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Uniform distributions of glucose oxidation
and oxygen extraction in gray matter of
normal human brain: No evidence of
regional differences of aerobic glycolysis

Fahmeed Hyder1,2,3,4, Peter Herman1,2,3, Christopher J Bailey5,
Arne Møller5,6, Ronen Globinsky1,3, Robert K Fulbright1,3,
Douglas L Rothman1,2,3,4 and Albert Gjedde5,7

Abstract

Regionally variable rates of aerobic glycolysis in brain networks identified by resting-state functional magnetic resonance

imaging (R-fMRI) imply regionally variable adenosine triphosphate (ATP) regeneration. When regional glucose utilization

is not matched to oxygen delivery, affected regions have correspondingly variable rates of ATP and lactate production.

We tested the extent to which aerobic glycolysis and oxidative phosphorylation power R-fMRI networks by measuring

quantitative differences between the oxygen to glucose index (OGI) and the oxygen extraction fraction (OEF) as

measured by positron emission tomography (PET) in normal human brain (resting awake, eyes closed). Regionally

uniform and correlated OEF and OGI estimates prevailed, with network values that matched the gray matter means,

regardless of size, location, and origin. The spatial agreement between oxygen delivery (OEF&0.4) and glucose oxidation

(OGI& 5.3) suggests that no specific regions have preferentially high aerobic glycolysis and low oxidative phosphoryl-

ation rates, with globally optimal maximum ATP turnover rates (VATP& 9.4 mmol/g/min), in good agreement with 31P and
13C magnetic resonance spectroscopy measurements. These results imply that the intrinsic network activity in healthy

human brain powers the entire gray matter with ubiquitously high rates of glucose oxidation. Reports of departures from

normal brain-wide homogeny of oxygen extraction fraction and oxygen to glucose index may be due to normalization

artefacts from relative PET measurements.
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Introduction

Functional magnetic resonance imaging (fMRI) detects
large-scale network activity in the human brain.1 The
fMRI data analysis of blood oxygenation level-
dependent (BOLD) signal yields statistically correlated
activity in gray matter with both task-based (T-fMRI,
stimuli-correlated signals) and resting-state (R-fMRI,
region correlated signals) paradigms, from which esti-
mates are assigned to neuronal networks. R-fMRI, in
contrast to T-fMRI, reflects the correlated activity pre-
sent when subjects are not stimulated nor are asked to
execute a specific mental task. Instead, the temporal
correlations of R-fMRI signals signify correspondingly
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small and spontaneous fluctuations of the BOLD
signal.

The neurophysiological basis of the spontaneous
BOLD signal fluctuations has not been fully revealed,
but the fluctuations are held to reflect variations of
underlying neuronal activity.2 The fluctuations of the
correlated BOLD signal ride on top of a much larger
background of neuronal activity present throughout
the brain at rest.3 It is unknown whether the fluctu-
ations represent large changes in activity of a small
number of neurons or small fluctuations of the activity
of the entire ensemble. Also, it is unknown whether
specifically correlated networks are of functional sig-
nificance to mental processes at rest. For example, the
default mode network (DMN) is a term assigned to an
assembly of regions with correlated fluctuations of
activity during introversive awareness, and specific
functional assignments have been made to other R-
fMRI-derived networks.4 As the neurophysiological
basis of these networks is elusive,5 other properties
have been used to differentiate between the networks.
A recent functional differentiation of DMN from other
brain regions and networks was proposed on the basis
of certain measures regarding the magnitude of aerobic
glycolysis.6

In the brain, the substantial oxygen consumption7

serves to support of Naþ, Kþ-adenosine triphosphate
(ATP)ase activity needed for the maintenance of con-
stant ion concentrations in different tissue compart-
ments in support of membrane depolarization.8

Glucose is the primary energy substrate in the adult
healthy brain, with an ATP yield that is about 16–18
times higher during full oxidation than during exclusive
glycolysis.9 However, it is unknown how the energy
yields are distributed between oxidative phosphoryl-
ation and aerobic glycolysis, as they power the large-
scale network activity in the human brain captured by
resting-state network activity. To assess regionally vari-
able ATP regeneration rates, the degree of glucose oxi-
dation must be known, as reflected in the oxygen to
glucose index (OGI) definition

OGI ¼ CMRO2=CMRglc ð1Þ

which is determined from direct measurements of cere-
bral metabolic rates of oxygen (CMRO2) and glucose
(CMRglc) consumption or as the ratio of the corres-
ponding arteriovenous deficits in oxygen vs. glucose.
An OGI of less than 6 indicates a degree of aerobic
glycolysis that terminates in the generation of lactate
or other metabolites that remain in the tissue without
yielding carbon dioxide and water through metabolism.

When glucose utilization is mismatched in relation
to the oxygen delivery to specific regions, the regions in
question regenerate relatively less ATP per mole of

glucose. Note that networks derived by R-fMRI does
not reflect glucose utilization per se, but rather the
oxygen extracted by the tissue because the BOLD
signal depends on the oxygen delivery as reflected in
the microvascular deoxyhemoglobin content and the
oxygen extraction fraction (OEF), according to Fick’s
principle9

OEF ¼ CMRO2= Ca CBFð Þ ð2Þ

which is obtained by relating the CMRO2 in relation to
the arterial delivery of oxygen, as given by multiplying
cerebral blood flow (CBF) and arterial oxygen concen-
tration (Ca).

As the metabolic basis of networks revealed by R-
fMRI remains uncertain, we tested the recent claim that
a specific R-fMRI-derived network, the DMN, has a
higher fraction of aerobic glycolysis compared to other
networks,6 which inherently implies regional variation
of ATP rephosphorylation as well as substantial gener-
ation of lactate or other metabolites, subject either to
export from the brain or to permanent deposit in the
tissue. If lactate or other metabolites were not exported
from the brain, then the metabolites would add to brain
weight in proportion to the magnitude of aerobic gly-
colysis. According to this claim, DMN is comparatively
more active than other networks when a person is at
wakeful rest and not focused on a specific task.4 The
benefit of a higher fraction of aerobic glycolysis
remains uncertain, although explanations such as a
relationship to increased synaptogenesis, and by infer-
ence biomass, have been proposed.6

To determine OGI and OEF in tomographic voxels
of brain tissue with quantitative positron emission tom-
ography (PET), we measured, in the same young and
healthy subjects, CMRglc, CMRO2, and CBF in
the resting awake, eyes-closed condition used as the
common baseline state of many R-fMRI studies. The
quantitative PET measurements allowed distributions
of the total ATP regeneration rate (VATP) to be deter-
mined according to,

VATP ¼ ’ � CMRO2 þ � � CMRglc ð3Þ

where the first and second terms on the right-hand side,
respectively, represent ATP generated from oxidative
phosphorylation (’¼ 6 ATP/oxygen) and aerobic gly-
colysis (�¼ 2 ATP/glucose), assuming dedication of all
oxygen consumed to oxidative phosphorylation of ATP
in the absence of reduced ATP gain by mitochondrial
uncoupling (i.e. ’< 6 ATP/oxygen).

From equation (3), it is important to note that regio-
nal variations of VATP must be determined from quan-
titative CMRglc and CMRO2 data. Here, we found
VATP calculated from quantitative PET measurements
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in young healthy brain to be in good agreement with
absolute VATP measured by 31P and 13C magnetic res-
onance spectroscopy (MRS).10–13 Regardless of size,
spatial coordinates, or origin of the extended R-
fMRI-networks that we examined, the regional distri-
butions revealed remarkably similar OEF and OGI
values that were comparable in magnitude to gray
matter means. The results are consistent with the
notion that aerobic glycolysis is a minor, but consistent,
contributor to network energy turnover at rest. Thus,
high glucose oxidation rates are maintained over nearly
the entire gray matter as behooves the major supplier of
energy to resting neuronal activity.

Materials and methods

At Aarhus University Hospital, healthy male volun-
teers (n¼ 13) underwent PET and MRI at resting
awake and eyes-closed condition. The study was con-
ducted in accordance with the Helsinki Protocol, as
approved by the official science ethics committee of
the Central Denmark Region and Aarhus University
Hospital, Aarhus, Denmark. All participants gave writ-
ten informed consent.

Subjects and tomography

Male volunteers (n¼ 13, healthy, right handed) under-
went PET and MRI in the resting awake and eyes-
closed condition, where the average arterial oxygen
content (Ca), age, weight, and height were
9.4� 0.5 mmol/mL, 26.1� 3.8 years, 77.0� 11.5 kg,
and 1.82� 0.10m, respectively. All tomographies were
performed on the same day, during a single session. The
order of tracer administration was: (i) 15O-H2O, (ii)
15O-O2, and (iii) 18F-fluorodeoxyglucose (FDG). Each
imaging session was separated by the previous one by at
least five half-lives of the 15O tracer (i.e. 10min), cor-
responding to less than 3% residual radioactivity. Any
effects on quantification of the K1-parameter for
CMRO2 are likely to be minute, as it is most sensitive
to the initial rapid influx-efflux of inhaled radioactivity
(not the baseline).14,15 Subjects fasted overnight before
FDG imaging sessions.

Each subject underwent high resolution MRI (GE
Signa Excite HDx 3T; 3D IR-fSPGR: TE¼ 3.0ms,
TI¼ 450ms, flip angle¼ 20�, slices¼ 120, slice thick-
ness¼ 1.5mm, FOV¼ 240� 240mm, matrix¼ 256
� 256) and PET (CTI/Siemens ECAT EXACT HR
47; 3D mode: slices¼ 47, slice thickness¼ 3.1mm,
FOV¼ 256� 256mm, matrix¼ 128� 128). PET
images were reconstructed using filtered back-projec-
tion with a 0.5 cycles�1 ramp filter, followed by appli-
cation of a 7mm Gaussian filter. Radial artery blood
samples were collected with an automatic sampling

device (1 s temporal resolution). Hematocrit and
blood gas values were measured in arterial blood sam-
ples collected immediately prior to each PET recording.
CBF quantification used 500 MBq bolus injection of
15O-H2O delivered intravenously, and CMRO2 quanti-
fication used 1000 MBq of 15O-O2 inhaled in single
breath. CMRglc quantification was based on 200 MBq
bolus of FDG injected intravenously. Both CBF and
CMRO2 data were acquired in 21 frames (12� 5 s,
6� 10 s, 3� 20 s) over 3min and modeled using single
tissue compartment with added vascular space, accord-
ing to established procedures.14,15 CMRglc data were
acquired in 27 frames (6� 0.5min, 7� 1min, 5� 2min,
4� 5min, 5� 10min) over 45min and modeled using
two tissue compartments and irreversible binding with
a lumped constant of 0.8 according to established pro-
cedure,16 with the assumption that the lumped constant
is invariable across the healthy young group of male
subjects (see above). While the values of injected activ-
ity were standard amounts used in numerous past stu-
dies, the issue of the lower injectates has to be weighed
against the benefit of doing the quantitative studies in
the same subjects.

Subjects lay quiet and still for PET scanning in a
dark quiet room with their eyes closed. Parameter esti-
mation was performed in each subjects’ native PET
space. A transformation between native PET and
MRI spaces was calculated for each subject using a
six-parameter rigid-body transformation with a
mutual information cost function.17 MRI volumes
were finally mapped to a common reference space
(MNI 1mm) with linear and non-linear registrations
in BioImage Suite (www.bioimagesuite.com). In add-
ition, MRI images were skull-stripped and segmented
into gray/white/cerebral spinal fluid (CSF) space using
FSL BET, and FAST (fsl.fmrib.ox.ac.uk). Once in
common space, averaged PET maps were computed
for different parameters in Matlab (MathWorks,
Natick, MA) using custom scripts. In addition,
volume of interest analysis of PET data was conducted
using Brodmann’s areas to define regions and networks
(see Tables S1 and S2).

Statistical analysis

Quantitative PET maps from all 13 healthy subjects
were co-registered into common space via their own
MRI, and CSF space was excluded. Analyses of PET
data were conducted on a voxel-by-voxel basis, with
voxels identified as gray or white matter based on
MRI contrast, and then parcellated into gray matter
regions (Table S1; Figure S1(a)) and networks
(Table S2; Figure S1(b)). Here, a region was defined
as a well-defined gray matter area based on cytoarchi-
tecture (e.g. Brodmann’s areas), whereas a network was
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defined as a group of regions that function together.1

The cerebellum was excluded from analysis because of
unequal coverage in all subjects.

Since each subject underwent CMRglc, CMRO2, and
CBF measurements, there were no group comparisons
across subjects. Absolute CMRglc, CMRO2, and CBF
maps were compared and from which OGI, OEF, and
VATP were calculated on a voxel-by-voxel basis using
equations (1) to (3), respectively. Using Student’s t-test
and analysis of variance (ANOVA, two-way), we
assessed statistical differences between gray vs. white
matter and across regions and networks (Figure S1).
The CMRglc, CMRO2, and CBF data were also put
through global mean normalization. In each case,
global mean normalization was achieved by dividing
each voxel by the mean of some brain region (i.e.
excluding voxels outside the brain and inside the ven-
tricles).18 We used either gray or white matter of the
cerebrum for the global mean normalization signal. The
mean globally normalized values, in each case for OGI
and OEF, were then obtained with equations (1)
and (2).

The conventional approach to visualizing relations
among CMRglc, CMRO2, and CBF estimates is a 2D
plot. However, a 2D plot provides no information of
when and how well the three parameters are coupled in
the present case. We completed 3D regression analysis
to illustrate the degree of the 3D correlation reflecting
the overall coupling across the independent CMRglc,
CMRO2, and CBF estimates. The best-fit of the 3D
data was obtained using the fit_3d_data function in
Matlab,19 which is an orthogonal linear regression in
3D space based on principal component analysis. The
fit_3d_data treats CMRglc, CMRO2, and CBF as state
variables. For each parameter, the function generates
three values: a normal vector (indicating the 3D space
relation of a given parameter to the other two param-
eters), a data centroid (indicating the global mean of a
given parameter), and an error of approximation (indi-
cating the sum of orthogonal distances of data points
from the best-fit 3D regression line).

Results

Quantitative CMRglc, CMRO2, and CBF estimates

The mean CMRglc, CMRO2, and CBF maps had mutu-
ally similar spatial relations (Figure 1(a)), with minor
(<15%) variability across subjects as reflected by the
standard deviation (SD) maps (Figure S2(a)). Gray and
white matter differences were significant, even at the
whole brain level (i.e. P< 0.0008; Table S3). In regions
with the least partial volume, the gray matter values
exceeded the white matter values by about three-fold,
in agreement with prior studies.20–24

We examined the coupling among the CMRglc,
CMRO2, and CBF estimates on a voxel-by-voxel basis
by 3D regression. The vectors from 3D regression of
voxels in whole brain, gray matter, and white matter
were nearly identical (Figure 1(b)), suggesting excellent
spatial similarity between CMRglc, CMRO2, and CBF
maps (Table S4). The centroids from 3D regression for
whole brain and gray matter were comparable and
higher than the centroids for white matter (Table S4).
Voxels in whole brain, gray matter, and white matter
were well clustered in 3D, and the goodness-of-fit esti-
mates for regressions were high (i.e. R values higher
than 0.95; Table S4). Similarly, the slopes from 2D
regressions were analogous for whole brain, gray
matter, and white matter (i.e. R values ranging from
0.86 to 0.91; Figure S2(b) and (c)), where the 95% con-
fidence interval (CI) encompassed 97.3% of all voxels
in the brain (Figure S2(b) and (c)).

We also examined the coupling among the CMRglc,
CMRO2, and CBF estimates across gray matter regions.
Specifically, we assessed how the pattern of variations
in CMRO2 was related to the pattern of variations in
CMRglc and CBF, because they respectively relate to
OGI and OEF (equations (1) and (2), respectively). The
patterns of CMRO2 and CMRglc (for OGI) were
remarkably similar (Figure 2(a)), in agreement with
results from a previous meta-analysis of quantitative
PET data.24 The patterns of CMRO2 and CBF (for
OEF) were similarly consistent (Figure 2(b)), in general
agreement with trends from previous quantitative PET
data.21,22 Two-way ANOVA suggested that the pattern
of variations in CMRglc, CMRO2, and CBF were simi-
lar (P� 0.05). For example, in almost every region
where CMRO2 was slightly higher than CMRglc,
CMRO2 also exceeded CBF (e.g. in regions 7, 17, 37,
and 38; see Table S1).

Absolute OGI and OEF in the brain

We calculated maps of OGI and OEF with equations
(1) and (2), using the 95% CI portions for the CMRglc,
CMRO2, and CBF data (Figure 3(a)). Using all voxels
generated very similar results (Table S3), but the voxels
outside the 95% CI represented less than 2.7% of all
voxels in the brain and based on their location were not
considered accurate due to large vessel artifacts that
distort CMRO2 data (to very high values) in the single
tissue compartment model used here.15 The gray and
white matter differences were significant for both OGI
and OEF (i.e. P< 0.0143; Table S3), where the OGI
and OEF histograms were bell-shaped with high kur-
tosis (Figure 3(b)). The OGI and OEF values of whole
brain were clustered (i.e. R values ranging from 0.77 to
0.81; Figure S3(a)) with excellent spatial correlation
between OGI and OEF values in nearly 90% of all
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voxels (Figure S3(b)). At the current spatial resolution
of the PET study, analysis of the CMRglc, CMRO2, and
CBF maps on a voxel-by voxel basis (Figure 1), and
Brodmann’s regions (Figure 2) showed similar global/
regional OGI and OEF trends (Figure 3).

The quantitative OGI data (Figure 3(a), left) had
small (<10%) regional differences throughout gray
matter, quite similar to homogenous patterns of abso-
lute OEF data (Figure 3(a), right). Variations of OGI
and OEF were calculated for 41 regions and across 37
networks (Figure 3(c)). None of the regions within the
DMN were more glycolytic than the average of other
regions (Figure 3(c), left), and the DMN, along with
other networks related to it, had similarly high OGI
values as the remainder of gray matter (Figure 3(c),
right), as did patterns of OGI and OEF investigated
for random networks in gray matter space

(Figure S4). Hence, the patterns of OGI were remark-
ably similar to the patterns of OEF for both regions
and networks.

The spatial relationship between CMRglc and
CMRO2, reflected by OGI in equation (2), was also
analyzed with the glycolytic index (GI), a recently
introduced parameter by Vaishnavi et al.6

GI ¼ CMRglc � s � CMRO2 ð4Þ

where the slope s from a plot of CMRglc vs. CMRO2

(i.e. 0.19 for gray matter with R value of 0.88;
Figure S2(b), middle) is equivalent to 1/OGI.
Mismatch between the first and second terms on the
right-hand side of equation (4) reflects the GI in abso-
lute units (i.e. mmol/g/min). The GI histogram was also
bell-shaped with similarly high kurtosis as the OGI

Figure 1. Absolute CMRglc, CMRO2, and CBF in normal human brain. (a) Mean maps from 25 representative slices, where CSF was

masked out. See Table S3 for statistical analysis, where the mean� SD values (excluding the cerebellum) for whole brain, gray matter,

white matter for CMRglc were 0.26� 0.07, 0.28� 0.07, and 0.22� 0.05 mmol/g/min, for CMRO2 were 1.36� 0.37, 1.44� 0.35, and

1.04� 0.29 mmol/g/min, and for CBF were 0.37� 0.11, 0.39� 0.10, and 0.29� 0.09 mL/g/min. See Figure S2A for SD maps. (b) Global

coupling between absolute CMRglc, CMRO2, and CBF with 3D voxel-wise analysis. Black dots and lines, respectively, indicate all voxels

and the best-fit 3D regressions (see statistical analysis section). The fit_3d_data function in Matlab treats CMRglc, CMRO2, and CBF as

state variables and for each parameter the function generates three values: a normal vector defining the 2D plane on which the data

varies maximally, a data centroid, and an error of approximation. See Table S4 for the 3D regression analysis results and Figures S2(b)

and S2(c) for the 2D voxel-wise analysis of CMRglc, CMRO2, and CBF data. Units for CMRglc and CMRO2 are mmol/g/min, for CBF the

unit is mL/g/min.
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histogram (Figure 3(b), left inset), where the OGI deter-
mined from equations (1) and (4) were identical for
gray matter (i.e. �5.3). GI deviations from the zero
peak of the histogram showed nearly symmetric contri-
butions from higher and lower OGI values (respectively
indicated by negative and positive GI values). Given
the 16–18-fold lower ATP yield of glycolysis compared
to oxidative phosphorylation, the symmetric shape and
relatively small deviation of the GI distribution about
the mean OGI of 5.3 for gray matter confirms that
oxidative phosphorylation is the major contributor to
total ATP production (see below).

Given the regional and global homogeny of quanti-
tative CMRO2, CMRglc, and CBF estimates within gray
matter (Figures 1 and 2), we found uniform distribu-
tions of OGI and OEF using the absolute data (Figure 3).
However, it is well known that global mean normaliza-
tion (i.e. using mean of specific region(s) to normalize)
generates apparent regions of hypo- and hyper-activity
that artefactually accentuate relative differences across
regions, at the cost of distorting global/regional

differences in the absolute scale.25 Given the limited
information about the normalizing region in the
Vaishnavi et al.6 study and the fact that they also
used conjunction analysis between their relative OGI
maps and fMRI correlation maps (of different net-
works), we simply tested the degree of distortion intro-
duced by global mean normalization as a direct
contrast to analysis of the absolute data presented
above. The global mean normalization, conducted
with gray and white matter means, revealed artefactual
increased and decreased areas of activity for both OGI
and OEF maps (Figure 4). The large difference between
the two normalized OGI maps (Figure 4(a), left and
right) was due to absolute OGI difference between
gray and white matter (see above), whereas the negli-
gible difference between the two normalized OEF maps
(Figure 4(b), left and right) was attributed to minimal
OEF difference between gray and white matter (see
above). These data reveal the potential for regional
biases in OGI and OEF data when using mean globally
normalized data, instead of absolute PET data.18,25,26

Figure 2. Regional coupling between CMRglc, CMRO2, and CBF examined in non-overlapping gray matter regions. Absolute vari-

ations across regions for (a) CMRO2 (red) vs. CMRglc (blue) and (b) CMRO2 (red) vs. CBF (green). Values shown are mean and SD of

each region, where all regions together comprise the entire gray matter (Table S1; Figure S1(a)). Two-way ANOVA tests suggest that

the pattern of variations in CMRO2 was identical to pattern of variations in (a) CMRglc and (b) CBF (P�0.05). Units for CMRglc and

CMRO2 are mmol/g/min, for CBF the unit is mL/g/min.
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Absolute VATP in the brain

The contributions of oxidative phosphorylation and
glycolysis to total ATP (re)generation rate (VATP)
were estimated by equation (3), assuming the value of
’ to be equal to 6. The averaged VATP maps distin-
guished significantly between gray and white matter
(Figure 5(a) and (b), left), i.e. P< 0.0023 (Table S3).
The whole brain, gray matter, and white matter esti-
mates of VATP averaged 8.7� 2.4, 9.4� 2.1, and

6.7� 1.8 mmol/g/min, respectively. The ATP produc-
tion from glycolysis (i.e. the second term of equation
(3)) in all of gray matter averaged 0.5� 0.3 mmol/g/min,
which represented only �5% of the gray matter mean
for VATP (Figure 5(a) and (b), right). This glycolytic
ATP fraction would likely be even smaller if the VATP

calculation included the voxels outside the 95% CI that
represented about 2.7% of all voxels in the brain.
Regardless of this consideration, expansion of the
second term on the right-hand side of equation (3)

Figure 3. Absolute OGI and OEF in normal human brain derived from equations (1) and (2), respectively, using the data in Figure 1.

(a) Maps and (b) histograms, where the voxels outside the 95% CI (representing less than 2.7% of voxels in the whole brain) were

replaced by regional averages. The mean� SD values (excluding the cerebellum) for whole brain (i.e. grayþwhite), gray matter, white

matter, respectively, for OGI were 5.17� 0.95, 5.26� 0.99, and 4.83� 0.60 and for OEF were 0.40� 0.07, 0.40� 0.0.07, and

0.39� 0.06. In (b) histograms shaded in black, gray, and white represent whole brain, gray matter, white matter, respectively. Inset of

(b) shows the GI, glycolytic index, calculated by equation (4), where the slope s of �0.19 is inversely proportional to an OGI of �5.3.

See Figure S3 for voxel-wise comparison between OGI and OEF. See Table S3 for statistical analysis between whole brain, gray matter,

and white matter histograms. (c) OGI and OEF across regions (left) and networks (right) in normal human brain. OGI (top) and OEF

(bottom) across 41 regions and 37 networks in relation to gray matter means, which are indicated by the black dotted horizontal lines

representing the� SD around the means (i.e. OGI¼ 5.26� 0.99 and OEF¼ 0.40� 0.07). Values shown are mean and SD of each

region, where all regions together comprise the entire gray matter (Table S1; Figure S1(a)). Two-way ANOVA tests suggest that the

pattern of variations in OGI was identical to pattern of variations in OEF, both for regions and networks (P�0.05). For regions, the

symbols 	 and # are two key regions associated with the DMN (i.e. regions 7 (somatosensory association cortex or precuneus) and

24 (ventral anterior cingulate cortex), respectively; see Table S1 and Figure S1(a) for description and size of regions). For networks,

the symbols , , , and represent networks related to DMN (i.e. DMN-1, DMN-2, Tp-fMRI, Tn-fMRI, HH-DMN, respectively; see

Table S2 for and Figure S1(b) description of networks).
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shows that the glycolytic source of ATP production has
oxidative (A) and non-oxidative (B) contributions,

VATPðglycolysisÞ ¼ � � CMRglcðAþ BÞ ð5Þ

where A and B are given by OGI/6 and (1� (OGI/6)),
respectively. Using measured OGI values in equation
(5) shows that A and B are 0.88 and 0.12, respectively.
Thus, for all of the glucose completing glycolysis in
gray matter, 12% terminates as lactate that is not sub-
sequently oxidized, indicating that the non-oxidative
glycolytic contribution to VATP was less than 1% of
total ATP regenerated (i.e. (0.12� 0.5mmol/g/min)/
9.4 mmol/g/min). Thus, the VATP maps predominantly
represent oxidative phosphorylation. The total ATP
(re)generated across all regions (Figure 5(c), top) and
networks (Figure 5(c), bottom) yielded mean VATP

values of 9.2� 1.2 and 9.5� 0.7 mmol/g/min, respect-
ively, that are quite comparable to the gray matter
mean of 9.4 mmol/g/min.

Discussion

Glucose (1–3mM) and oxygen (50–100 mM) levels in
brain differ by at least an order of magnitude.27

While some extra glucose can be stored transiently as
glycogen or used for biosynthesis,28 excess oxygen is
highly reactive as free radicals.29 While glucose delivery
is not rate-limiting for energy metabolism under normal
conditions, spatially mismatched oxygen delivery and
glucose metabolism may be pathogenic when ATP pro-
duction is impaired (e.g. because of oxidative stress).

Using quantitative CMRglc, CMRO2, and CBF data
from normal human brain, we tested whether there
are significant regional variations of ATP production
rate, and if so, what the source is (i.e. elevated rate of
oxidative phosphorylation or aerobic glycolysis).

Regional coupling between quantitative CMRglc,
CMRO2, and CBF values

Using quantitative PET data, we found excellent cou-
pling among CMRglc, CMRO2, and CBF (Figures 1 and
2), consistent with brain-wide homogeneity of OGI and
OEF estimates (Figure 3(a) and (b)) where the vari-
ations across regions and networks remained within
5% of the global gray matter means (Figure 3(c)).
Whole-brain cortical OGI averaged about 5.3, with
OEF values of 0.4 in large swathes of the brain, indi-
cating uniform fractions of glucose oxidation across
different brain regions. The gray and white matter
values for CMRglc, CMRO2, and CBF as well as the
OGI and OEF calculated from these values (equations
(1) and (2), respectively) are in agreement with prior
quantitative PET results.20–24 In contrast, the relative
OGI and OEF maps demonstrated regions of higher
and lower activity compared to the global mean
(Figure 4). The quantitative PET data revealed a calcu-
lated VATP (equation (3)) value of 9.4mmol/g/min for
gray matter, assuming minimal mitochondrial uncou-
pling (Figure 5(a), left), which is in good agreement
with directly measured VATP using 31P MRS 10,11 and
similar to VATP estimates derived from 13C MRS meas-
urements of the rate of tricarboxylic acid (TCA) cycle,

Figure 4. Two types of global mean normalization. (a) Mean globally normalized OGI maps produced by equation (1) with mean

globally normalized CMRO2 and CMRglc data, where gray matter (left) and white matter (right) were normalizing regions. The relative

OGI scale corresponds to the same scale as the absolute OGI data shown in Figure 3. Note the stark high/low regions in these

normalized OGI data compared to the homogeneity in the absolute OGI maps. The difference between the left and right normalized

OGI maps is due to absolute OGI difference between gray and white matter. (b) Mean globally normalized OEF maps produced by

equation (2) using mean globally normalized CMRO2 and CBF data, where gray matter (left) and white matter (right) were normalizing

regions. The relative OEF scale corresponds to the same scale as the absolute OEF data in Figure 3. Note the stark high/low regions in

these normalized OEF data compared to the homogeneity in the absolute OEF maps. The negligible difference between the left and

right normalized OEF maps is due to minimal OEF difference between gray and white matter.
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assuming a stoichiometric relationship between ATP
production and CMRO2

12,13

About 95% of the VATP estimate was derived from
glucose oxidation (Figure 5(a) and (b)). While there is
little dispute regarding � in equation (3) (the glycolytic
contribution to VATP), it is evident that ’ in equation
(3) (the oxidative phosphorylation rate of VATP) argu-
ably can be as low as 3 (i.e. 18 ATP per 1mole of glu-
cose or per 6 moles of oxygen), depending on the degree
of mitochondrial uncoupling. If ’ were reduced to 3
(instead of 6) in the presence of unchanged glucose
consumption, VATP would decrease by about half for
gray matter (i.e. �4.6mmol/g/min), but the total

glycolytic ATP contribution would increase to only
6% of VATP. This suggests that 1% additional ATP
generated by glycolysis comes at a price of 50% reduc-
tion of total ATP produced, which is unlikely because
the VATP from the present PET measurements is in
good agreement with previous 31P and 13C MRS meas-
urements in the awake resting human brain.10–13 The
agreement between PET and MRS measured values of
VATP suggests that there is negligible mitochondrial
uncoupling in young healthy brain, but which may be
altered during the course of healthy aging process.30

Because the gray matter thickness of gyri and sulci is
less than optimal for the spatial resolution of the PET

Figure 5. Absolute VATP in normal human brain derived from equation (3) using the data in Figure 2. (a) Maps of total ATP

regenerated (left) and ATP derived from glycolysis (right). The mean� SD values of VATP (excluding the cerebellum) for whole brain

(i.e. grayþwhite), gray matter, white matter averages, respectively, were 8.7� 2.4, 9.4� 2.1, and 6.7� 1.9 mmol/g/min. (b) Total ATP

regenerated (left) and ATP derived from glycolysis (right). Histograms shaded in black, gray, and white represent whole brain, gray

matter, white matter, respectively. Units of maps and histograms are in mmol/g/min. The ATP production from glycolysis (right) in all of

gray matter averaged to 0.5� 0.3 mmol/g/min, which represented only 5% of the gray matter mean for total ATP regenerated (left). (c)

Variations of VATP (solid bars) and ATP derived from glycolysis (open bars) across 41 regions (top) and 37 networks (bottom). The

mean� SD values of VATP for regions (9.2� 1.2 mmol/g/min) and networks (9.5� 0.7 mmol/g/min) were within 95% CI of the gray

matter VATP mean (9.4� 2.1 mmol/g/min). The black horizontal lines indicate the mean� SD of VATP of all gray matter (9.4� 2.1 mmol/

g/min). See Tables S1 and S2 for description of regions and networks (Figure S1). For regions, the symbols 	 and # are two key regions

associated with the DMN (i.e. regions 7 (somatosensory association cortex or precuneus) and 24 (ventral anterior cingulate cortex),

respectively; see Table S1 and Figure S1(a) for description and size of regions). For networks, the symbols , , , and represent

networks related to DMN (i.e. DMN-1, DMN-2, Tp-fMRI, Tn-fMRI, HH-DMN, respectively; see Table S2 for and Figure S1(b)

description of networks).
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voxels,31 the CMRglc, CMRO2, and CBF values of gray
and white matter are contingent on partial volume
effects of a voxel, as well as on thresholds used in the
MRI data to classify tissue as white or gray matter.
Improved PET and MRI spatial resolution would
reduce the white matter fraction of voxels assigned to
gray matter (and vice versa) and improve the accuracy
of these measurements. However, in regions with min-
imal partial volume effects, approximately three-fold
higher rates of CMRglc, CMRO2, and CBF were mea-
sured in gray matter than in white matter. Based on the
bell-shaped distributions of OGI and OEF in the cur-
rent study (Figure 3(b)), we expect that higher PET
resolution data for the normal brain will raise the kur-
tosis of these distributions.32

Minimal non-oxidative glycolytic ATP contributions in
DMN and other networks

We found that nearly all networks, including DMN,
have similar aerobic glycolysis and oxygen extraction
indices (Figures 2 and 3). Vaishnavi et al.6 observed
similar correlations between relative CMRO2 and
CMRglc measures (i.e. Figures S1 in Vaishnavi et al.6

vs. Figure S2(b) here), but nonetheless concluded that
the DMN differed from other regions with respect to a
substantially greater contribution from aerobic glycoly-
sis. To determine GI across regions, Vaishnavi et al.6

applied equation (4) to relative CMRO2 and CMRglc

measures. While the relative GI can be calculated
with equation (4), the slope s of the relative CMRO2

and CMRglc measures that is close to unity for gray
matter is not indicative of the magnitude of quantita-
tive OGI measurements and hence the GI remains a
relative parameterized index. For the null-hypothesis
test of equation (4), Vaishnavi et al.6 reasoned that
any voxel with a higher relative CMRglc measure than
indicated by the regression against the relative CMRO2

measure would serve as statistically significant evidence
of GI being higher or OGI being lower. As the null-
hypothesis test of equation (4) with relative data
ignores the large majority of voxels in the brain, the
relative GI parameterization by them did not reveal
the quantitative extent of ATP regeneration from oxi-
dative phosphorylation vs. aerobic glycolysis when very
few voxels reside along the regression line.

We assessed the spatial relations of quantitative
CMRglc and CMRO2 measurements to reveal the
highly clustered absolute OGI estimates with symmetric
distributions (Figure 3(b), left), made possible because
of the small inter-subject variability (Figure S2(a)). The
absolute OGI histogram was nearly identical to the
absolute GI histogram (Figure 3(b), left and inset)
because the value of the slope s in equation (4) is related
quantitatively to the measured OGI (see Results

section). The absolute GI shows that the extent of
ATP contributions from glycolytic source is within
0.5 mmol/g/min for the entire brain (Figure 3(b), left
and inset). This glycolytic ATP yield is quite small com-
pared to the total ATP turnover (i.e. 9.4mmol/g/min).

With quantitative PET data, we showed that VATP is
uniformly high with at least 95% contribution from
glucose oxidation (Figure 5(a) and (b)) and with a max-
imum of 5% contribution from aerobic glycolysis to the
total ATP production. Thus, we conclude that all
regions and networks had similar but low ATP contri-
butions from aerobic glycolysis (Figure 5(c)). Yet, the
non-oxidative glycolytic contribution to VATP is even
smaller, because equation (5) shows that non-oxidative
glycolysis contributes less than 1% of the total ATP
regenerated. These types of distinctions between gener-
ating sources for ATP cannot be made with relative
CMRO2 and CMRglc measures.

Oxidative phosphorylation supports R-fMRI networks

We found that the majority of R-fMRI networks had
VATP variations within 5% of the global gray matter
mean (Figure 5(c), bottom), regardless of size, spatial
location, or definition. These small VATP variations
across these networks, that represent at most a
�0.4 mmol/g/min deviation of ATP demand from the
gray matter mean value of 9.4 mmol/g/min, arose from
purely oxidative sources. Since the OGI measurements
suggest that 10–12% of glucose undergoing metabolism
is not subsequently oxidized as indicated by the non-
oxidative glycolysis term in equation (5), the less than
1% regional variations in VATP due to non-oxidative
glycolysis would vary no more than �0.05mmol/g/min
from the observed regional VATP variations. In the
future, it is possible to use R-fMRI to examine how
these regions are correlated, whereas 13C MRS can
investigate neuronal and glial glucose oxidations in
relation to the relative contributions of glutamatergic
and GABAergic neuronal activities.33 In turn, 31P MRS
can measure VATP directly10 while 13C MRS can deter-
mine if VATP variations across regions are due to alter-
nate substrate oxidation (e.g. ketones34 or lactate35).

Since R-fMRI networks are based on inter-regional
correlations of spontaneous BOLD signal variations
and not on the actual neuronal activity, an important
question is how much ATP demand the fluctuations of
neuronal activity actually represent, estimates of which
can be obtained from calibrated fMRI which includes
BOLD and CBF measurements to calculate CMRO2.

36

In the awake human gray matter, approximately
�0.5% fluctuations of the BOLD signal at 3T corres-
pond to at most �5% variations in CMRO2,

5,37,38

which is close to �5% variability of VATP. Together
these estimates imply that variations in ATP demand
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across regions and networks, spatially (�0.4 mmol/g/
min) and dynamically (�0.5mmol/g/min), are of the
same order of magnitude. The brain-wide homogeny
of oxidative phosphorylation, with similar levels of
variation across the spatiotemporal landscape of gray
matter, suggests that there are no large discrepancies of
energy turnover across regions and networks of the
brain (Figure 5(c)).

Regional homogeneity between absolute
OGI and OEF

The possibility of regionally specialized glucose metab-
olism was tested further by examining the spatial differ-
ences between normalized OGI and OEF estimates. For
most of the brain, we found that OEF and OGI esti-
mates were well matched (Figure S3(b)), implying that
the normal brain has the metabolic capacity necessary
for high ATP yield by glucose oxidation. However, two
small regions potentially could be vulnerable to brain
disorders: dorsal white matter where more oxygen was
extracted than glucose oxidized, and ventral gray matter
areas where higher oxidation was observed, possibly
indicating additional substrate utilization. Excessive
metabolic activity in medial limbic regions has been
implicated in paraneoplastic limbic encephalitis,39

whereas dorsal white matter can be linked to oxidative
stress in multiple sclerosis.40 We found several R-fMRI
networks including the DMN to have highly oxidative
glucose metabolism with OGI
 5.2, but these networks
also had relatively higher OEF (Figure 3(c)), consistent
with a constant relation between values of CMRglc and
CBF.41,42 The relation suggests that conditions of high-
yield ATP production prevailed in all these networks
(Figure 5(c)). Future studies can be designed to test if
brain-wide homogeny between OGI and OEF is lost in
different pathophysiological states of the brain, indica-
tive of a disturbed role of glucose metabolism in the
regulation of blood flow. Given the regionalized nature
of OGI and OEF changes in task studies, we hypothesize
that regional homogeny between OGI and OEF would
also be lost in pathophysiological states compared to
normal brain during T-fMRI studies.

Although only a small fraction of total ATP produc-
tion stems from aerobic glycolysis, this pathway poten-
tially may still serve as an important energetic role,
particularly when subpopulations of neurons transi-
ently have very high activity. A potential explanation
is provided by the glycogen shunt. Vesicular glutamate
release into the synaptic cleft is rapidly cleared by Naþ-
coupled glial uptake, where it is converted to glutamine.
This process requires 2 moles of ATP per mole of glu-
tamate cycled between neurons and astrocytes. If
1mole of glucose produces 2 moles of ATP in glia via
glycolysis, then two equivalents of lactate generated in

glia may be completely oxidized at an OGI of 6.
Alternatively, to generate 2 moles of ATP in the glia
via the glycogen shunt,43 2 moles of glucose (i.e. twice
as much of glucose) have to be used for 4 moles of
lactate to be produced. Thus, extra lactate is produced
and exported to the circulation when the OGI drops
below 6 in the absence of other nutrient sources.
When the rate of glial energy production via glycolysis
is not rapid enough for higher neuronal firing rates, the
glycogen shunt could be activated to restore Naþ gra-
dient and glutamine synthesis in glia such that the glu-
tamate release by the neuron remains matched. Thus,
the glycogen shunt is energetically less efficient than
aerobic glycolysis, but when OGI is less than 6 with
brain activation, more lactate is produced via the glyco-
gen shunt.44 While the metabolites of the glucose that
undergoes glycolysis were not measured in this study,
lactate (measurable by 1H MRS) is the obvious candi-
date with a known mechanism of efflux from the
brain.41,45 To what degree the glycogen shunt contrib-
utes to the support of network function in different
physiological and even pathophysiological situations
remains an important goal of future studies.

While the present evidence suggests that oxidative
phosphorylation is the dominant target of energy sup-
port for synaptic transmission, the OGI measurements
suggest that 10–12% of glucose may yield metabolites
that are not subsequently oxidized. A recent report
claims that this entire fraction of glycolysis is devoted
to synaptogenesis.6 However, the claim fails to consider
the availability of other sources of carbon such as
lipids, ketone bodies, and lactate which can directly
support biosynthesis.9 An interesting feature of alterna-
tive carbon sources is their direct entry into the TCA
cycle, bypassing the generation of metabolites of glu-
cose (ATP and lactate). Regionally differential utiliza-
tion of glucose, lactate, and ketone bodies could mean
that lactate potentially would vary regionally. It is clear
that future quantitative PET and MRS studies investi-
gating the role of alternative substrates for the brain
would be needed to reveal to what extent synaptogen-
esis is supported and how the support varies regionally
in relation to the functional energy demands of synaptic
transmission.

Quantitative vs. relative PET imaging

Recently, there has been a growing interest in using rela-
tive CMRglc mapping with PET to help interpret R-
fMRI-based networks,46,47 because merging of PET and
R-fMRI studies can lead to multimodal information
about both functional and metabolic brain networks.48

In the present study, no attempt was made to compute
standardized uptake values (SUVs) of tracers. By normal-
izing the tissue concentration to the administered dose or
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the subject’s weight, it is thought that SUVs improve the
precision of PET quantification. However, SUV compu-
tation is time-dependent, and it is affected by different
plasma clearance rates between subjects and study condi-
tions (e.g. competition for tracer by different organs).
Since these differences on a per subject basis is an accurate
reflection of the subject’s metabolic state, we obtained
quantitative CMRglc, CMRO2, and CBF maps by includ-
ing plasma tracer kinetics with tissue concentration on a
per subject basis. We believe that the small inter-subject
variability in the quantitative PET data (Figure S2(a))
indicates the homogeneity of the group of young healthy
subjects that we studied. However, kinetic modeling of
PET data remains hampered by ‘‘noise’’ in the input func-
tion derived from plasma tracer kinetics. Given the inva-
siveness of blood sampling and the fact that such
approaches cannot be utilized in all scenarios, alternatives
such as image-derived input functions are being sought to
improve the precision of model parameter fitting.49

In this study, the CMRglc, CMRO2, and CBF maps
also underwent global mean normalization as a test of
the distortion introduced by this procedure (Figure 4).
In many PET studies, it is assumed that the average
metabolic rate across gray matter or the entire brain
(or some other region such as the cerebellum) can be
used to normalize the PET data to smooth, or remove
experimental or physiological nuisance components
from, the data. However, the normalization resulted
in expression of the images in units of fractional devi-
ation from the global mean. This normalization took
only relative regional differences of brain metabolism
into account and hence obscured the real quantitative
metabolic differences among the different measures that
determine the OGI and OEF indices.25 But normaliza-
tion may be needed in some cases, as pointed out by
Horwitz et al.,20 e.g. if inter-individual metabolic differ-
ences are large compared to intra-individual metabolic
differences, which can mask correlations between
regions in a multisubject analysis.

Conclusion

In healthy human brain, we found that oxidative phos-
phorylation, not glycolysis, powers resting-state fMRI
networks in normal human brain, given the observable
ranges and spatial distributions of CMRO2 and
CMRglc. No R-fMRI network was found to have a
substantially larger fraction of glycolysis than other
networks, including the DMN that was found to have
a slightly higher OGI than the average. Although not a
major source of ATP, increased aerobic glycolysis may
reflect rapid ATP production from glycogen,43 which is
uniquely placed for glial Naþ, Kþ-ATPase activity
associated with glutamate uptake for neurotransmis-
sion.33 Alternatively, glycolytic ATP regeneration may

reflect biosynthetic needs,6 but proof of this proposal
needs testing of regional utilization of alternative
fuels34,35 and as well as the contribution to biomass
changes of brain weight over the natural aging process.

The current results indicate that oxygen delivery
(OEF) is well matched to glucose oxidation (OGI) in
the majority of gray matter voxels in the normal human
brain. Ubiquitously high ATP yields from glucose oxi-
dation are needed to support normal conscious human
behavior,50 and significant changes in glucose oxidation
are reproducibly measured subjects experiencing a
wide range of stimuli.24 Since somatic mutations of
mitochondrial DNA are associated with various patho-
physiological states (e.g. healthy aging, neurodegenera-
tion, cancer, Leber hereditary optic neuropathy) that
limit the ability of brain cells to generate high-yield
ATP via oxidative energy metabolism,51 combining
R-fMRI with quantitative PET studies may reveal the
metabolic condition of different networks of individual
patients.52,53 The approach has advantages over meth-
ods that normalize across gray matter and probably
miss global changes in VATP. We propose that clinical
R-fMRI studies can be combined with quantitative
PET measures of metabolic profiles to evaluate patients
with brain disorders.
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