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ahg12 is a dominant proteasome 
mutant that affects multiple 
regulatory systems for germination 
of Arabidopsis
Shimpei Hayashi1,† & Takashi Hirayama2

The ubiquitin-proteasome system is fundamentally involved in myriad biological phenomena of 
eukaryotes. In plants, this regulated protein degradation system has a pivotal role in the cellular 
response mechanisms for both internal and external stimuli, such as plant hormones and environmental 
stresses. Information about substrate selection by the ubiquitination machinery has accumulated, 
but there is very little information about selectivity for substrates at the proteasome. Here, we report 
characterization of a novel abscisic acid (ABA)-hypersensitive mutant named ABA hypersensitive 
germination12 (ahg12) in Arabidopsis. The ahg12 mutant showed a unique pleiotropic phenotype, 
including hypersensitivity to ABA and ethylene, and hyposensitivity to light. Map-based cloning 
identified the ahg12 mutation to cause an amino acid conversion in the L23 loop of RPT5a, which is 
predicted to form the pore structure of the 19S RP complex of the proteasome. Transient expression 
assays demonstrated that some plant-specific signaling components accumulated at higher levels 
in the ahg12 mutant. These results suggest that the ahg12 mutation led to changes in the substrate 
preference of the 26S proteasome. The discovery of the ahg12 mutation thus will contribute to elucidate 
the characteristics of the regulated protein degradation system.

As sessile organisms, plants cannot move and therefore need internal mechanisms to respond to environmental 
conditions. Accordingly, plants have developed unique response and adaptation systems to cope with the envi-
ronment, including environmental stresses. Physiological and genetic studies have shown that plants are able to 
sense tiny environmental changes, such as fluctuations in light intensity, CO2 concentration, temperature, various 
chemicals, minerals, and water pressure, as well as touch and attack by pathogens or animals. The stimuli received 
from environmental changes are transduced to nuclei, where these multiple stimuli seem to be processed and 
integrated to evoke adequate and timely regulation of sets of genes for environmental adaptation1–6.

Recent studies on gene regulatory systems in plants have highlighted the importance of the 
ubiquitin-proteasome protein degradation system in the modulation of gene expression responding to environ-
mental and developmental stimuli7,8. Light is an important signal for photosynthetic organisms and represents 
one of the major developmental cues for plants, regulating germination, skotomorphogenesis, flowering, and 
senescence1. The activity of key transcriptional factors, such as HY5 and PIFs, in the gene regulatory system 
responsive to light stimuli, is modulated by the ubiquitin proteasome system9.

Plant hormones also play pivotal roles in developmental processes and responses to environmental stresses. 
These compounds function as signaling molecules in the long-distance cell-cell communication systems in 
plants10,11. In the last decades, the molecular mechanisms underlying the signaling pathways of plant hormones 
from signal perception to the resulting gene regulation have been elucidated significantly. Interestingly, proteas-
omal protein degradation is deeply involved in the all of the plant hormone signaling pathways7,12. For example, 
indole acetic acid (IAA), or auxin, which is major developmental regulator, is recognized by a protein complex 
composed of a ubiquitin E3-ligase named TIR1 and its target protein AUX/IAA13–15. IAA stabilizes the interaction 
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between TIR1 and AUX/IAA and facilitates the degradation of this inhibitory protein to activate auxin-responsive 
gene expression. In addition, EIN3, the pivotal transcription factor in the ethylene signaling pathway, is unstable 
and degraded by the ubiquitin-proteasome system in the absence of ethylene, whereas it becomes stable and acti-
vates ethylene-responsive genes in the presence of ethylene16,17. The proteasome is also involved in responses to 
abscisic acid. ABI5 and ABI3, important transcription factors involved in the abscisic acid response in the early 
germination stage, are targets of the ubiquitin-proteasome system18,19.

The proteasome is very large protein complex composed of the catalytic 20S core particle (CP) and 19S regu-
latory particle (RP)20. The CP comprises four heptameric rings (two α 1-α 7 rings and two β 1-β 7 rings) forming 
a barrel-like structure, in which the substrate protein is degraded in an ATP-dependent manner. The RP consists 
of 19 subunits and can be subdivided into the lid subcomplex and the base subcomplex. The lid subdomain con-
sists of non-ATPase subuinit proteins RPN1-RPN13. Among them, RPN10 and RPN13 have the ability to bind 
ubiquitin while RPN11 removes ubiquitins from the ubiquitinated proteins21–23, suggesting that the lid subcom-
plex is involved in the recognition of ubiquitinated proteins . The base subcomplex consists of six homologous 
AAA-ATPases, RPT1-RPT6. These ATPases are thought to unfold the traget proteins and deliver them to the 
CP24,25 . Structural analyses of the RP have revealed the relative position of each component and are consistent 
with the predicted functions of these proteins26–28.

Accumulated evidence suggests that each subunit of RP has specific functions in plant physiological phe-
nomena, presumably through the regulation of protein degradation. RPN10- and RPN12-defective mutants 
are altered in the responses to plant hormones such as auxin and cytokonin in Arabidopsis29,30. Mutations in 
RPN1 of Arabidopsis cause embryogenesis and growth defects31,32. Studies of RPT2 mutants indicated RPT2 is 
required for meristem maintenance and gametophyte or sporophyte development33,34 and that RPT2 is involved 
in gene silencing via DNA methylation35. A loss-of-function mutation of RPT5a, one of the two RPT5 genes in 
Arabidopsis, results also in defects in sporophyte development36. Furthermore, RPT2a and RPT5a are required 
for Zinc deficiency-tolerance in Arabidopsis37. This non-redundancy in the function of RPT1-6 has also been 
reported in the yeast system25,38.

Here we report the novel RPT5a allele of Arabidopsis, ABA hypersensitive germination 12 (ahg12). The ahg12 
mutant was isolated based on its weak ABA hypersensitivity at the germination stage39. In this study, we found 
that this mutant has a pleiotropic phenotype, including ethylene hypersensitivity and diminished dormancy. We 
found that the ahg12 mutation alters an amino acid residue in RPT5a. This amino acid residue is outside of the 
ATPase domain but is highly conserved among RPT5 orthologs. Recent structural analyses of the PAN complex 
of the archaea Mathanocoldococcus jannaschii and the RP complex of fission yeast revealed this residue to be in 
the L23 loop, which is predicted to form a pore structure of the base subcomplex40–42. Detailed analysis of the 
ahg12 mutation will provide information related to the function of RPTs and the RP subcomplex.

Results
ahg12 exhibits a pleiotropic phenotype in germination.  Compared to the wild type, ahg12 mutant 
shows greater growth inhibition in response to exogenously applied ABA during seed germination using radicle 
emergence and post-germination growth as phenotypic markers (Fig. 1). It is unlikely that the enhanced ABA 
response in the mutant is conferred by an increased amount of endogenous ABA, because the ahg12 mutant was 
isolated originally from a mutagenized population of aba2-1 seeds that are deficient in ABA biosynthesis and is 
not the reversion mutant of aba2-1 regarding its mapped position39. Therefore, the ahg12 mutant is more likely 
to have changes in sensitivity to ABA. The ABA-hypersensitive phenotype was also observed in the F1 progeny 
of a cross between ahg12 and wild-type plants, indicating that the ahg12 mutation confers ABA hypersensitivity 
in a dominant manner. To investigate the ABA sensitivity of ahg12 at the seedling stage, we measured the root 
elongation rate. We found no significant differences between wild type and ahg12 in root growth rate at the 
seedling stage in the presence of various concentrations of ABA (Fig. S1). These findings suggest that the ABA-
hypersensitive phenotype of ahg12 is restricted to the germination or early germination stage.

ABA is involved in the seed dormancy. In some cases, a positive correlation between ABA sensitivity and seed 
dormancy has been observed43,44. To investigate seed dormancy of the ahg12 mutant, we compared the effects 
of various stratification periods on seed germination between ahg12 and wild type using seeds harvested on the 
same date. Interestingly, without stratification, the ahg12 mutant showed higher germination rates than wild type 
(Fig. 2a). This result indicated that the ahg12 mutant displayed lower seed dormancy despite its enhanced ABA 
sensitivity. After a 2-day stratification, the seed germination rate of ahg12 was almost equal that of wild type.

The above results suggested that the physiological status of the ahg12 seed during germination is markedly 
different from that of wild type. Thus, the responses of ahg12 at the germination stages to other stimuli were also 
investigated. Light is an important stimulus that affects germination of Arabidopsis. Accordingly, we investigated 
the germination rates of stratified seeds exposed to light for different lengths of time. The ahg12 seeds required 
longer light exposure to reach a similar rate of germination as the wild-type seeds (Fig. 2b), indicating a reduced 
responsiveness of ahg12 to light during seed germination.

We next investigated responses of the ahg12 mutants to other phytohormones. The growth-inhibition 
or -promotion effects of auxin, cytokinin, and gibberellin were not markedly different between ahg12 and 
wild type in terms of hypocotyl length and root elongation rates (Fig. S2). Interestingly, there was a sig-
nificant difference in sensitivity to ethylene. When grown on medium containing the ethylene precursor 
1-aminocyclopropane-1-carboxylic acid (ACC), the ahg12 mutant showed clearly shorter roots and dark-grown 
hypocotyls than wild type, indicating a hypersensitivity to ethylene in the mutant (Fig. 3).

Taken together, our results demonstrate that ahg12 is a mutant with a unique combination of phenotypes: 
increased sensitivity to ABA, decreased dormancy, decreased responsiveness to light during seed germination, 
and increased sensitivity to ethylene.
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Figure 1.  Seed germination of ahg12 is hypersensitive to ABA. (a) Germinating seeds of ahg12 in the 
presence of ABA. Imbibed and stratified seeds of wild type (WT), ahg12, and F1 progeny between ahg12 and 
WT were grown on plates containing ABA for 7 days. (b) Germination rate of ahg12 in the presence of ABA. 
Imbibed seeds (> 50) of WT and ahg12 were stratified and then sown on plates containing ABA. Seeds that 
showed radicle emergence or post-germination growth (expansion of green cotyledons) were counted. The data 
are mean of three independent experiments. Error bars indicate standard deviation.
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The ahg12 mutation localizes to the pore structure of the RP complex.  To identify the ahg12 
mutation, genetic linkage analysis of the F2 generation (approximately 800 lines) of a test cross between ahg12 
(Col) and wild type (Ler) was undertaken. The ABA-hypersensitive phenotype was linked to a genomic region 
containing 35 genes on chromosome 3. Using DNA sequencing analysis, a point mutation consistent with effect 
of the EMS mutagen used to generate these mutants was identified in the At3g05530 gene, which encodes the pro-
teasome RP AAA-ATPase 5a (RPT5a) (Fig. 4a,b). The mutation was located in the third exon of the RPT5a gene 
and caused an amino acid substitution, Ser112 to Phe. Amino acid sequences of RPT5 orthologs are conserved 
in eukaryotes such as yeasts and animals, and this Ser112 residue is exceptionally highly conserved (Fig. 4c). 
However, mutants altered at the corresponding amino acid residue have not been reported previously.

To confirm that this mutation is responsible for the ABA hypersensitivity, we generated the transgenic plants 
expressing the RPT5a gene with the identified mutation and investigated their ABA sensitivity in seed germina-
tion. In spite of possessing a wild-type copy of RPT5a as an endogenous gene, the transgenic plants expressing the 
ahg12 allele showed higher sensitivity to ABA than wild type (Fig. 4d). This dominant effect of the transgene was 

Figure 2.  Pleiotropic phenotype of ahg12. (a) Efficiency of stratification in ahg12. Imbibed seeds (> 60) 
of ahg12 and WT were incubated at 4 °C in the dark for the indicated periods (0 or 2 days) and then grown 
under normal conditions. Seeds that showed radicle emergence were counted every day. The data are means 
of three independent experiments. Error bars indicate standard deviation. (**P <  0.01; t-test after arcsine-
transformation) (b) Efficiency of light exposure to induce seed germination. Imbibed and stratified seeds of 
ahg12 and WT were exposed to the light (white fluorescent light, about 150 E/s.m2) for the indicated periods 
(15, 30, 60, and 120 min). The seeds (> 50) were grown in dark for 4 days, and then germinated seedlings 
were counted. The data are means of three independent experiments. Error bars indicate standard deviation. 
(*P <  0.05; t-test after arcsine-transformation).
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Figure 3.  ahg12 is hypersensitive to ethylene. (a) Etiolated seedlings of ahg12 grown on plates containing 
ethylene precursor. Imbibed seeds of wild type (WT) and ahg12 were stratified for 2 days and then grown 
on plates with or without 1-aminocyclopropane-1-carboxylic acid (ACC, 10 μ M) for 4 days. (b) Hypocotyl 
length of the etiolated ahg12 seedlings grown on plates containing ethylene precursor. Hypocotyl lengths of the 
etiolated seedlings (> 20) grown on plates containing various concentrations (0, 0.1, and 10 μ M) of ACC for 4 
days were measured. (c) Root growth rate of ahg12 seedlings grown on plates containing ethylene precursor. 
Root length of 4-day-old seedlings grown on normal plates were measured, and seedlings were transferred to 
ACC-containing plates. After 4 days, root length was measured again to calculate the growth rate. The data are 
means of three independent experiments. Error bars indicate standard deviation. Asterisks indicate significant 
differences between the corresponding values. (*P <  0.05; **P <  0.01; t-test after arcsine-transformation).
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Figure 4.  ahg12 is a novel mutant allele of RPT5a. (a) Schematic representation of the AHG12 gene and the 
ahg12 mutation site. A transition mutation (C to T) was detected at codon 112 of the At3g05530 gene in ahg12. 
White and black boxes indicate untranslated regions and exons, respectively. (b) Schematic representation of 
AHG12/RPT5a protein. The approximate position of the ahg12 mutation site is shown. (c) Alignment of the 
polypeptide sequences around the amino acid residues corresponding to the ahg12 mutation site (red square) 
of RPT5 from various organisms. Identical amino acid residues are shown with a black background. (d) ABA 
sensitivity of transgenic plants expressing a modified RPT5a gene and T-DNA disruptants of RPT5a (rpt5a-4). 
Genomic RPT5a with the ahg12 mutation containing putative promoter and terminator regions was introduced 
into WT plants (WT +  RPT5aS112F). Imbibed and stratified seeds were sown on plates with or without ABA (0.3 
μ M) and grown for 7 days.
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consistent with the dominancy of ahg12, demonstrating that the identified mutation is responsible for the ABA 
hypersensitivity of ahg12. We also investigated the ABA sensitivity of a T-DNA insertional disruptant mutant of 
RPT5a (rpt5a-4, SALK_046321, Fig. S3) as a second allele of ahg12. However, the rpt5a-4 mutant did not show 
ABA hypersensitivity (Fig. 4d). This difference between phenotypes suggests that ahg12 does not cause inactiva-
tion of RPT5.

RPT5 is a subunit of the 26S proteasome complex. The dominant effect of ahg12 implied that the mutation 
affected some function of this complex. To investigate whether the ahg12 mutant is deficient in the protein deg-
radation mediated by the proteasome, the mutant’s sensitivity to canavanine was evaluated. Canavanine, an 
analog of arginine, is incorporated into newly synthesized proteins and changes physicochemical properties of 
the proteins. Mutants that are deficient in the ubiquitin-proteasome system show increased sensitivity to the 
toxicity of proteins containing canavanine32,45. Consistent with previous studies, rpt5a-4 showed higher sensi-
tivity to canavanine than wild type, probably due to a lower capacity for removal of toxic proteins (Fig. 5a). 
This growth-inhibitory effect was prominently visible in the root tissues, which were directly in contact with the 
medium containing canavanine. By contrast, the canavanine sensitivity of ahg12 was almost the same as that of 
wild type. This result suggests that the proteasome-mediated protein degradation system is essentially functional 
in the ahg12 mutant. Consistent with this, the levels of total polyubiquitinated proteins determined by immunob-
lot analysis using with an antibody recognizing ubiquitinated proteins were similar between ahg12 and wild type 
(Fig. 5b).

Arabidopsis has two genes that encode RPT5: RPT5a and RPT5b (Fig. S4). To investigate the possibility that 
the presence of RPT5b contributed to the ABA hypersensitivity in ahg12, we generated a double mutant between 
ahg12 and a T-DNA disruption mutation in RPT5b (rpt5b-3). The double mutant showed ABA hypersensitiv-
ity during seed germination similar to that of the ahg12 single mutant (Fig. 5c, Fig. S5), demonstrating that 
the ABA-hypersensitive phenotype in ahg12 is independent of RPT5b. It was reported that dysfunction of both 
RPT5a and RPT5b leads to sterility36. However, we successfully obtained the double mutant between ahg12 and 
rpt5b. This result supports the idea that the RPT5aahg12 is functional as RPT5.

To examine potential functional differences between RPT5a and RPT5b, a recombinant RPT5b gene with an 
ahg12-like mutation (Ser111 to Phe, RPT5bS111F, Fig. S4) was introduced into wild-type plants. However, unlike 
the case of ahg12, the obtained transgenic plants, in which RPT5bS111F is the major RPT5b transcript, did not show 
any ABA hypersensitivity during seed germination (Fig. S6). This result suggests that there are functional differ-
ences other than the gene expression pattern between RPT5a and RPT5b.

Since serine is the major target for protein phosphorylation in eukaryotes, we speculated that the Ser112 of 
RPT5a might be a phosphorylation site. To investigate this possibility, we generated a construct for recombinant 
RPT5a in which Ser112 was converted to aspartic acid to mimic phosphorylation and introduced it to wild-type 
plants. We obtained several independent transgenic lines but did not detect any abnormal ABA sensitivity in 
germination (Fig. S6).

Based on structural data for the 26S proteasome derived from Saccharomyces cerevisiae27, the ahg12 mutation 
site, Ser112, was expected to face toward the pore through which substrate proteins are introduced into the CP 
(Fig. 7). This information implied that ahg12 might affect the molecular mechanism for substrate uptake in the 
proteasome. ABA, ethylene, and light responses, which were changed in ahg12, are regulated by key regulators 
ABI5, EIN3, and PIL5, respectively46–48. The activities of these transcriptional regulators are modulated by protein 
degradation through the ubiquitin-proteasome system, responding to environmental stimuli16–18,49. Therefore, as 
next step, we investigated whether the ahg12 mutation affects accumulation of these signaling components. For 
this purpose, the ORFs of these transcriptional factors were fused to luciferase (LUC) and the resulting recom-
binant proteins were transiently expressed in protoplasts derived from ahg12 and wild-type plants. This assay 
allowed us to quantify the protein levels objectively50,51. The results of this assay demonstrated that the ahg12 cells 
had higher levels of ABI5, EIN3, and PIL5 proteins than did the wild-type cells (Fig. 6). This result suggests that 
the ahg12 mutation, which converts serine to the more bulky phenylalanine at the pore, decreases the degradation 
efficiency of the proteasome for some proteins, including ABI5, EIN3, and PIL5.

Discussion
We isolated ahg12 as an ABA-related mutant that showed a unique combination of phenotypes, with increased 
ABA and ethylene sensitivity and decreased light sensitivity at germination but also decreased seed dormancy. 
The ahg12 mutation was found to create a novel amino acid substitution mutation in RPT5, which is a component 
of the RP of the 26S proteasome.

The ahg12 mutation affected Ser112 of RPT5a. Although this amino acid residue is highly conserved among 
RPT5 proteins of eukaryotes, there has been no mutation around this residue reported previously. Structural 
studies of the Mathanocoldococcus jannaschii PAN complex, which is the archaeal counterpart of the eukaryotic 
proteasome complex, revealed that the residue corresponding to Ser112 of RPT5a is localized in loop L23 near the 
pore structure of the OB fold of the base subcomplex of RP40 (Fig. 7). It is likely that the conversion of an amino 
acid residue in this vicinity to the pore would affect the activity of the proteasome. Indeed, exchanging other 
residues in this loop of the PAN complex compromised PAN activity41. Since most of the proteasome structure of 
fission yeast overlaps with the PAN structure42, it is plausible that ahg12, wherein the Ser residue is converted to 
bulky Phe, affects RP activity in plants.

A question arises as to why the ahg12 mutation affects restricted plant biological phenomena such as responses 
to ABA, ethylene, and light. It is possible that this mutation alters the substrate preference of the proteasome, and 
thereby decreases the degradation efficiencies of specific substrates including ABI5, EIN3, and PIL5. Functional 
asymmetry among RPT AAA-ATPases has been demonstrated in budding yeast25,38, in which a defect in each 
RPT somehow causes different effects on proteasome function. By analogy, ahg12 in RPT5a might affect the 
degradation of a set of targets. This idea is consistent with the distinct effects of the rpt2 and rpt5 mutants of 
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Figure 5.  The 26S proteasome in ahg12 remains essentially functional. (a) Canavanine sensitivity of ahg12. 
Imbibed and stratified seeds of WT, ahg12, and disruptant of RPT5a (rpt5a-4) were grown on plates containing 
8 μ M canavanine for 4 weeks. (b) Ubiquinated proteins in ahg12 seedlings. Total proteins extracted from 
2-week-old seedlings of WT, ahg12, and rpt5a-4 were resolved by SDS-PAGE and ubiquitinated proteins were 
detected by immunoblot. (c) ABA sensitivity of the ahg12 and ahg12rpt5b-3 mutants at germination. Imbibed 
and stratified seeds of WT, ahg12, and ahg12rpt5b-3 were sown on plates with or without ABA (0.3 μ M) and 
grown for 7 days.
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Arabidopsis33–37. The ahg12 mutation might affect substrate preference due to a change in the pore structure of 
the RP as discussed above. It is also possible that ahg12 slightly decreases the degradation efficiencies of all sub-
strates. In this case, the phenotype related to the responses to ABA, ethylene, and light might be prominent in 
ahg12 because these responses presumably require particularly drastic degradation of signaling components com-
pared with other phenomena at germination. However, the fact that the ABA-hypersensitive phenotype was not 
observed in the null mutant of RPT5a, in which protein degradation capacity was probably lower than in ahg12, 
does not seem to support the latter possibility. In any case, isolation and characterization of ahg12 demonstrated 
again that the responses to ABA, ethylene, light signals at germination are dependent on the protein degradation 
ability of the proteasome. Taken all together, our study on ahg12 emphasizes the importance of protein degrada-
tion in the regulation of plant biological phenomena including germination, and confirms the necessity of the OB 
fold loop structure of the RP complex for proteasome activity.

The transient expression assays with LUC-fused proteins quantitatively demonstrated that the ahg12 cells 
showed greater accumulation of signaling components that are involved in the physiological phenotypes of ahg12 
(Fig. 6). The difference in the accumulated ABI5 between ahg12 and wild type was not particularly large in the 
leaf cell protoplasts, considering the clear ABA hypersensitive phenotype of ahg12. It is possible that the difference 
in ABI5 level is much larger in germinating seeds, where ABI5 naturally functions. It is likely that the stability of 

Figure 6.  ABI5, EIN3, and PIL5 accumulate to a higher level in ahg12. Accumulation of LUC-fused proteins 
transiently produced in Arabidopsis protoplasts. The vectors for expressing LUC-fused proteins shown in the 
figure were co-transfected with the vector for expressing GUS. LUC activity in each sample was normalized to 
GUS activity. The data are means of three independent experiments. Error bars indicate standard deviation. 
(**P <  0.01; t-test).

Figure 7.  Predicted spatial localization of ahg12. Three-dimensional structure of the RP complex extracted 
from a published structural data of the 26S proteasome complex derived from budding yeast (PDB ID: 4CR2) 
(left panel: top view, right panel: side view). The amino acids corresponding to the ahg12 mutation site of yeast 
RPT5 (Ser122) are represented with space-filling model (blue). The graphics were drawn with Molmil software.
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other substrates of the proteasome is also affected by ahg12 and that these in turn presumably contribute to the 
phenotypes of this mutant. To examine what happens in the mutant in more detail, a comprehensive proteomic 
analysis is required.

Why are the genes encoding RPT proteins duplicated (e.g., RPT5a and RPT5b) in many plants? Why do 
various mutants of proteasome subunits show different phenotypes? These are major questions in the study of 
plant proteasomes. The amino acid sequence of RPT5b is quite similar to that of RPT5a, suggesting that these two 
RPT5 proteins could share functions to a large degree. In fact, a previous study reported that RPT5b can compen-
sate for the absence of RPT5a in some cases36. In our study, the transgenic plants overexpressing RPT5b with an 
ahg12-like mutation did not show ABA hypersensitivity (Fig. S6), suggesting that there are some functional differ-
ences between RPT5a and RPT5b. It is possible that the slight differences in amino acid sequence are responsible 
for these distinct functions. Domain-swapping experiments between RPT5a and RPT5b might provide crucial 
data. In the future, we also plan to generate modified plants in which other RPT members have ahg12-like muta-
tions and to evaluate the resulting phenotypes and proteasome substrate specificities. The identification of this 
dominant RPT5a mutant allele thus represents an important step toward addressing long-standing questions in 
proteasome biology.

Methods
Oligonucleotides.  Oligonucleotides used in this study are listed in Table S1.

Plant materials and growth conditions.  Arabidopsis thaliana (L.) Heynh. ecotypes Columbia (Col) 
and Landsberg erecta (Ler) were used. Plants were grown on MS plates (1×  Murashige and Skoog salt mix, 2% 
sucrose, 2.5 mM MES (pH 5.8) and 0.8% agar) or on soil at 23 °C under 16 h light/8 h dark cycles. Seeds were 
first imbibed at 4 °C for 2 d before transfer to a growth chamber, unless otherwise noted. The ahg12 mutant was 
isolated as described previously39 and the aba2-1 mutation was removed by crossing with wild-type Columbia 
twice. The RPT5a T-DNA insertion line (rpt5a-437, SALK_046321) was obtained from TAIR52 and given from 
Dr. Sakamoto (Tokyo University of Science). The RPT5b T-DNA insertion line (rpt5b-337) was given from Dr. 
Yamaguchi (Hokkaido University).

Mapping the ahg12 locus.  Rough mapping for the ahg12 locus was described previously39. Genetic linkage 
analysis indicated that ahg12 is located on chromosome 3. For fine mapping, genomic DNAs were extracted from 
approximately 800 F2 progeny between ahg12 and Ler, and genotyping was performed using PCR markers on 
chromosome 3. F3 seeds were obtained independently, and their ABA sensitivities were evaluated. Genotypes 
at the ahg12 locus in the F2 individuals were determined based on the segregation ratio in F3 populations. 
Genes in the genomic region completely linked with the ABA-hypersensitive phenotype were analyzed by DNA 
sequencing.

Generation of transgenic plants.  The genomic RPT5a/AHG12 gene with putative promoter and termi-
nator regions was amplified from genomic DNA of the ahg12 mutant by PCR with specific primers (Table S1). 
The DNA segment was cloned into a pGreenII 0129 binary vector53. The open reading frame of RPT5b was 
amplified from cDNA and then an ahg12-like mutation (Ser111 to Phe) was introduced into the RPT5b gene 
by PCR. Agrobacterium strain GV3101 was transformed with the plasmids and used for the transformation of 
Arabidopsis plants by the flower-dipping method54. Transgenic lines were screened by hygromycin tolerance.

Immunoblot analysis.  Total proteins were extracted from 2-week-old seedlings. Equal amounts of proteins 
were resolved by SDS-PAGE and transferred to PVDF membranes. Ubiquitinated proteins were detected by a pol-
yclonal anti-ubiquitin antibody (BML-UG9510, Enzo Life Science) and HRP-conjugated anti-rabbit IgG antibody 
(W4011, Promega Corp.).

Transient expression analysis of LUC-fused proteins.  ABI5, EIN3, and PIL5 cDNAs from the initia-
tion codon to the last codon were amplified using specific primers (Table S1) and cloned into a plant expression 
vector to generate a fusion to the LUC gene under the control of the 35SCaMV promoter. These plasmids and 
a control plasmid containing a 35SCaMV promoter-GUS fusion were transfected into mesophyll protoplasts 
derived from the leaves of three-week-old ahg12 and wild-type plants. The protoplasts were incubated at 22 °C 
under dark conditions for 24 h and harvested for LUC and GUS assays. The LUC and GUS activities were meas-
ured as described previously55.
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