
are incorporated into weather forecasts in the UK) or use
prophylactic medications and hence modify the associations
observed in our study. Most previous times-series studies have
focused on NO,. However, NOx may also reflect NO, effects
due to their high correlation (r=0.90), further supported by
their similar effect estimates. The WHO review' concluded that
there is consistent epidemiological evidence and some mechanis-
tic support for causality of some NO, direct effects. In our ana-
lysis adjustment for particles, sulfates or gaseous regulated
pollutants increased our effect estimates supporting the plausi-
bility of the reported associations.

Cu, Zn and Al in PM;, were selected as markers of non-
exhaust traffic contributions to PMyq. Al, selected as a mineral
dust tracer, demonstrated adverse associations with CVD admis-
sions in adults (0.43% increase per IQR) and with respiratory
admissions in adults (0.82% per IQR increment) and elderly
(1.38% per IQR increment). Bell et al** also reported effects of
Al on respiratory admission among the elderly, which is the
association with the highest effect estimate also in our analysis.
There was also some evidence of an association between Cu as
tracer of brake generated particles and CVD admissions.
Basagana et al®>’ using data from five Southern European cities

reported adverse associations of Cu on CVD morbidity, that
were higher than the ones found in London (1.94% increase
per IQR), but did not persist after adjustment for PM mass as in
our data. There is toxicological evidence for the biological
mechanism of effects, as Cu and Zn have both been linked to a
decrease in spontaneous beat rate, vasoconstriction and vaso-
dilatation.® However, we did not find convincing evidence for
an association between Zn and CVD or respiratory admissions,
although this metal has been studied and associations have been
previously reported.! 3°

The higher effect estimates of all traffic-related pollutants
observed in the younger age groups, between 15 and 64 years for
CVD and mainly in children 0-14 years for respiratory admis-
sions, are of particular interest. The underlying mechanisms for
the observed patterns may be attributed to age-specific different
diagnoses, but also to moderation of pre-existing disease (espe-
cially CVD) in the elderly. This hypothesis is also supported by
the indication of associations with CVD outcomes following
longer periods of exposure. Few epidemiological studies on the
effects of short-term exposure to air pollution have reported age
modification patterns in hospitalisations. Using European data
from the 1990s, Le Tertre et al’” found larger effects of particles
on CVD admissions among the elderly, but since 2000 the
increased use of statins and other medications for CVD diseases
could potentially have modified this risk. Higher respiratory
effects of particles in younger ages have been previously
reported,*® though previous reports of particle-related effects on
the elderly do not chimes with our current findings.*® *° Finally,
it is also possible that as a response to increased public awareness
during the past decades on the health effects of air pollution and
inclusion of air pollution levels and forecasts into the daily
weather forecasts, sensitive subgroups such as the elderly with
pre-existing conditions may have modified their time-activity pat-
terns resulting in modification of effects.

We found higher effect estimates between the selected
traffic-related pollutants (except for CO) and adult (15-64 years)
CVD admissions and respiratory admissions among those below
65 years of age during the warmer period of the year compared
with the cooler period. European epidemiological studies on the
health effects of short-term exposure to air pollution have
reported higher associations during the warmer period of the
year,'* 3% often attributed to better exposure characterisation of
the population. Nevertheless US studies*” have reported higher
numbers of hospitalisations for the elderly during the cool
period of the year suggesting that seasonal patterns may differ
across age groups that potentially follow different activity pat-
terns. Moreover, toxicity of particles originating from different
sources may vary between seasons and locations. In the current
analysis the roadside enrichment factors suggest that traffic
sources are more dominant in summer months due to seasonal
variation in sources and dispersion.

The results indicate consistent associations predominately
with EC/BC but also to a lesser degree with CO and PM;o Al
content, with CVD and respiratory admissions among younger
age groups. Although the specific effect estimates are variable to
the adjustment of other pollutants they remain largely consistent
in direction, indicating the independence of effects from differ-
ent traffic sources especially from diesel and petrol engines, as
well as resuspended mineral dust. Supporting this argument, the
cumulative effect of traffic-related pollution is not appropriately
captured from a general indicator such as NOx, possibly due to
differential patterns of pollutant correlations or associated
effects. This conclusion is crucial for planning public health pol-
icies aiming at the reduction of air pollution effects.
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Our findings point towards short-term exposure to exhaust
rather than non-exhaust-related pollutants as the ones mostly
associated with adverse effects on morbidity, previously attribu-
ted to traffic-related pollutants. As diesel-powered engines are
the main urban source of EC and BC, which presented the most
consistent indications, actions to further abate diesel emissions
should be prioritised as part of policy measures for protection of
public health. However, our results in respect to CO also suggest
that there should also be stricter control of emissions from petrol
combustion. The role of non-exhaust sources remains a concern
however and more extensive monitoring of traffic pollution in
urban centres is required to further elucidate the associations.
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