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Abstract
A large number of genetic loci are associated with adult bodymass index. However, the genetics of childhood bodymass index
are largely unknown. We performed ameta-analysis of genome-wide association studies of childhood bodymass index, using
sex- and age-adjusted standard deviation scores.We included 35 668 children from 20 studies in the discovery phase and 11 873
children from 13 studies in the replication phase. In total, 15 loci reached genome-wide significance (P-value < 5 × 10−8) in the
joint discovery and replication analysis, of which 12 are previously identified loci in or close to ADCY3, GNPDA2, TMEM18,
SEC16B, FAIM2, FTO, TFAP2B, TNNI3K, MC4R, GPR61, LMX1B and OLFM4 associated with adult body mass index or childhood
obesity. We identified three novel loci: rs13253111 near ELP3, rs8092503 near RAB27B and rs13387838 near ADAM23. Per
additional risk allele, body mass index increased 0.04 Standard Deviation Score (SDS) [Standard Error (SE) 0.007], 0.05 SDS (SE
0.008) and 0.14 SDS (SE 0.025), for rs13253111, rs8092503 and rs13387838, respectively. A genetic risk score combining all 15 SNPs
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showed that each additional average risk allele was associated with a 0.073 SDS (SE 0.011, P-value = 3.12 × 10−10) increase in
childhood body mass index in a population of 1955 children. This risk score explained 2% of the variance in childhood body
mass index. This study highlights the shared genetic background between childhood and adult bodymass index and adds three
novel loci. These loci likely represent age-related differences in strength of the associations with body mass index.

Introduction
Childhood obesity is an important public health problemwith se-
vere consequences, including an increased risk of premature
death (1–5). Body mass index (BMI) has a strong genetic compo-
nent with some reported heritability estimates being over 80%
(6–8). Large genome-wide association studies (GWAS) have re-
vealed many genetic loci associated with BMI or adiposity in
adults (9–13). However, the genetic loci underlying BMI in chil-
dren are less well known. The biological background of BMI
may differ between children and adults. In addition, it may be
that the relative contributions of the same genetic loci differ de-
pending on age, for example due to different gene–environment
interactions or body fat distributions (6,14,15). A limited number
of loci have been identified to associatewith dichotomous defini-
tions of childhood obesity (16–18). Also, the roles of specific
known adult loci for BMI, such as FTO and ADCY3, have been de-
scribed in children (13,19). The age-specific effects are illustrated
by longitudinal studies on the effects of the well-known adult
BMI increasing risk allele of FTO with BMI throughout childhood
(15). It has been reported that the adult BMI increasing risk allele
is associated with lower BMI in infancy, an earlier adiposity re-
bound and a higher BMI from the age of 5 years onwards
(14,15,20). To date, studies did not present a large GWAS meta-
analysis on the full spectrum of childhood BMI (13,16–19).

To identify genetic loci influencing childhood BMI, we meta-
analyzed 20 GWASwith a total of 35 668 children of European an-
cestry, combining data for around 2.5 million single-nucleotide
polymorphisms (SNPs) imputed to the HapMap imputation
panel. We used as outcome sex- and age-adjusted standard devi-
ation scores at the oldest age between 2 and 10 years.

Results
Study characteristics are shown in Supplementary Material,
Table S1. Childhood BMI was transformed into sex- and age-
adjusted standard deviation scores (SDS) (LMS growth; Pan H,
Cole TJ, 2012; http://www.healthforallchildren.co.uk).

Meta-analysis of genome-wide association studies

Inverse-variance weighted fixed-effects meta-analysis revealed
861 SNPs with genome-wide significant or suggestive P-values
(<5 × 10−6). Two SNPs with high heterogeneity were not followed
up (I2 values of 89.4 and 96.0), leaving 859 SNPs representing 43
loci. A locus was defined as a region of 500 kb to either side of
the most significant SNP. The Manhattan and Quantile–Quantile
plots of the discovery meta-analysis are shown in Figure 1 and
Supplementary Material, Figure S1, respectively. The lambda for
the discovery meta-analysis was 1.10. LD score regression ana-
lysis showed that this slight inflation was mainly due to polyge-
nicity of the trait, rather than to population stratification, cryptic
relatedness or other confounding factors (intercept 1.01). Individ-
ual study lambdas are shown in Supplementary Material,
Table S2. All 43 loci were taken forward for replication in a sample
of 11 873 children from 13 studies. Table 1 and Supplementary
Material, Tables S3 and S4 show the results of the discovery,

replication and joint analyses for the 43 genome-wide and sug-
gestive loci.

In total, 15 of these reached genome-wide significance in the
joint analysis. Twelve out of these 15 had been reported previous-
ly for related phenotypes. SNPs in or close to ADCY3, GNPDA2,
TMEM18, SEC16B, FAIM2, FTO, TFAP2B, TNNI3K, MC4R, GPR61,
LMX1B and OLFM4 are associated with adult BMI or childhood
obesity (11,13,16). We identified three novel loci: rs13253111 near
ELP3, rs8092503 near RAB27B and rs13387838 near ADAM23. Per
additional risk allele, BMI increased 0.04 Standard Deviation
Score (SDS) [Standard Error (SE) 0.007], 0.05 SDS (SE 0.008) and
0.14 SDS (SE 0.025) for rs13253111, rs8092503 and rs13387838,
respectively. Figure 2 and Supplementary Material, Figure S2
show the regional plots and the forest plots, respectively, for
these loci.

Genetic risk score

We combined the 15 identified genome-wide significant
SNPs into a genetic risk score that summed the number of BMI-
increasing allelesweighted by their betas from the discoveryana-
lysis and rescaled to a range of 0 to 30, which is the maximum
number of risk alleles. The risk score was associated with child-
hood BMI (P-value = 3.12 × 10−10) in 1955 children from the PIAMA
Study, one of our largest replication cohorts. For each additional
average risk allele in the score, childhood BMI increased by 0.073
SDS (SE 0.011) (Fig. 3). This risk score explained 2.0% of the vari-
ance in childhood BMI.

Associations with adult body mass index and childhood
obesity

The genetic correlation between childhood BMI and adult BMI
was 0.73. A lookup of the 15 SNPs associated with childhood
BMI in a recently published GWAS meta-analysis on adult BMI
in >300 000 participants revealed that all SNPs showed evidence
for association with adult BMI, with P-values of 0.005, 5.76 × 10−5

and 0.003 for the novel SNPs rs13253111, rs8092503 and
rs13387838, respectively. Also, the direction of the effect esti-
mates for all 15 SNPs was the same in children and adults (Sup-
plementary Material, Table S5) (11). The 15 SNPs found in this
study explained 0.94% of the variance in adult BMI in the
GIANT consortium (11).

A reverse lookup in our dataset of the 97 known genome-wide
significant loci previously reported to be associated with adult
BMI showed that 22 out of the 97 lociwere significantly associated
with childhood BMI, using a Bonferroni-adjusted P-value cutoff
of 5.2 × 10−4 for 97 SNPs. A total of 50 out of the 97 known adult
BMI SNPs were nominally associated with childhood BMI (P-
value <0.05). The direction of the effect estimates was the same
in adults and children for 86 SNPs (P-value binomial sign test
<1.0 × 10−4; Supplementary Material, Table S6).

We looked up the association of the three novel loci in a GWAS
meta-analysis of childhood obesity. In this study, childhood
obesity cases were defined as having a BMI ≥ 95th percentile,
whereas childhood normal weight controls were defined as hav-
ing a BMI < 50th percentile. This meta-analysis included 22
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studies, of which 16 were also included in our current meta-
analysis. All three SNPs were associated with childhood obesity
(P-values 0.01, 0.005 and 6.0 × 10−4 for rs13253111, rs8092503
and rs13387838, respectively) (16).

Functional analysis

To explore functionality, we first analyzed whether the 15 identi-
fied SNPs affectmessenger RNA expression (eQTLs).We analyzed
eQTLs from peripheral blood samples from 5311 individuals,
which revealed two cis-eQTLs [false discovery rate (FDR) P-value
<0.05] for rs11676272, the top SNP in one of the previously identi-
fied loci (ADCY3). One of these eQTLswas forADCY3, and onewas
for DNAJC27 (21). Also, we found a cis-eQTL for FAM125B for
rs3829849, which is located in LMX1B (Supplementary Material,
Table S7). eQTL analysis in adipose tissue, a more specific target
tissue in relation to BMI, from 856 healthy female twins in the
MuTHER resource in Genevar revealed two significant cis-eQTLs
(distance to SNP < 1 Mb) for rs11676272, for transcripts of ADCY3
and POMC, with a Bonferroni-corrected P-value of <0.003 (22,23).
The association of rs11676272with expression ofADCY3was also
validated in a second eQTL analysis in a smaller set of 206 lym-
phoblastoid cell lines (24). We did not identify eQTLs related to
our three novel loci.

Second, we performed functional analyses with the tool
Data-Driven Expression Prioritized Integration for Complex Traits
(DEPICT) using all SNPs with a P-value <1 × 10−5 in the discovery
analysis (see Materials and Methods for details) (25). Gene priori-
tization analysis did not show prioritized genes, nor did the gene

set enrichment analysis reveal evidence for enriched reconsti-
tuted gene sets and genes near the associated SNPs were not
found to enrich for expression in a panel of 2009 tissue and cell
types (FDR< 0.05; Supplementary Material, Tables S8a, b and c).

Discussion
In this GWAS meta-analysis of childhood BMI among >47 000
children, we identified 15 genome-wide significant loci, of
which three loci, rs13253111 near ELP3, rs8092503 near RAB27B
and rs13387838 nearADAM23, have not been associatedwith adi-
posity-related phenotypes before.

Large GWAS have revealed many genetic loci associated with
BMI or adiposity in adults (9–13). A recent meta-analysis in up to
339 224 individuals identified 97 BMI-associated loci, explaining
2.7% of the adult BMI variation. Pathway analyses showed that
the central nervous system may play a large role in obesity sus-
ceptibility. The number of identified loci associated with BMI or
obesity in childhood is scarce. Of the total of 15 loci associated
with childhood BMI in the current study, 12 have previously
been associated with adiposity outcomes in adults or children.
All 12 loci are known to be associated with adult BMI (11). Also,
eight loci, including those in or near ADCY3 (annotated to the
nearby gene POMC in the previous paper), TMEM18, SEC16B,
FAIM2, FTO, TNNI3K, MC4R and OLFM4, have previously been as-
sociated with childhood obesity (16). All three novel loci were
nominally associated with the more extreme outcome of child-
hood obesity in a largely overlapping population of child
cohorts (16).

Figure 1. Manhattan plot of results of the discovery meta-analysis of 20 studies. Chromosomes are shown on the x-axis, the –log10 of the P-value on the y-axis. The gray

dotted line represents the genome-wide significance cutoff of 5 × 10−8. Genes shown in black are the known loci that were significantly associated with childhood BMI in

the joint discovery and replication analysis. Genes shown in gray were significant in the discovery, but not in the joint discovery and replication analysis. *indicates novel

loci that were significantly associated with childhood BMI in the joint discovery and replication analysis. See also Table 1.
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A recentmeta-analysis of two studies showed that the known
loci FTO, MC4R, ADCY3, OLFM4 are associated with BMI trajector-
ies in childhood (26). Their findings also suggested that a locus
annotated to FAM120AOS influences childhood BMI, which
could not be replicated in the current study. The lead SNP in
this locus, rs944990, had a P-value of 1.61 × 10−5 in the current
analysis. These findings suggest that the overlap between the
genetic background of childhood and adult BMI is relatively
large, but not complete.

rs7550711 represents one of the 12 identified loci known to be
associated with BMI or obesity in adults and children. rs7550711
is a proxy for rs17024258 and rs17024393 (R2 0.8 with both SNPs),

which have previously been associated with adult obesity and
BMI, respectively, and annotated with the GNAT2 gene. However,
our proxy resides in GPR61, G protein-coupled receptor 61, the
biology of which may be more relevant to BMI. Gpr61-deficient
mice are obese and have hyperphagia, suggesting the role of
Gpr61 in food intake regulation (27). Further studies, including
expression studies in relevant human tissues, are needed to es-
tablish the causal genes underlying this association.

We identified three loci, rs13253111 near ELP3, rs8092503 near
RAB27B and rs13387838 nearADAM23, which have not been asso-
ciated with adiposity-related phenotypes before in adulthood or
childhood. The nearest genes to the novel loci have varying

Table 1. Results of the discovery, replication and joint analyses for 43 loci with P-values <5 × 10−6 in the discovery phase

SNP CHR Position Nearest gene EA/Non-EA EAFa Betaa SEa P-value discovery P-value replication P-value joint

rs13130484b 4 44870448 GNPDA2 T/C 0.44 0.067 0.007 8.94 × 10−11 4.29 × 10−18 1.58 × 10−23

rs11676272b 2 24995042 ADCY3 G/A 0.46 0.068 0.007 8.55 × 10−23 0.020 7.12 × 10−23

rs4854349b 2 637861 TMEM18 C/T 0.83 0.090 0.009 6.00 × 10−21 0.005 5.41 × 10−22

rs543874b 1 176156103 SEC16B G/A 0.20 0.077 0.009 2.38 × 10−17 8.77 × 10−4 2.20 × 10−19

rs7132908b 12 48549415 FAIM2 A/G 0.39 0.066 0.008 4.99 × 10−19 0.043 1.57 × 10−18

rs1421085b 16 52358455 FTO C/T 0.41 0.059 0.007 3.20 × 10−19 0.654 4.53 × 10−16

rs12429545c 13 53000207 OLFM4 A/G 0.13 0.076 0.010 3.66 × 10−11 1.01 × 10−4 2.08 × 10−14

rs987237b 6 50911009 TFAP2B G/A 0.19 0.062 0.009 3.81 × 10−13 0.224 1.80 × 10−12

rs12041852b 1 74776088 TNNI3K G/A 0.46 0.046 0.007 1.77 × 10−10 0.142 2.28 × 10−10

rs6567160b 18 55980115 MC4R C/T 0.23 0.050 0.008 4.06 × 10−12 0.996 1.21 × 10−9

rs13253111 8 28117893 ELP3 A/G 0.57 0.042 0.007 4.13 × 10−9 0.114 4.89 × 10−9

rs8092503 18 50630485 RAB27B G/A 0.27 0.045 0.008 8.55 × 10−8 0.034 8.17 × 10−9

rs3829849b 9 128430621 LMX1B T/C 0.36 0.041 0.007 1.46 × 10−6 0.001 8.81 × 10−9

rs13387838 2 206989692 ADAM23 A/G 0.04 0.139 0.025 2.40 × 10−8 0.306 2.84 × 10−8

rs7550711d 1 109884409 GPR61 T/C 0.04 0.105 0.019 1.50 × 10−8 0.401 4.52 × 10−8

rs17309930b 11 27705069 BDNF A/C 0.21 0.045 0.009 2.47 × 10−8 0.540 1.41 × 10−7

rs2590942b 1 72657869 NEGR1 T/G 0.82 0.047 0.009 3.88 × 10−9 0.966 1.91 × 10−7

rs13107325b 4 103407732 SLC39A8 T/C 0.07 0.081 0.016 1.19 × 10−8 0.970 3.79 × 10−7

rs10151686b 14 29536217 PRKD1 A/G 0.04 0.096 0.019 1.50 × 10−6 0.109 6.99 × 10−7

rs25832 5 66211438 LOC375449 A/G 0.71 0.039 0.008 2.41 × 10−6 0.177 1.62 × 10−6

rs7869969 9 95257268 FAM120A G/A 0.33 0.036 0.008 4.43 × 10−7 0.425 1.68 × 10−6

rs11079830c 17 44037629 HOXB6 A/G 0.58 0.034 0.007 1.43 × 10−6 0.254 1.98 × 10−6

rs4569924 5 153520218 GALNT10 T/C 0.43 0.032 0.007 4.06 × 10−7 0.823 3.48 × 10−6

rs8046312b 16 19886835 GPR139 A/C 0.81 0.042 0.009 4.06 × 10−10 0.185 3.97 × 10−6

rs1838856 2 113822060 PAX8 A/C 0.46 0.034 0.008 1.85 × 10−6 0.588 1.47 × 10−5

rs633143 1 179716108 CACNA1E T/C 0.14 0.044 0.011 3.40 × 10−6 0.648 2.44 × 10−5

rs4923207 11 24713901 LUZP2 T/G 0.79 0.039 0.010 1.60 × 10−6 0.834 3.52 × 10−5

rs6971577 7 140350204 MRPS33 C/G 0.78 0.036 0.009 1.17 × 10−6 0.690 6.80 × 10−5

rs10866069 3 64366964 ADAMTS9 T/C 0.17 0.041 0.011 3.05 × 10−6 0.687 8.43 × 10−5

rs12457682 18 7216505 LAMA1 C/A 0.23 0.035 0.009 3.81 × 10−6 0.942 9.01 × 10−5

rs11165675b 1 96812556 PTBP2 A/G 0.27 0.031 0.008 2.93 × 10−6 0.520 1.01 × 10−4

rs12096993 1 217931859 SLC30A10 T/C 0.27 0.031 0.008 1.38 × 10−6 0.583 1.02 × 10−4

rs760931 1 1637388 CDC2L1 C/G 0.93 0.103 0.027 3.15 × 10−6 0.160 1.27 × 10−4

rs2968990 4 131098524 C4orf33 C/T 0.37 0.028 0.007 1.67 × 10−6 0.487 1.42 × 10−4

rs1247117 10 120418792 C10orf46 G/A 0.11 0.040 0.011 3.47 × 10−6 0.339 2.62 × 10−4

rs6580706 12 47959818 TUBA1C C/G 0.34 0.031 0.009 1.83 × 10−8 0.047 3.68 × 10−4

rs8092620 18 41433991 SLC14A2 G/T 0.48 0.024 0.007 3.31 × 10−6 0.199 7.32 × 10−4

rs188584 3 62675007 CADPS C/A 0.77 0.028 0.008 3.23 × 10−6 0.139 0.001
rs4870949 8 126704776 TRIB1 T/C 0.07 0.164 0.054 3.13 × 10−10 0.061 0.002
rs1573972 4 171559399 AADAT C/T 0.19 0.030 0.013 3.78 × 10−6 0.232 0.020
rs214821 20 2258291 TGM3 T/C 0.02 0.479 0.208 3.38 × 10−6 0.575 0.021
rs8084077 18 49532928 DCC T/C 0.73 0.014 0.008 3.47 × 10−6 2.72 × 10−5 0.062
rs3845265 18 63690108 DSEL G/A 0.71 0.013 0.008 8.86 × 10−7 1.44 × 10−6 0.087

CHR, chromosome; EA, effect allele; EAF, effect allele frequency; SE, standard error.

Bolded P-values indicate genome-wide significance in the joint analysis.
aFrom joint analysis.
bLocus previously reported in Ref. (11).
cLocus previously reported in Refs. (11,16).
dLocus previously reported in Refs. (9,11).
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Figure 2. Regional plots of the three novel loci for childhood BMI. On the x-axis, the position of SNPs on the chromosome is shown. On the left y-axis is the –log10 of the P-values from the discovery analysis, on the right y-axis is the

estimated recombination rate (from HapMap), shown by the light blue line in the figure. The named SNP is themost significant SNP in the locus from the discovery meta-analysis. The linkage disequilibrium of all SNPs with the most

significant SNP is shownby the symbols, with dark gray diamonds indicating an R2 of≥0.8, inversed dark gray triangles indicating an R2 of 0.6–0.8, dark gray triangles indicating an R2 of 0.4–0.6, dark gray circles indicating an R2 of 0.2–0.4

and light gray circles indicating an R2 of 0–0.2. Genes (from HapMap release 22) are plotted below the x-axis.
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functions. ELP3, Elongator Acetyltransferase Complex, subunit 3,
has a potential role in the migration of cortical projection neu-
rons and in paternal demethylation after fertilization in mice
(28–30). RAB27B, RAS-associated protein RAB27B, encodes a
membrane-bound protein with a role in secretory vesicle fusion
and trafficking. It has been associatedwith pituitary hormone se-
cretion, regulation of exocytosis of digestive enzyme containing
granules from pancreatic acinar cells and with gastric acid secre-
tion (31–33). Expression of ADAM23, A Disintegrin And Metallo-
proteinase Domain 23, may influence tumor progression and
brain development (34,35). It has also been described to be ex-
pressed in mouse adipose tissue and to have a potential role in
adipogenesis in vitro (36).

Two of our novel loci, rs13253111 near ELP3 and rs13387838
near ADAM23, are close to rs4319045 and rs972540, respectively.
Both these SNPs were reported as subthreshold results in the
GWASmeta-analysis on adult BMI (11). However, the linkage dis-
equilibrium between the SNPs in both pairs is very low (R2 ≤ 0.1
for both) suggesting that these SNPs may represent different sig-
nals. It is important to note that, although both SNPs reached
genome-wide significance in the joint discovery and replication
analysis, the P-values in the replication stage were non-
significant. This lack of significance may be due to the smaller
sample size and lower power. Also, the joint P-valueswere slight-
ly higher than the discovery P-values. Heterogeneity between the
discovery and the replication stages was low tomoderate, with I2

values of 61.1 and 27.8 for rs13253111 and rs13387838, respective-
ly (P-values > 0.1 for both). These two signals need to be inter-
preted with some caution and further studies with larger
sample sizes are needed to fully clarify the role of variants in
these regions in the physiology of BMI.

Functional analysis showed cis-eQTLs for the lead SNPs in two
of the known loci. rs11676272 was associated with eQTLs in
ADCY3 and DNAJC27, also known as RBJ. Both these genes have
been associated with adult BMI before and the association of
rs11676272 with expression of ADCY3 has been previously de-
scribed in childhood BMI (11,13,37). rs3829849 was associated
with an eQTL in FAM125B, or MVB12B, multivesicular body sub-
unit 12B. This gene encodes a component of ESCRT-I (endosomal

sorting complex required for transport I), a plasma membrane
complex with a role in vesicular trafficking was recently de-
scribed to be associated with intra-ocular pressure (38). However,
the LD of our SNPs with the peak markers for the DNAJC27 (R2

0.11) and the FAM125B (R2 0.03) transcripts was low. Our analysis
using DEPICT did not show enriched gene sets. This may reflect
the relatively limited sample size in our analysis. Further studies
are needed to determine the potential functional impact of all
SNPs associated with childhood BMI.

Using LD score regression analysis with our meta-analysis
results and the results from the recently published GWAs
meta-analysis on adult BMI as input, we found that the genetic
correlation between childhood and adult BMI was high (11,39).
The variance in adult BMI explained by the 15 SNPs identified
in this studywas lower than in children. The novel SNPs reported
in this study may represent loci that specifically influence child-
hood BMI, but not adult BMI. An alternative explanation is that
the effect sizes of these loci may be larger in children than in
adults, which may explain the discovery in childhood studies
but not in adult studies (11). The large overlap between childhood
and adult BMI loci suggests that many of these loci may not re-
present childhood-specific effects, but rather involvement of
the same loci with differential effect sizes at different ages.
Age-specific effects of genetic variants associated with BMI in
children have been described for the FTO locus (15). However, lon-
gitudinal studies withmultiplemeasurements of BMI are needed
to confirm and quantify such varying effects with age. In discuss-
ing the genetic overlap between childhood and adult BMI, it
needs to be noted that, because of the differences in body propor-
tions and body fat distribution, childhood BMI may be a different
phenotype compared with adult BMI. Our outcome was the
conventional measure of BMI calculated as weight/height2. Espe-
cially in early childhood, higher orders of magnitude for height
may be more appropriate. Results from a previously published
GWAS study on childhood BMI in two of the cohorts included in
the current meta-analysis suggest that the results for SNPs close
to ADCY3 are different when higher orders of magnitude for
height are being used (37). Further studies are needed to identify
loci related to more specific and directly assessed measures of
adiposity and body fat distribution in young children.

In conclusion, we identified 15 loci associated with childhood
BMI, of which three are novel. Our results highlight a consider-
able shared genetic background between childhood and adult
BMI. The novel BMI-related loci may reflect childhood-specific
genetic associations or differences in strength of associations be-
tween age groups.

Materials and Methods
Study populations

Characteristics of each discovery and replication study popula-
tion can be found in SupplementaryMaterial, Table S1 andMeth-
ods. The discovery analysis included 20 studieswith an age range
from 3 to 10 years: the Avon Longitudinal Study of Parents and
Children (ALSPAC, 6887 children), the Children’s Hospital of
Philadelphia (CHOP, 2456 children), the Copenhagen Studies on
Asthma in Childhood 2000 birth cohort (COPSAC2000, 309 chil-
dren), the Danish National Birth Cohort (DNBC, 1020 children),
the Generation R Study (GenerationR, 2226 children), the GOYA
Study (GOYA, 199 children), the Helsinki Birth Cohort Study
(HBCS, 1674 children), the INfancia y Medio Ambiente Project
(INMA, 756 children), the Leipzig study (Leipzig, 555 children),
the Lifestyle—Immune System—Allergy Study plus German

Figure 3. Association of the weighted risk score with BMI. Along the x-axis,

categories of the weighted risk score are presented, the mean standard

deviation score (SDS)-BMI per group is shown on the right y-axis, with the line

representing the regression of the mean SDS–BMI values on the categories of

the weighted risk score. The left y-axis represents the number of children in

each risk score category, shown in the histogram. The P-value is derived from

the analysis of the continuous risk score. Analysis was performed in the PIAMA

Study (n = 1955).
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Infant Study on the influence of Nutrition Intervention (LISA +
GINI, 1147 children), the Manchester Asthma and Allergy Study
(MAAS, 801 children), the Norwegian Mother and Child Cohort
Study (MoBa, 126 children), the Northern Finland Birth Cohort
1966 (NFBC 1966, 3948 children), the Northern Finland Birth Co-
hort 1986 (NFBC 1986, 4000 children), the Netherlands Twin
Register (NTR, 1810 children), the Physical Activity and Nutrition
in Children Study (PANIC, 423 children), the Western Australian
Pregnancy Cohort (Raine) Study (Raine, 1458 children), the Spe-
cial Turku coronary Risk factor Intervention Project (STRIP, 569
children), the Young Finns Study (YFS, 1134 children), the British
1958 Birth Cohort Study, with two subcohorts that were entered
into themeta-analysis separately (1958BC-T1DGC, 1974 children,
and 1958BC-WTCCC2, 2196 children).

We included 13 replication studies. Eleven of these were co-
hort studies: 574 children from the Copenhagen Studies on Asth-
ma in Childhood 2010 birth cohort (COPSAC2010), 676 additional
children from the DNBC, 386 additional children from LISA +
GINI, 3152 children from the TEDS Study, 1955 children from
the Prevention and Incidence of Asthma and Mite Allergy birth
cohort study (PIAMA), 1665 children from the BREATHE Study,
447 children from the Bone Mineral Density in Childhood Study
(BMDCS), 200 children from the TEENs of Attica: Genes and Envir-
onment (TEENAGE) study, additional imputed data on 857 chil-
dren from the Leipzig Study, 480 additional children from
PANIC and additional imputed data for 569 children from STRIP.
We also included two obesity case–control studies in the replica-
tion: the Danish Childhood Obesity Biobank (306 cases, 158 con-
trols) and the FrenchYoung Study (304 cases, 144 controls). In the
BREATHE Study, information was available about six SNPs only
(rs8046312, rs12429545, rs13130484, rs3845265, rs543874, rs8084077).

All included childrenwere of European ethnic origin. Sex- and
age-adjusted standard deviation scores were created for BMI at
the latest time point (oldest age, if multiple measurements ex-
isted) between 2 and 10 years using the same software across
all studies (LMS growth; Pan H, Cole TJ, 2012; http://www.
healthforallchildren.co.uk). Syndromic cases of obesity and chil-
dren of non-European ethnic origin were excluded. In the case of
twin pairs, only one twin was included, either randomly or based
on genotyping or imputation quality.

Statistical approach

Cohort-specific genome-wide association analyses were first run
in the discovery cohorts, using high-density Illumina or Affyme-
trix SNP arrays, followed by imputation to the HapMap CEU re-
lease 22 imputation panel. The MAAS study imputed to the
combined 1000 Genomes (1000G) Pilot + HapMap 3 (release June
2010/Feb 2009) panel. Before imputation, studies applied study-
specific quality filters on samples and SNP call rate, minor allele
frequency and Hardy–Weinberg disequilibrium (see Supplemen-
tary Material, Table S1 for details). Leipzig (discovery sample),
NFBC1986, STRIP (discovery sample) and PANIC (discovery sam-
ple) contributed unimputed data from theMetabochip. Linear re-
gressionmodels assuming an additive genetic model were run in
each study, to assess the association of each SNP with SDS–BMI,
adjusting for principal components if this was deemed needed in
the individual studies. As SDS–BMI is age and sex specific, no fur-
ther adjustments were made. Before the meta-analysis, we ap-
plied quality filters to each study, filtering out SNPs with a
minor allele frequency below 1% and SNPs with poor imputation
quality (MACH r2_hat ≤ 0.3, IMPUTE proper_info≤0.4 or info≤0.4).
For studies contributing unimputed metabochip data to the dis-
covery analysis, we excluded SNPs with a SNP call rate of <0.95

or with a Hardy–Weinberg Equilibrium P-value of ≤0.00001. We
performed fixed-effects inverse-variance weighted meta-
analysis of all discovery samples using Metal (40). Genomic
controlwas applied to every study before themeta-analysis. Indi-
vidual study lambdas ranged from 0.985 to 1.077 (Supplementary
Material, Table S2). The lambda of the discovery meta-analysis
was 1.10. After the meta-analysis, SNPs for which information
was available in only one study were removed.

The final dataset consisted of 2 499 691 autosomal SNPs. The
most significant SNP for each of 43 genome-wide significant or
suggestive loci (P-value < 5 × 10−6) was taken forward for replica-
tion in 13 replication cohorts. A locus was defined as a region
500 kb to either side of the most significant SNP. All replication
cohorts had in silico data available. One of them only had non-
imputed data (BREATHE), two (TEENAGE and TEDS) had data im-
puted to HapMap release 22, one cohort (PANIC) used exome chip
data and the other nine performed imputation to 1000G. The rep-
lication samples of the STRIP and Leipzig studies only contribu-
ted 20 and 21 imputed SNPs, respectively, as the unimputed
SNPs were part of the discovery analysis. Fixed-effects inverse-
variance meta-analysis was performed for these 43 SNPs com-
bining the discovery samples and all replication samples, giving
a joint analysis beta, standard error and P-value (Table 1 and Sup-
plementary Material, Table S2).

Sensitivity analyses

Allele frequency differences between the discovery and the repli-
cation sampleswere small and stayedwithin a range of seven per-
centage points for all SNPs, except for rs1573972, which had a
minor allele frequency of 9% in the discovery analysis and 28%
in the replication analysis. This was likely due to the inclusion of
one study (MAAS) that had imputed to the combined HapMap+
1000G panel, whereas all other studieswith imputed data had im-
puted toHapMap. To increase homogeneity,we performed several
sensitivity analyses. First, we reran the discovery meta-analysis
excluding the MAAS study. This analysis did not materially
change our findings, with one additional SNP (rs10055577) reach-
ing the subthreshold level of significance (P-value = 1.10 × 10−6)
and five SNPs (rs4870949, rs1838856, rs633143, rs10866069 and
rs1573972) losing significance. None of these five SNPs had repli-
cated in the primary analysis. Second, we reran the replication
and jointmeta-analysis includingonly those cohorts that imputed
to 1000G. Results of this analysis were very similar to the primary
analysis, with two additional replicated SNPs, rs17309930 near
BDNF and rs13107325 in SLC39A8. Both of these are known loci
for adult BMI (11,13). Third, we reran the replication including
only the HapMap-imputed and unimputed studies (TEDS, TEEN-
AGE and BREATHE). The results were very similar to those using
all studies, with rs4870949 and rs2590942 now passing the signifi-
cance threshold and rs8092503 and rs3829849 now just above it
(results not shown). rs1573972 was not replicated in any of the
analyses. As results of the third and fourth sensitivity analyses
were very similar to those including all replication cohorts, we
used the latter as our main analysis for reasons of power.

Genetic risk score and percentage of variance explained

A weighted risk score was computed as the sum of the number
of SDS–BMI-increasing alleles (dosage) weighted by the effect
sizes from the discovery meta-analysis. Then, the score was
rescaled to range from zero to the maximum number of SDS–
BMI-increasing alleles (30 alleles for 15 SNPs) and rounded
to the nearest integer. The association of the risk score with
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SDS–BMI was assessed in one of the largest replication cohorts
(PIAMA, N = 1955) by running a linear regression model. The vari-
ance in SDS–BMI explained by the risk score was estimated by the
unadjusted R2 of this model. The percentage of variance in adult
BMI explained by the 15 SNPs was calculated using the published
data from the recently published large meta-analysis of GWAs
studies on adult BMI (11). For each SNP, the variance explained
was calculated as: 2 × (adult effect size2) ×MAF × (1 −MAF), and
these variances were then summed to give the total percentage
of variance in adult BMI explained by the 15 SNPs (11,41).

LD score regression

LD score regression was used with the standard settings (39).
Changing the minor allele frequency filter from 0 to 0.05 did not
change the results. Therefore, we report the results of the unfil-
tered analysis only.

eQTL analysis

eQTL analysis was conducted using the most significant SNP from
each of the 15 genome-wide significant loci from the joint analysis.
There was no linkage disequilibrium between these SNPs. First, we
assessed whether the top SNPs or their proxies, identified on the
basis of R2 > 0.7, were associated with gene expression in whole-
blood cells in a sample of 5311 individuals (21). Expression in this
dataset was assessed using Illumina Whole-Genome Expression
BeadChips (HumanHT-12). eQTLs were deemed cis when the dis-
tance between the SNP chromosomal position and the probe mid-
point was <250 kb. eQTLs were mapped using Spearman’s rank
correlation, using imputation dosage values as genotypes. An FDR
P-value of <0.05 was considered significant. Second, the 15 SNPs
were introduced to the online eQTL database Genevar (www.
sanger.ac.uk/resources/software/genevar) to explore their associa-
tions with expression transcripts of genes in proximity (<1 Mb dis-
tance) to the SNP in adipose tissue from 856 healthy female twins
of the MuTHER resource (22,23). We used Bonferroni correction for
the significance threshold (P-value <0.003).

Data-driven Expression Prioritized Integration for
Complex Traits

DEPICT was run using SNPs with a P-value of <10−5 yielding 56
independent DEPICT loci comprising 100 genes (42). DEPICT
was run using default settings, that is using 500 permutations
for bias adjustment, 20 replications for FDR estimation, normal-
ized expression data from 77 840 Affymetrix microarrays for
gene set reconstitution [see Ref. (43) for details], 14 461 reconsti-
tuted gene sets for gene set enrichment analysis and testing 209
tissue/cell types assembled from 37 427 Affymetrix U133 Plus 2.0
Array samples for enrichment in tissue/cell type expression (42).

Supplementary Material
Supplementary material is available at HMG online.
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