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Abstract

Thermogenesis is one of the most important homeostatic mechanisms that evolved during 

vertebrate evolution. Despite its importance for the survival of the organism, the mechanistic 

details behind various thermogenic processes remain incompletely understood. Although heat 

production from muscle has long been recognized as a thermogenic mechanism, whether muscle 

can produce heat independently of contraction remains controversial. Studies in birds and 

mammals suggest that skeletal muscle can be an important site of non-shivering thermogenesis 

(NST) and can be recruited during cold adaptation, although unequivocal evidence is lacking. 

Much research on thermogenesis during the last two decades has been focused on brown adipose 

tissue (BAT). These studies clearly implicate BAT as an important site of NST in mammals, in 

particular in newborns and rodents. However, BAT is either absent, as in birds and pigs, or is only 

a minor component, as in adult large mammals including humans, bringing into question the BAT-

centric view of thermogenesis. This review focuses on the evolution and emergence of various 

thermogenic mechanisms in vertebrates from fish to man. A careful analysis of the existing data 

reveals that muscle was the earliest facultative thermogenic organ to emerge in vertebrates, long 

before the appearance of BAT in eutherian mammals. Additionally, these studies suggest that 

muscle-based thermogenesis is the dominant mechanism of heat production in many species 

including birds, marsupials, and certain mammals where BAT-mediated thermogenesis is absent or 

limited. We discuss the relevance of our recent findings showing that uncoupling of 

sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) by sarcolipin (SLN), resulting in futile 

cycling and increased heat production, could be the basis for NST in skeletal muscle. The overall 

goal of this review is to highlight the role of skeletal muscle as a thermogenic organ and provide a 

balanced view of thermogenesis in vertebrates.
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I. INTRODUCTION

The maintenance of a constant core body temperature Tc (Mitchell et al., 1992) is one of the 

most exquisite homeostatic mechanisms of modern-day birds and mammals. Present-day 
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endotherms have both the ability to produce heat (thermogenesis) as well as dissipate heat, 

which enables them to maintain Tc in hot and/or cold environments. Importantly, the 

evolution of thermogenic mechanisms in vertebrates has enabled species not only to survive 

in fluctuating environments but also to invade new territories from the Arctic to the 

Antarctic. However, the origins and evolution of thermogenic mechanisms in vertebrates 

remain poorly understood. Current knowledge of thermogenesis is largely derived from 

studies performed in present-day mammals (mostly rodents) and to a lesser extent in birds. 

These studies suggest that during cold exposure both shivering and non-shivering 

thermogenic mechanisms are activated in mammals and birds (Chaffee & Roberts, 1971; 

Block, 1994; Silva, 2011). It is well known that shivering, a repetitive process of muscle 

contraction, is an important mechanism of heat production and is a first line of defence 

during acute cold exposure. Studies on various genetically modified mouse models show 

that shivering alone is insufficient for the maintenance of Tc and non-shivering mechanisms 

must be activated to sustain heat production (Thomas & Palmiter, 1997; Guerra et al., 1998; 

Bachman et al., 2002; Ukropec et al., 2006; Arruda et al., 2008; Aydin et al., 2008; 

Anunciado-Koza et al., 2011; Bal et al., 2012).

Pioneering studies performed in newborn mammals and adult rodents have identified brown 

adipose tissue (BAT) as an important site of heat production via non-shivering 

thermogenesis (NST) (Dawkins & Scopes, 1965; Heim & Hull, 1966; Heim, Kellermayer & 

Dani, 1968; Knight & Myant, 1970; Alexander, Bennett & Gemmell, 1975; Lean & James, 

1983; Lean et al., 1986; Casteilla et al., 1989; Giralt et al., 1990; Houstek et al., 1993; 

Zancanaro et al., 1995; Cambon, Reyne & Nougues, 1998; Rose et al., 1999; Cannon & 

Nedergaard, 2004). Rodents (the most common animal model used in research), like 

neonates, rely heavily on BAT for thermogenesis; as a result, much of the research on NST 

during the last two decades has been focused on BAT. There is no doubt that these studies 

have contributed to a greater understanding of BAT-dependent thermogenesis in mammals, 

but at the same time, these studies have overlooked the existence of other equally important 

NST mechanisms, especially the role of skeletal muscle. While BAT function is important in 

many mammals, it is most often restricted to neonatal stages and is downregulated in adult 

large non-hibernating mammals, including humans. In addition, there are several endotherms 

such as birds, marsupials, and wild boars that can maintain constant Tc and thrive in cold 

climates without BAT. Several studies have suggested that skeletal muscle could be an 

important site of NST (Davis, 1967; Barre et al., 1989; Bourhim et al., 1990; Duchamp et 
al., 1991; Duchamp & Barre, 1993; Eldershaw et al., 1997); however, the mechanistic details 

of muscle-based NST are not completely understood.

In addition to cold-induced thermogenesis, NST mechanisms have been shown to be 

recruited in diet-induced thermogenesis (Duchamp et al., 1993) as a way to increase energy 

expenditure during diet overload (Lowell & Spiegelman, 2000; Feldmann et al., 2009; 

Tseng, Cypess & Kahn, 2010). This area of research has received considerable attention 

because it can be targeted to increase energy expenditure, thereby providing a therapeutic 

strategy against obesity (Lowell & Spiegelman, 2000; Tseng et al., 2010). Indeed, in recent 

years, there has been renewed interest in finding ways of increasing BAT activity in adult 

humans as a strategy to increase energy expenditure. However, to tackle the recent obesity 
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epidemic, a detailed understanding of other NST mechanisms in humans is of increasing 

significance.

The purpose of this review is (i) to trace the origins of various thermogenic processes 

throughout vertebrate evolution, (ii) to highlight the role of skeletal muscle as the original 

thermogenic organ, and lastly, (iii) to show that skeletal muscle is an important site of NST. 

In addition, we will discuss the relative contributions of muscle versus BAT-dependent 

thermogenic mechanisms in extant endothermic homeotherms. A major emphasis is placed 

on illustrating how muscle-based thermogenesis might be critical in animals where BAT is 

absent or limited in adult life. In addition, we discuss recent data from our laboratory that 

implicates uncoupling of the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) pump by 

sarcolipin (SLN) as a mechanism for skeletal-muscle-based NST. This finding suggests that 

skeletal muscle has the capacity to activate futile Ca2+ cycling as a mechanism to generate 

heat. Thus, the overall goal of this review is to highlight the importance of skeletal muscle to 

thermogenesis throughout vertebrate evolution.

In addition to thermogenesis, many other adaptive features contributed to the evolution of 

endothermic homeothermy among vertebrates. These include: behavioural adaptations such 

as parental care and nesting/herding, heat conservation (by fur, feather, integument 

modifications), heterothermic adaptations (that reduce the energy cost of rigid 

homeothermy) such as torpor and hibernation, and predation and predator evasion, as these 

adaptations include locomotion thereby energy expenditure. Moreover, neurohormonal 

control of the activation and maintenance of thermogenesis will also have played a key role 

in the evolution of homeothermy. Such adaptations are beyond the scope of this review.

II. EVOLUTION OF SKELETAL MUSCLE AS A THERMOGENIC ORGAN

(1) Muscle is intrinsically capable of producing heat

Muscle contractions from physical activity generate considerable amounts of heat, and 

contraction-based heat production is exploited by shivering during cold exposure (Kosaka, 

Simon & Thauer,1967a; Kosaka, Takagi & Koyama, 1967b; Kosaka & Simon, 1968; 

Minaire & Chatonnet, 1968; Tkachenko, 1968; Nikki, 1969; Tanche & Therminarias, 1969; 

Chaffee & Roberts, 1971; Vybiral & Jansky, 1974; Lefaucheur et al., 2001; van Marken 

Lichtenbelt & Daanen, 2003; Silva, 2011). Indeed, when maximally recruited, as during 

exercise or an intense bout of shivering, muscle can account for up to 90% of whole-body 

oxygen uptake, an indirect measure of heat production (Stainsby & Lambert, 1979; Zurlo et 
al., 1990). During muscle contraction, heat is generated by the hydrolysis of ATP from three 

different ATPases: myosin ATPase (Stewart et al., 2010; Cooke, 2011; Little & Seebacher, 

2013), which performs the contractile work, and SERCA (Block, 1994; Dumonteil, Barre & 

Meissner, 1995; Simonides et al., 2001; Morrissette, Franck & Block, 2003; de Meis, Arruda 

& Carvalho, 2005; Arruda et al., 2007; Kjelstrup et al., 2008; Bal et al., 2012; Inesi & 

Tadini-Buoninsegni, 2013; Little & Seebacher, 2013; Sahoo et al., 2013) and Na+/K+ 

ATPase (Guernsey & Morishige, 1979; Muller & Seitz, 1984; Herpin, McBride & Bayley, 

1987; Kelly & McBride, 1990; Rolfe & Brown, 1997; Karbowski, 2009), which reset resting 

ion gradients and membrane potential. To sustain these processes, ATP generation must be 
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increased to match demand. These obligatory metabolic processes also generate heat, adding 

to total heat production.

(2) Muscle as the first organ to be recruited in heat production

Striated muscle can be considered the most primitive facultative thermogenic organ. Fish 

were among the earliest vertebrate species to evolve, and evidence for muscle-based heat 

production can be observed in certain fish species that show characteristics of endothermy. 

While the vast majority of fish are ectotherms, species from the families Lamnidae (sharks) 

and Scombridae (tunas) can achieve some level of whole-body homeothermy through a 

modified myotomal muscle (Dickson & Graham, 2004; Runcie et al., 2009). In these 

species, this slow-twitch, oxidative muscle is located in a medial location, in contrast to the 

myotomal muscle of ectothermic fish, permitting heat conservation (Carey & Teal, 1966; 

Dickson & Graham, 2004). The muscle is also perfused by counter-current heat exchangers, 

which minimize heat loss (Dickson & Graham, 2004). A known characteristic of these 

species is their continuous swimming behaviour; these sustained contractions combined with 

the heat-conservation mechanisms described above result in net heat production and 

represent the source of endothermy in these fishes (Dizon et al., 1978; Guppy, Hulbert & 

Hochachka, 1979; Hochachka & Mommsen, 1991; Dickson & Graham, 2004; Runcie et al., 
2009).

Another fish species known to exhibit endothermy is the opah (Lampris guttatus). Rather 

than achieving whole-body homeothermy, opahs have developed regional endothermy, 

which utilizes localized heat production specifically to warm the cranial region (Runcie et 
al., 2009). Cranial endothermy is an important ecological adaptation that provides a selective 

advantage as it protects the central nervous system from rapid changes in ambient 

temperature and enhances vision and detection of prey. To achieve cranial endothermy, 

opahs employ contractions of the extraocular muscles in order to elevate cranial 

temperatures when water temperatures are low (Runcie et al., 2009).

Further evidence for heat production as a result of muscular work is found in the brooding 

python (Python molurus and Python spilotes spilotes), a reptile that exhibits “facultative 

endothermy.” Brooding pythons use shivering thermogenesis, i.e. repetitive muscle 

contractions, to keep their eggs warm during embryonic development but revert to 

heterothermy after brooding (Hutchiso, Dowling & Vinegar, 1966; Harlow & Grigg, 1984; 

Slip & Shine, 1988; Grigg, Beard & Augee, 2004). Collectively, the evidence thus shows 

that heat can be generated by muscle, and that muscle can be recruited, in non-

homeothermic species; perhaps this represents the most primitive form of regulated heat 

production. In fact, it has been postulated that behavioural thermoregulation and facultative 

endothermy were factors involved in the attainment of homeothermy (Hochachka & 

Mommsen, 1991). Modifications of these thermogenic mechanisms, along with a 

sophisticated thermoregulatory system, likely contributed to the development of obligate 

endothermy (Hochachka & Mommsen, 1991; Grigg et al., 2004). Acquiring insulation, such 

as fur, feathers, and subcutaneous fat would additionally have contributed to this process.
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(3) The role of skeletal muscle in the transition from ectothermy to endothermy

Out of all groups of vertebrates only birds and mammals achieved whole-body 

homeothermy. For centuries the specific mechanism(s) that led to the evolution of 

endothermy among vertebrates have remained elusive despite intense research effort. 

Comparative analyses of ectotherms and endotherms have provided clues to the heat-

producing mechanisms that must have defined the path to the evolution of endothermy. 

When comparing similar-sized reptiles (ectotherms) to mammals (endotherms), skeletal 

muscle is found to be much more massive (30% greater) in mammals (Ruben, 1995). Based 

on such comparative analyses it has been proposed that the expansion of skeletal muscle 

mass was a key adaptation during the evolutionary transition of vertebrates from ectothermy 

to homeothermy (Newman, 2011). Studies also indicate that the surface area of the inner 

mitochondrial membranes in muscle is 220% greater in mammals than in reptiles and 

isolated mammalian mitochondrial membranes have twice the enzymatic activity (Else & 

Hulbert, 1985; Hulbert & Else, 1989; Ruben, 1995). Because the energetic requirements for 

thermogenesis are high, an increase in mitochondrial respiratory capacity suggests that 

muscle must have played a key role as a site for thermogenesis during the adaptive transition 

towards homeothermy. Therefore, increased skeletal muscle mass, along with the means to 

sustain higher metabolic activity are likely to have been critical in the acquisition of 

endothermy among vertebrates. However, due to the different genetic backgrounds of 

ectotherms and endotherms (i.e. reptiles versus mammals), direct comparisons cannot 

clearly define the mechanism(s) that mediated the transition from ectothermy to endothermy.

To circumvent this problem, researchers have utilized chicken embryos as an ideal model 

system to study the mechanisms underlying the transition from ectothermy to endothermy 

(Walter & Seebacher, 2007, 2009; Ijiri et al., 2009). Before hatching, chick embryos switch 

from an ectothermic state to an endothermic state; therefore, one can perform controlled 

experiments without potentially confounding species-dependent variations. Observations 

from chick embryos show that muscle acquires a more oxidative phenotype during the 

transition, and respiration in skeletal muscle increases after hatching, whereas respiration in 

the liver remains unaltered (Walter & Seebacher, 2007, 2009; Ijiri et al., 2009). Collectively, 

these data suggest that muscle is one of the earliest sites of thermogenesis and plays a key 

role in the transition from ectothermy to endothermy.

III. NON-SHIVERING THERMOGENIC ORIGINS IN SKELETAL MUSCLE

(1) Modified skeletal muscle as a site of NST

The above sections emphasized that muscle can be recruited for thermogenesis, even in non-

homeothermic species, but in these cases, the heat-producing capability of muscle is 

dependent upon contraction. However, muscle can be modified to produce heat in a non-

shivering manner without being coupled to contraction. Evidence for muscle-based NST is 

found in certain fishes with the capacity for regional endothermy. These species, including 

billfishes, tuna, and mackerel, utilize modified muscle tissue as a means of achieving 

endothermy (Carey, 1982; Block, 1986, 1994; Dickson & Graham, 2004). This specialized 

muscle tissue, termed the “heater organ”, is derived from eye muscle and is located in the 

cranial region. The heater organ is composed of cells that lack the typical myofibrillar 
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structure and have very low expression of actin and myosin (Tullis, Block & Sidell, 1991). 

Heater organ cells are densely packed with mitochondria and sarcoplasmic reticulum (SR) 

networks (Hochachka & Mommsen, 1991; Block, 1994). The extensive SR of heater organs 

is organized into tightly packed stacks, which optimizes surface area for SERCA. Studies 

have indicated that, in addition to SERCA, the heater organ expresses a Ca2+ release channel 

(CRC) and calsequestrin (CASQ), which are distributed rather homogeneously throughout 

the SR (Block & Kim, 1992; Block, Obrien & Meissner, 1994). This is in contrast to skeletal 

muscle, where the CRC and CASQ are commonly located at specific sites in the SR, called 

triad junctions. Although the precise mechanism of heat production in heater organ cells has 

not been proven, it has been linked to Ca2+ transport across the SR membrane. The 

mechanism proposed is as follows: neuronal stimulation depolarizes the heater cell, which 

leads to Ca2+ release from the SR. The resulting increase in cytoplasmic Ca2+ stimulates 

SERCA to actively remove the Ca2+ by utilizing energy derived from ATP hydrolysis. 

Simultaneously, the free cytosolic Ca2+ can also enter through the mitochondrial uniporter 

and stimulate mitochondrial respiration (and heat generation) directly (Block, 1994). Thus, 

in the heater organ, heat is produced by SERCA-catalysed ATP hydrolysis and the 

stimulation of mitochondrial metabolism required to replenish ATP. Hence, by coupling SR 

Ca2+-transport with ATP production by mitochondria, and with the loss of myofilaments, a 

new cell type evolved to produce heat (Fig. 1). Interestingly, the heater organ originated 

independently in two lineages of fish [billfishes and butterfly mackerel (Gasterochisma 
melampus)], a fact that highlights the relative ease with which muscle can be adapted to 

fulfill a thermogenic role (Block, 1994).

(2) Muscle-based NST in birds

Perhaps the most convincing evidence for NST in skeletal muscle comes from avian species 

(Barre et al., 1985, 1989; Barre, Bailly & Rouanet, 1987; Duchamp et al., 1989; Dumonteil, 

Barre & Meissner, 1993, 1994; O’Brien, Meissner & Block, 1993; Dumonteil et al., 1995; 

Bicudo, Vianna & Chaui-Berlinck, 2001; Raimbault et al., 2001; Bicudo, Bianco & Vianna, 

2002; Toyomizu et al., 2002; Ijiri et al., 2009; Walter & Seebacher, 2009). Birds occupy 

some of the most diverse climates yet maintain the highest body temperatures (38–42°C) 

among homeotherms (Butler & Woakes, 2001). Some birds including pigeons, geese, and 

starlings are able to maintain Tc at ~44°C during flight even at ambient temperatures below 

0°C (Hart & Roy, 1967; Aulie, 1971; Miller, 1974; Torre-Bueno, 1976). A common feature 

of birds is that their skeletal muscle is more massive than in comparably sized reptiles and 

mammals (Else & Hulbert, 1981, 1985; Butler, 2000; Hutchinson, 2004; Newman, 2011; 

Newman, Mezentseva & Badyaev, 2013): the Japanese quail (Coturnix coturnix japonica) 

has a skeletal muscle mass that constitutes more than 70% of its body mass (Kawahara & 

Saito, 1976). Therefore it is speculated that the expansion of avian skeletal muscle, 

particularly the breast and thigh muscles, provided a unique survival advantage that 

permitted more efficient heat generation. These muscles are highly specialized for aerobic 

respiration with high levels of myoglobin and mitochondria, making them well suited for 

flight (Butler, 1991). Cold-adaptation experiments on birds have shown that, while shivering 

is the first line of defence used to maintain body temperature as in mammals, birds are also 

known to use NST mechanisms (Barre et al., 1989; Duchamp et al., 1989, 1991; Duchamp & 
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Barre, 1993; Eldershaw et al., 1997). Hence, the same characteristics that enable flight very 

likely provide the proper physiological milieu for NST in muscle.

Although others had previously recognized cold-induced NST in birds, C. Duchamp and H. 

Barre were the first to identify skeletal muscle as the major site of NST (el-Halawani, 

Wilson & Burger, 1970; Duchamp et al., 1989; Duchamp & Barre, 1993). Using blood-flow 

measurements from thermoneutral (TN, 25°C) and cold-acclimated (CA, 4°C for 5 weeks) 

ducklings (Cairina moschata) exposed to 8°C, they were able to show that total muscle 

blood flow increased equally in the TN and CA ducklings, although the CA ducklings did 

not shiver. Both groups were also able to maintain Tc in the optimal range (Duchamp & 

Barre, 1993). Thus, skeletal muscles from CA ducklings were able to produce the same 

amount of heat as muscles from shivering TN ducklings, demonstrating the existence of 

NST in skeletal muscle. Similar results have also been found for sparrows (Passer 
domesticus), king penguin chicks (Aptenodytes patagonicus), and chickens (Gallus 
domesticus) (Barnett, 1970; el-Halawani et al., 1970; Duchamp et al., 1989; Eldershaw et 
al., 1997). Although this work defined muscle as the site of NST, it did not provide a 

detailed mechanism for the source of heat production. In a follow-up study, Dumonteil et al. 
(1995) performed timed cold exposures to determine how changes in gene expression 

patterns coincided with the activation of NST. In their experiment, the onset of NST 

correlated with the timing of increases in SERCA and CRC expression, whereas CASQ 

levels were unaffected (Dumonteil et al., 1995). Thus, these studies indicated that Ca2+ 

cycling could be responsible for muscle-based NST. Earlier studies substantiated 

corroborated these findings by showing increases in both SERCA and the CRC after 6 

weeks of cold acclimation in ducklings (Dumonteil et al., 1993). Further support for Ca2+ 

cycling in NST is the finding that long-chain fatty acylcarnitines and related metabolites 

induce Ca2+ release from the avian CRC. During cold acclimation, long-chain fatty acids 

and their metabolites have been shown to be increased in muscle (Dumonteil et al., 1994). 

Therefore, fatty acyl-CoA/carnitine-induced Ca2+ release could be a mechanism by which 

Ca2+-cycling is activated in response to cold. Further research is required to define the exact 

mechanism of NST in avian skeletal muscle.

(3) NST in mammals: evolution of BAT and its role in mammalian thermogenesis

It appears that birds followed an evolutionary pathway that led to muscle hyperplasia along 

with enrichment in mitochondrial content (Ruben, 1995; Newman, 2011) but did not evolve 

BAT (Walter & Seebacher, 2007, 2009; Mezentseva, Kumaratilake & Newman, 2008; 

Teulier et al., 2010). Mammals did not follow the same route. The more recent mammals, 

the eutherians, invented a whole new tissue type, BAT, which prototherian mammals lack. 

This evolutionary bifurcation in NST mechanisms could have been due to the ecological and 

ecogeological constraints prevailing during the times of diversification of these groups from 

their respective ancestors. During this period, birds adopted an aerial mode of life that 

permitted muscle hyperplasia and the evolution of muscle-based NST. Mammals, however, 

remained predominantly terrestrial, and maintenance of Tc from basal metabolism alone 

became insufficient once cooler land masses began to appear. The appearance of BAT as a 

specialized thermogenic organ among mammals allowed mammalian habitation of colder 

climatic zones.
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Among vertebrates, only mammals and birds developed whole-body homeothermy. The 

mammals and birds originated from different amniote lineages at very different time points 

in vertebrate evolutionary history and thus, must have undergone the transition to 

endothermic homeothermy independently (Mcnab, 1978; Ruben, 1995; Hillenius & Ruben, 

2004; Geiser, 2008; Clarke & Portner, 2010). Synapsids (the lineage including modern 

mammals) diverged at the very beginning of the amniote radiation during the Late 

Carboniferous (Luo & Crompton, 1994; Sidor & Hopson, 1998; Luo, 2007; Geiser, 2008), 

while birds diversified from their sauropsid ancestors at least 80 million years later during 

the mid-to-late Jurassic (Ruben, 1995; Hillenius & Ruben, 2004; Luo, 2007; Nespolo et al., 
2011; Ruta et al., 2013), as depicted in Fig. 2. By the Devonian Period of the Palaeozoic Era, 

the land plants had established and new ecological niches were available on land for animals 

to invade. In the Carboniferous, amphibians gave rise to the first amniotes, which made life 

on land possible. By the mid-Permian, when fauna on land became abundant, positive 

selection would have existed towards organisms that could remain active (i.e. better 

predators or escapers) even at low ambient temperatures. This evolutionarily advantageous 

feature was only possible via mechanisms of endothermic heat production (Clarke & 

Portner, 2010). Maintenance of elevated metabolic rate and muscular activity (including 

shivering) might have been the first two mechanisms of endothermic heat production; 

however, they are very costly and would be limited by nutritional availability in the 

environment.

The ectothermy to endothermy transition has a close association with the transition from 

brady- to tachy-metabolism (Bennett & Ruben, 1979; Clarke & Portner, 2010; Hayes, 2010). 

It seems likely that the ancestral amniotes, like their anamniote tetrapod ancestors, were 

brady-metabolic with very low basal metabolic rates and an inability to support maximal 

metabolic rate for long periods. As ancestral amniotes underwent adaptations for terrestrial 

life (early tetrapods were probably like modern amphibians, needing water to complete their 

life-cycle), the transition to an erect posture (elevated pelvic joint) must have aided in 

overcoming the physiological constraints imposed by a sprawling posture, including slow 

locomotion (friction with ground) and heat loss (ventral surface in close proximity to 

ground) (Kielan-Jaworowska & Hurum, 2006). Moreover, efficient terrestrial locomotion 

required animals to overcome “Carrier’s constraint”, the observation that postural and 

anatomical features precluded the ability to run and breathe at the same time, by adopting an 

elevated posture along with other skeletal modifications (Carrier, 1987; Brainerd & 

Owerkowicz, 2006). This sprawling-to-erect postural transition appeared among synapsid 

and sauropsid lineages independently in the Mid-Permian. In order to sustain the higher 

energetic demands of the newly evolved postural muscles and running ability, the 

development of skeletal muscles with both fast contractile properties and a more robust 

metabolic capacity (characterized by a high number of mitochondria), termed fast-oxidative 

muscles, must have been necessary. Thus, during the late Permian, it seems possible that 

skeletal-muscle-based NST must have been used for the first time for a transition to tachy-

metabolic status with a rudimentary level of homoeothermy among both synapsid and 

sauropsid lineages. In order to recruit muscle-based thermogenesis more effectively, 

increased muscle mass (i.e. muscle hyperplasia) and increased mitochondrial number and 

activity were required. Palaeontological work on various dinosaur lineages during the last 
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three decades, suggests that many of these lineages had achieved a basal level of 

homeothermy (Schweitzer & Marshall, 2001; Pontzer, Allen & Hutchinson, 2009; Clarke & 

Portner, 2010; Kohler et al., 2012; Clarke, 2013; Seymour, 2013), concomitant with muscle 

hyperplasia, ultimately giving rise to ancestral birds in the Jurassic. Muscle-based NST was 

further utilized by birds as the sole mechanism for their true endothermic homeothermy [as 

the uncoupling protein 1 (UCP1) gene was lost and no BAT tissue evolved], supplemented 

by the anatomical and physiological modifications required for an aerial mode of life, as 

shown in Fig. 3.

Mammalian evolution remained shadowed during almost the entirety of the Mesozoic Era by 

the successful radiation of the dinosaurs. During the Triassic and Jurassic, mammals 

remained primarily nocturnal (most dinosaurs were diurnal) and small in size (less than 1 

kg). Therefore, given these ecological constraints, the evolution of muscle hyperplasia as a 

means to achieve homeothermy during this period seems unlikely. Moreover, most of the 

land masses were warm during the Triassic and Jurassic, remaining so until the Early 

Cretaceous, when some land masses began to become cooler. In this scenario, the evolution 

of endothermic mechanisms would not have been under positive selection and could occur 

only by ‘neutral drift’ until conditions changed in the Early Cretaceous. Among mammals, 

BAT is not found in any prototherian, but recent data shows a primitive form of cold-

activated BAT in a metatherian mammal (Sminthopsis crassicaudata; family Dasyuridae) 

(Jastroch et al., 2008). This prototype BAT could have provided UCP1 with the correct 

molecular milieu to perform a thermogenic function [elaborately discussed by Saito, Saito & 

Shingai (2008), Oelkrug et al. (2013) and Hughes et al. (2009)]. Based on these data it 

seems likely that BAT made its first appearance at or before the diversification of Metatheria 

and Eutheria, which occurred in the Late Jurassic, but subsequent to the split of Theria and 

Prototheria. Once colder climatic niches were available starting in the Cretaceous, natural 

selection would have positively selected animals with better endothermic capability. Further, 

with the elimination of ~85% of the large reptilian species from the earth during the late 

Cretaceous mass extinction, many ecological niches became available, allowing the 

expansion of mammalian species. Eutherians further evolved a sophisticated BAT-based 

mechanism and show a variety of NST strategies depending on their ecological and 

physiological requirements.

(4) NST in small versus large mammals: the complementary roles of BAT and skeletal 
muscle

BAT-dependent thermogenesis is highly efficient in newborn humans and rodents and a great 

deal of research has focused on this tissue leading to a clear understanding of its mechanism 

of heat production (Dawkins & Scopes, 1965; Heim & Hull, 1966; Heim et al., 1968; 

Jenkinson, Noble & Thompson, 1968; Knight & Myant, 1970; Alexander et al., 1975; Lean 

& James, 1983; Lean et al., 1986; Schubring, 1986; Slebodzinski, 1988; Houstek et al., 
1993; Zancanaro et al., 1995; Enerback et al., 1997; Blumberg, Deaver & Kirby, 1999). 

Support for the existence of BAT-independent NST is provided by the following 

observations: (i) the transition from ectothermy to endothermy did not depend on the 

evolution of BAT, and (ii) secondly, BAT is not a characteristic trait of all endotherms (see 

above and Figs 2 and 3) (Grigg et al., 2004). Comparisons of large and small mammals and 
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birds yield striking differences in apparent means of thermogenesis (Table 1). Studies in 

large mammals, including adult rabbits, dogs, and marsupials, where BAT is less prevalent, 

underscore the importance of skeletal muscle-based NST in facultative thermogenesis 

(Davis, 1967; Rose et al., 1999; Arruda et al., 2008); whereas, studies on small mammals, 

namely rodents, focus on BAT as the principal contributor to NST. These species-specific 

recruitment strategies are discussed in more detail below.

Rodents rely on the heat-generating capacity of BAT to maintain body temperature in 

response to temperatures below thermoneutrality (Enerback et al., 1997; Cannon & 

Nedergaard, 2004). BAT is located primarily in the subcutaneous interscapular region 

(comprising ~60% total BAT volume) of the mouse and rat, in addition to small depots 

dispersed throughout the body (Frontini & Cinti, 2010). BAT is defined by the presence of 

multilocular adipocytes, large numbers of mitochondria, and the expression of UCP1 

(Heaton, 1972; Matthias et al., 2000). UCP1 is located in the inner mitochondrial membrane 

and generates heat by dissipating the proton gradient generated by the electron transport 

chain (Fedorenko, Lishko & Kirichok, 2012). Numerous studies have shown UCP1/BAT to 

be recruited and activated upon cold exposure. Furthermore, UCP1, and thus BAT, is 

required for the survival of mice challenged to an acute cold exposure (Enerback et al., 
1997; Ukropec et al., 2006). However, UCP1-null mice are able to survive when gradually 

adapted to cold, indicating the presence of other adaptive thermogenic mechanisms 

(Golozoubova et al., 2001; Ukropec et al., 2006; Meyer et al., 2010; Shabalina et al., 2010). 

Unlike rodents, studies on thermogenesis in large mammals point to a much higher reliance 

on skeletal muscle. In large mammals such as rabbits, ruminants, and humans, BAT activity 

is downregulated after the neonatal period and is minimally present or not detectable in 

adulthood, suggesting that skeletal muscle is the primary site of heat production (Lean et al., 
1986; Casteilla et al., 1989; Trayhurn, Thomas & Keith, 1993; Cambon et al., 1998; Rose et 
al., 1999; Lomax et al., 2007). Interestingly, some species even lack a functional Ucp1 gene; 

pigs lost a functional UCP1 protein ~20 million years ago due to a nonsense mutation (Berg, 

Gustafson & Andersson, 2006). Pigs maintain Tc at ~37°C, and interestingly, are very 

susceptible to a deadly condition called malignant hyperthermia, where sustained Ca2+ 

release by ryanodine receptor 1 in skeletal muscle results in excessive heat production (Fill 

et al., 1990; MacLennan & Phillips, 1992). This may suggest that pigs employ muscle-based 

thermogenesis and that its dysregulation can lead to hyperthermia.

Moreover, cold-exposure studies performed on large mammals provide evidence for skeletal-

muscle-based NST. Cold-acclimation experiments performed on dogs in which the 

hindlimbs were denervated to prevent shivering showed that cold-acclimated dogs were able 

to significantly increase oxygen consumption of the hindlimbs, similar to levels before 

denervation. Thus, the authors concluded that the denervated skeletal muscle contributed to 

NST (Davis, 1967). Similar results were obtained for cold exposures on the Tasmanian 

bettong Bettongia gaimardi, a marsupial in which thermogenic BAT has not been identified 

(Rose et al., 1999). In addition, in bettongs adapted to cold, heat production and 

responsiveness to catecholamines are increased. While direct muscle respiration was not 

measured in this study, earlier experiments had shown that catecholamines stimulated 

muscle oxygen consumption (Ye et al., 1996; Rose, Kuswanti & Colquhoun, 1998); 

therefore, it was concluded that muscle contributes to NST in bettongs (Rose et al., 1999).
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(5) The recruitment of BAT versus muscle-based NST mechanisms: a physioecological 
perspective

A clear explanation for the reduced volume of BAT in adult large mammals is not available. 

Using the concept of “thermal inertia (Hochachka & Mommsen, 1991),” one could 

hypothesize that the larger surface area to volume ratio of small mammals necessitates a 

more powerful and efficient NST organ to compensate for the greater heat loss. Larger 

mammals, with smaller surface area to volume ratios, do not suffer from similar rates of heat 

loss, and therefore, muscle-based thermogenic mechanisms would be sufficient to maintain 

T c.

Rodents (i.e. BAT-enriched mammals) possess an abundance of fast-type skeletal muscles, 

particularly Type IIB fibres (Hesse, Fischer & Schilling, 2010; Schiaffino & Reggiani, 

2011). Because of their small size, rodent muscle must be able to contract quickly and more 

frequently than large mammals (Gasc, 2001; Hesse et al., 2010); in mammals, contraction 

velocity and stride frequency correlate inversely with body size (Strang & Steudel, 1990; 

Seow & Ford, 1991). In addition, the effects of gravity on small, lightweight mammals is 

less than for large mammals, reducing the need for postural muscles, which are typically 

composed of slow or intermediate oxidative fibres (Hesse et al., 2010). Fast-type muscles, 

especially Type IIB, rely on glycolytic pathways for ATP production, compared to slow or 

intermediate fibre types which rely predominantly on oxidative metabolism. Accordingly, 

the amount of oxidative fibres correlates positively with body mass; therefore, skeletal 

muscles with more oxidative features, where muscle-based NST would occur, are favoured 

in large mammals (Emmett & Hochachka, 1981; Hesse et al., 2010).

Muscle composition is also indicative of the ecological coverage and behavioural traits of an 

animal. Rodents, for instance, have small ecological (spatial) coverage so muscle activity is 

restricted mostly to small bursts of activity, such as sprinting, as when escaping from a 

predator. By contrast, most large mammals cover a greater ecological area, even for foraging 

and other routine activities, necessitating a muscle profile more closely resembling that of a 

marathon runner (Table 1). Based on these facts, the following explanation seems feasible: 

because skeletal muscle is used primarily for locomotion, the types and duration of 

movements a species is adapted for can define the thermogenic capability of the muscle. In 

simpler terms, animals adapted for extended muscle usage, including locomotion and 

posture maintenance, will have a greater likelihood of employing muscle-based 

thermogenesis than animals that require muscle activity for only short periods of time.

IV. SKELETAL MUSCLE AND BAT SHARE A COMMON ORIGIN

(1) BAT and skeletal muscle: divergence from a common cellular precursor

BAT and skeletal muscle are distinct organs with disparate thermogenic mechanisms. 

However, recent research has established that skeletal muscle and BAT develop from a 

common progenitor: myogenic factor 5 (Myf5)-expressing precursors, originally believed to 

give rise specifically to skeletal muscle (Seale et al., 2008). The cell fate switch from 

skeletal muscle to BAT is controlled by the PR domain-containing 16 (PRDM16) 

transcriptional complex (Seale et al., 2008; Kajimura et al., 2009; Ohno et al., 2013; Harms 
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et al., 2014). Recent work has shown that the related protein, PRDM3, can also induce this 

switch in the absence of PRDM16 (Harms et al., 2014). Interestingly, expression of 

PRDM16 drives brown fat development in Myf5-expressing skeletal myoblasts, whereas 

loss of PRDM16 from primary brown fat preadipocytes is sufficient to induce differentiation 

into skeletal muscle. Intriguingly, white adipocytes do not develop from these predecessor 

cells, thus BAT and white adipose tissue (WAT) have distinct developmental origins (Seale 

et al., 2008). Moreover, gene expression profiles of BAT, WAT, and skeletal muscle indicate 

disparities between BAT and WAT, and similarities between muscle and BAT (Timmons et 
al., 2007). Further, comparisons of mitochondrial proteomic signatures show more 

similarities between BAT and skeletal muscle than BAT and WAT (Forner et al., 2009). 

Therefore, BAT, in spite of having some adipocytic features, shares a closer lineage with 

skeletal muscle (Fig. 4).

These new findings might provide some clue to why the two organs share a common 

function of NST. Both are endowed with characteristics that could support NST, including a 

high capacity for lipid oxidation, dense mitochondria, neural innervation, and the ability to 

respond to circulating adrenergic factors through beta-adrenoreceptors (Farmer, 2008; 

Forner et al., 2009). It can be speculated that skeletal muscle became the first thermogenic 

organ in ancestral endotherms, but evolutionary pressure resulted in the development of a 

more efficient organ devoted entirely to heat production, so as not to interfere with muscle 

function, when the thermogenic demand became greater. This new organ evolved from one 

already possessing the capacity to meet the demand. All organisms with skeletal muscle 

have an inherent ability to generate heat. However, small mammals, especially rodents with 

prevalent BAT, may be less reliant on muscle NST, while others, including birds and large 

mammals, actively utilize muscle thermogenesis. Barbara Block, a pioneer in muscle-based 

thermogenesis, similarly hypothesized that “a source of heat is readily available in all 

skeletal muscle fibers that cycle Ca2+ for continuous contraction for sustained periods of 

time” (Block, 1994).

(2) Beige or brite fat: an analog of classical BAT

More recent work in the field of thermogenesis has been focused particularly on the 

inducible brown fat within the WAT depot, termed “beige” or “brite” fat. Rodent beige fat 

possesses the thermogenic properties of classical BAT; i.e. expression of UCP1 and 

increased mitochondrial enzymes, while retaining many of the properties of WAT (Wu et al., 
2012; Harms & Seale, 2013; Wu, Cohen & Spiegelman, 2013). At thermoneutrality beige fat 

is minimally present; however, its differentiation/proliferation can be induced by the same 

stimuli that induce BAT activity and proliferation, i.e. cold exposure or beta 3-

adrenoreceptor agonism (Young, Arch & Ashwell, 1984; Loncar, Afzelius & Cannon, 

1988a,1988b; Cousin et al., 1992). In fact, “beiging” can compensate for decreased brown 

fat activity or in other conditions where thermogenic needs are not met (Xue et al., 2007; 

Schulz et al., 2013). Excitement has been generated in this field, not only because of its 

recruitable nature, but because human brown fat has a molecular signature more closely 

resembling rodent beige fat than classical brown fat, making it an attractive therapeutic 

target (Wu et al., 2012).
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Compared to brown fat, the developmental origin(s) of beige fat are less well defined. 

Though brown fat and beige fat are functionally similar, they do not originate from the same 

lineage; beige fat arises from a Myf5-negative lineage (Fig. 4A) (Sanchez-Gurmaches et al., 
2012). Interestingly, Long et al. (2014) recently showed that beige fat also develops from a 

muscle origin, that is, from smooth-muscle-(like) precursors. The precise cellular lineage(s) 

and developmental factors regulating beige fat specification, however, are yet to be 

elucidated.

V. THE RECRUITMENT OF CA2+-CYCLING IN MUSCLE AS A NST 

MECHANISM

For muscle to be an effective site of NST, one or more of the processes present in muscle 

must be recruitable and adaptable to heat generation in the absence of a muscle contraction. 

However, it would be disadvantageous to muscle function and energetics to evolve an 

additional machinery devoted entirely to NST. There are published accounts that indicate a 

role for all three muscle ATPases as well as metabolic/mitochondrial heat in muscle-based 

NST (Else & Hulbert, 1987; Hulbert & Else, 1989, 1999; Kelly & McBride, 1990; Couture 

& Hulbert, 1995; Cadenas et al., 2000; Toyomizu et al., 2002; Fernstrom, Tonkonogi & 

Sahlin, 2004; Shabalina et al., 2006; Cooke, 2011). However, the evidence for SERCA in 

NST is much more convincing than that for the myosin ATPase, Na+/K+ ATPase, or 

mitochondria alone. In fact, SERCA has three unique properties that would permit NST 

without affecting muscle function: (i) SERCA is abundant in muscle (Vangheluwe et al., 
2005; de Jonge et al., 2006; Babu et al., 2007; Periasamy & Kalyanasundaram, 2007; 

Kinnunen & Manttari, 2012; Fajardo et al., 2013; Lamboley et al., 2013), therefore, a 

portion of the SERCA population can be recruited without affecting muscle function, (ii) the 

energy liberated as heat from SERCA can be increased or decreased depending on the 

cellular conditions (de Meis, 2001, 2002; de Meis et al., 2005; Arruda et al., 2008,2007; 

Kjelstrup et al., 2008; Mahmmoud, 2008; Mahmmoud & Gaster, 2012), and (iii) the Ca2+-

uptake function of SERCA can be uncoupled from ATP hydrolysis by its regulatory partner, 

sarcolipin (SLN) (Smith et al., 2002; Mall et al., 2006; Bal et al., 2012; Bombardier et al., 
2013b; Gorski et al., 2013; Inesi & Tadini-Buoninsegni, 2013; Sahoo et al., 2013; 

Toyoshima & Cornelius, 2013; Toyoshima et al., 2013; Winther et al., 2013).

(1) SERCA function and heat production

A considerable amount of data has been published concerning the molecular and 

biochemical basis of NST in rabbits. Most work hinges on the unifying theme that Ca2+ 

cycling in muscle is the major thermogenic mechanism in rabbits, and by extrapolation, 

other large mammals where BAT is not a major thermogenic organ. In particular, ATP 

hydrolysis by SERCA is considered to be the dominant heat producer (de Meis et al., 2005; 

Arruda et al., 2007; Kjelstrup et al., 2008). When activated by high cytosolic Ca2+ levels, as 

during excitation–contraction coupling, SERCA pumps Ca2+ into the SR, using the energy 

derived from ATP hydrolysis to restore the SR load. In the optimal “coupled” state, two 

Ca2+ ions are transported per ATP hydrolysed (Lytton et al., 1992; Lee & East, 2001; Lee, 

2002; Periasamy & Kalyanasundaram, 2007; Periasamy, Bhupathy & Babu, 2008). 

However, SERCA has a unique ability to become “uncoupled,” a state in which fewer (than 
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two) Ca2+ ions are transported per ATP and the remaining energy from ATP hydrolysis is 

transformed into heat (Yu & Inesi, 1995; de Meis, 2001). Interestingly, when rabbits are 

acclimatized to cold, SERCA1 expression is increased in red muscle (SERCA2 levels are 

unaffected) but not in white muscle (Arruda et al., 2008). Furthermore, in vitro preparations 

of these cold-acclimatized muscles show that cold exposure increased the heat released 

during ATP hydrolysis twofold in red muscle, where oxidative (mitochondrial) capacity is at 

least twofold greater than white muscle. Thus, cold exposure increased the heat-generating 

capacity of rabbit red muscle (Arruda et al., 2008). These results are intriguingly in 

agreement with those obtained on cold-exposed birds.

(2) Sarcolipin (SLN)-mediated thermogenesis is important for cold- and diet-induced 
thermogenesis

Despite suggestions that skeletal muscle could be recruited in NST, the mechanistic basis for 

muscle-based NST has been poorly understood. Recent studies have identified SLN, a 

regulator of SERCA, as an important player in muscle-based thermogenesis (Tupling et al., 
2011; Bal et al., 2012; Yuan et al., 2012; Bombardier et al., 2013a,b; Gorski et al., 2013; 

Sahoo et al., 2013). SLN is a 31 amino acid single transmembrane protein that co-localizes 

with the SERCA pump in the SR of skeletal and cardiac muscles. When bound to SERCA, 

SLN can uncouple SERCA from Ca2+ transport, and as a result can promote futile cycling of 

SERCA, increasing ATP hydrolysis and heat production (Smith et al., 2002; Mall et al., 
2006). This concept was examined using genetically altered mouse models lacking SLN 

(Bal et al., 2012). This study demonstrated that loss of SLN renders mice cold-sensitive 

(when interscapular BAT is ablated), but this cold sensitivity can be rescued when SLN is re-

expressed. Interestingly, when fed on a high-fat diet, SLN-null mice developed obesity, 

while control wild-type mice were less obese but upregulated SLN expression in muscle, 

which suggested that SLN-based thermogenesis is also important for diet-induced 

thermogenesis (Bal et al., 2012). In addition, recent structure/function studies suggest that 

SLN interacts with SERCA in a Ca2+-dependent manner. The binding of SLN to SERCA is 

unique in that SLN remains bound to SERCA throughout the Ca2+ transport cycle and thus 

can result in uncoupling of SERCA (Sahoo et al., 2013). These data collectively suggest that 

the SLN/SERCA interaction could be the basis for increased heat production in muscle.

VI. SARCOLIPIN: THE MISSING LINK FOR SKELETAL-MUSCLE-BASED NST

In rodents, SLN is expressed in a developmental and tissue-specific manner. Protein 

expression is high in skeletal muscles during late gestation and at birth, then becomes 

gradually restricted to oxidative muscle fibres in adulthood (Babu et al., 2007). UCP1 

expression follows the opposite pattern, with expression beginning at birth and remaining 

prominent in adulthood (Giralt et al., 1990). In adult rodents, SLN expression is 

predominant in slow-twitch, oxidative muscles, including the soleus and diaphragm, and in 

small amounts in the tibialis anterior, extensor digitorum longus, and red portion of the 

gastrocnemius and quadriceps (Vangheluwe et al., 2005; Babu et al., 2007). Given its 

putative role in thermogenesis, it is not surprising that SLN is restricted to slow, oxidative 

muscles in rodents where thermogenesis would most likely occur. In striking contrast is the 

expression profile of SLN in adult large mammals, where oxidative muscle predominates, 

Rowland et al. Page 14

Biol Rev Camb Philos Soc. Author manuscript; available in PMC 2016 May 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



coinciding with the reduction in BAT content in adulthood. In rabbits, SLN expression is 

relatively high in all skeletal muscles thus far examined (Fig. 5B); similar results were found 

in dog and human skeletal muscle (Fig. 5C). These data suggest that SLN plays a more 

dominant role in large mammals compared to rodents. In support of this, recent studies 

showed increased uncoupling of SERCA activity in rabbit red muscle after cold adaptation, 

which was associated with the induction of SERCA1 (de Meis, 2001; Arruda et al., 2003, 

2008). In rabbits, SLN expression correlates highly with SERCA1a expression (Fig. 5B). 

Therefore, it is very likely that SLN was also upregulated after cold exposure and is 

responsible for this increased uncoupling. However, because this study was performed 

before SLN was implicated in NST, SLN expression or function was not determined.

Evidence for SLN-mediated thermogenesis in muscle throughout vertebrates can be found 

by analysing SLN gene/protein structure; SLN sequences are highly conserved across 

species from fish to mammals (Fig. 5A). Such high conservation among species indicates 

that SLN may have played a critical role in the evolution of thermogenesis and remains 

conserved in animals that rely heavily on skeletal muscle thermogenesis. However, to 

support the energetic requirements of SLN-based thermogenesis, substantial skeletal muscle 

oxidative capacity is necessary. Therefore, SLN-based thermogenesis must have evolved in 

concert with the evolution of fast muscles with high oxidative capacity, a trait that probably 

evolved in the ancestral lineages that gave rise to homeothermic vertebrates (birds and 

mammals, see Fig. 2).

Based on these new observations and careful re-analysis of the existing data, we now 

propose a new model for the major thermogenic components of endotherms and their 

relative contributions (Fig. 5D). In adult non-hibernating mammals, including humans, 

where UCP1 and BAT are limited, SLN is the dominant source of thermogenesis. By 

contrast, in species where UCP1 and BAT are abundant, the contribution of SLN to 

thermogenesis is secondary to that of BAT.

VII. CONCLUSIONS

1. We have attempted to provide a critical analysis of the origin and evolution of 

thermogenic mechanisms in vertebrates, in particular, the contributions of BAT and 

muscle to NST. Our analyses suggest that skeletal-muscle-based thermogenesis 

preceded BAT during evolution, with BAT not evolving until the appearance of 

placental mammals. Since the divergence of placental mammals occurred after the 

appearance of endothermy in vertebrate evolution, this suggests that another 

thermogenic process must have been present prior to this diversification. Here, we 

provide a thorough analysis of the literature to show that skeletal muscle was likely 

this thermogenic mechanism. We provide data to show that even when BAT is 

present muscle is still a dominant thermogenic organ.

2. However, there remain important gaps in our knowledge with regard to the role of 

each of these mechanisms in different mammalian species. Although existing data 

suggest that both these mechanisms are recruited, the unique roles of each of these 

mechanisms in acute cold exposure versus gradual cold adaptation remain unclear. 
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Why certain species evolved a preferential utilization of BAT versus muscle or vice 
versa, why BAT evolved in some species but not others (birds, marsupials, etc.) and 

whether either mechanism can compensate for the loss of the other remains 

unknown.

3. Our sequence comparison reveals that SLN is highly conserved from fish to man, 

suggesting that SLN could potentially be involved in thermogenesis in non-

mammalian endotherms. However, it remains to be determined if SLN has the same 

function in all vertebrates. In addition, relatively little information is available 

concerning thermogenic mechanisms in avian species, especially regarding the role 

of SLN in avian skeletal muscle. Although putative sequences have been identified 

in many bird and fish species, expression of SLN mRNA or protein has not been 

investigated. The most promising evidence, so far, has been the identification of 

SLN-like mRNA sequences in a chicken expressed sequence tag (EST) 

(BX935884.1) and catfish EST (AF227818.1), both from muscle, although 

experimental confirmation is lacking.

4. Unfortunately, the answers to many of these questions regarding the contribution of 

muscle to the evolution of endothermy lie within extinct species, particularly those 

that were present at different diversification events. The challenge now relies on the 

ability of researchers to integrate studies from diverse extant species and fossil 

records to begin to understand some of these answers. An ongoing challenge for 

researchers studying skeletal muscle thermogenesis has been the delineation of heat 

production originating from contraction versus NST processes. Therefore, new 

methodologies to localize and capture thermogenesis more precisely in vivo, 

particularly skeletal muscle-based NST, must be developed.

5. With an increase in obesity worldwide, there is a significant interest in thermogenic 

mechanisms as a strategy to increase energy expenditure in humans. With skeletal 

muscle being a major consumer of metabolites, activation of NST could be an 

effective strategy to increase energy expenditure. However, the mechanism(s) by 

which muscle-based NST is activated and recruited is not known, including 

whether this is under the regulation of hormonal and/or neuronal circuits. Because 

skeletal muscle contractile activity is primarily activated through nervous 

stimulation, whether muscle-based NST could be recruited through this mechanism 

remains to be understood. Some studies suggest a potential role for hormonal 

regulation of NST in muscle: observations that dogs with denervated skeletal 

muscle can maintain NST suggests that hormonal factors are involved in the 

recruitment of NST (Davis, 1967). Other studies have also pointed to various 

neurohormonal factors in the regulation of NST, including catecholamines, thyroid 

hormones, glucagon, etc. (Barre, Cohen-Adad & Rouanet, 1987; Eldershaw et al., 
1997; Marmonier et al., 1997; Thomas & Palmiter, 1997; Rose et al., 1999; Arruda 

et al., 2003, 2008; Silva, 2006).

6. The detailed molecular mechanisms of the SLN–SERCA interaction, including 

uncoupling of SERCA leading to heat production is not well understood, nor are 

the signalling mechanisms, including selective activation of Ca2+ cycling, that 
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promote SLN-based heat production. We believe that understanding the detailed 

molecular basis of thermogenesis has important clinical implications in regulating 

whole-body metabolism and obesity.
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Fig. 1. 
Modification of the skeletal muscle lineage during evolution to acquire a non-shivering 

thermogenic function. Electron microscopy of the heater organ from various fishes has 

shown that the sarcoplasmic reticulum (SR) network [with SR Ca2+-ATPase (SERCA), Ca2+ 

release channel (CRC) and Ca2+-buffering proteins] and mitochondria act in partnership to 

produce heat (Block & Franzini-Armstrong, 1988; O’Brien & Block, 1996; Londraville et 
al., 2000; Morrissette et al., 2003). This suggests that during evolution, skeletal muscle 

progenitor cells must have adapted by decreasing the expression of myofibrillar proteins to 

give rise to a new cell type that ultimately became heater cells of the fish heater organ. It can 

be speculated that among mammals, brown adipose tissue (BAT), which is functionally 

analogous to the fish heater organ, followed a similar evolutionary path. By acquiring more 

prominent fatty acid uptake, storage, and utilization processes and mitochondrial 

enrichment, a skeletal-muscle-like progenitor cell could have evolved into a BAT-progenitor 

cell type that would ultimately become modern (eutherian) BAT cells. Recent findings that 

skeletal muscle and BAT share a common cellular origin (see Fig. 4) provide support for this 

scenario. ER, endoplasmic reticulum.
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Fig. 2. 
Proposed scheme illustrating the evolution of brown adipose tissue (BAT) and muscle-based 

thermogenesis that contributed to vertebrate endothermic homeothermy. The common 

ancestor of amniotes must have been bradymetabolic with metabolic heat (with or without 

the ability to shiver) as the only source of endothermic heat production. With the appearance 

of an erect posture (which appeared independently in many sauropsid and synapsid lineages 

in the mid-to-late Permian) among early amniotes, continuously recruited postural muscles 

would have provided a feasible molecular environment for sarcolipin (SLN)-based muscle 

non-shivering thermogenesis (NST) to be recruited. Many of the sauropsid lineages relied on 

muscle hyperplasia (birds and some dinosaurs) (Newman, 2011), which would have had a 

twofold benefit: bigger muscles that equated to faster locomotion and better chase/escape 

ability as well as greater cumulative heat production. An aerial mode of locomotion (i.e. 

flying) is accompanied by muscle hyperplasia, eliminating the need for additional 

thermogenic mechanisms. The synapsids took a different route to homeothermy that did not 

rely primarily on muscle hyperplasia. BAT-based NST has largely been attributed to a 

eutherian innovation that enabled utilization of uncoupling protein 1 (UCP1) for heat 

production. However, recent findings have identified the presence of a primitive BAT in a 

single metatherian species. According to palaeontological evidence, the divergence between 

Metatheria and Eutheria took place in the Late Jurassic, suggesting that UCP1 presumably 

was not recruited for thermogenesis until just before metatherian/eutherian divergence. 

Hence, SLN and UCP1 must have been recruited for thermogenesis at very different time 

frames in the evolutionary history of vertebrates. The evolution of BAT among mammals 

also overlaps the evolution of viviparity, which occurred between the prototherian–therian 

and metatherian–eutherian divergence events. It is interesting to note that birds and 

monotremes (that lack BAT) are completely oviparous, while only therian mammals (that 

have BAT) are viviparous. Therefore, BAT may have aided the survival of viviparous 

newborns, where skeletal muscle is often not fully developed at birth. However, the role of 
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BAT (which can influence the energy trade-off between the neonate and parent) in the 

evolution of viviparity has not been studied.
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Fig. 3. 
The evolution of two routes of vertebrate homeothermy in mammals. The common ancestor 

of synapsids and sauropsids must have recruited sarcolipin (SLN)-based muscle non-

shivering thermogenesis (NST) achieving a rudimentary level of endothermy. However, for 

muscle-based NST to be used to achieve homeothermy, the muscle mass to body mass ratio 

would have to be increased, which only birds achieved. Evolution of thermogenic 

mechanisms might not have had a selective evolutionary advantage until the appearance of 

colder climatic niches in the Cretaceous; under this scenario most endothermic mechanisms 

would have been evolving more or less under neutral drift (because a minimal thermogenic 

need can be achieved by sustaining an elevated metabolic rate). Ancestral mammals (the 

common ancestor of Metatheria and Eutheria) evolved brown adipose tissue (BAT) possibly 

in the Jurassic; the Prototheria do not have this tissue. Thereafter, mammals possessing two 

adaptive thermogenic processes will have utilized and fine-tuned them according to the 

demands of their particular environmental/ecological niche.
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Fig. 4. 
Skeletal muscle and brown adipose tissue share a common cellular lineage. (A) Lineage 

tracing analyses show that En1, Pax7, and Myf5-expressing cells of the dermomyotome of 

the paraxial mesoderm are tripotent, giving rise to dermis, skeletal muscle, and brown 

adipose tissue. Dermis develops from the dermomyotome near the surface ectoderm, and its 

differentiation is dependent on the expression of Dermo1 and Wnt signalling from the 

ectoderm (Atit et al., 2006; Gensch et al., 2008; Lepper & Fan, 2010). Skeletal muscle and 

brown adipose tissue develop from the medial dermomyotome. Skeletal muscle 

differentiation is initiated by the sequential expression of myogenin, myogenic regulatory 

factor (MRF4), and myogenic determination factor (MyoD) and by spatiotemporal Wnt 

signalling from the ectoderm and neural tube (Francetic & Li, 2011; von Maltzahn et al., 
2012). Early brown adipose tissue precursors express the myogenic transcription factors 

myogenin and MyoD but downregulate them upon terminal differentiation (Timmons et al., 
2007). Brown fat specification is regulated by expression of PR domain-containing 16 

(PRDM16), or the functionally redundant PRDM3 (Harms et al., 2014), and BMP (4 and 7) 

signalling further directs brown fat differentiation by inhibiting MyoD and Myf5 expression 
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and promoting adipogenesis (Kajimura, Seale & Spiegelman, 2010; Francetic & Li, 2011). 

Furthermore, Wnt signalling inhibits adipogenesis, promoting skeletal muscle specification 

(von Maltzahn et al., 2012). Due to common transcription factors (myogenin and MyoD) 

found in early brown fat and skeletal muscle precursors, it seems possible that the 

dermomyotome initially gives rise to two cell types rather than three: dermal precursors and 

a common skeletal muscle/brown fat precursor, which further differentiates into skeletal 

muscle and brown fat. Details of this process have not been elucidated. The development of 

beige adipose and white adipose tissue is much less clear. Beige adipose tissue develops 

from a separate lineage to skeletal muscle and classical brown adipose tissue. Beige fat 

arises from Myf5-negative precursors of the smooth muscle lineage, and its differentiation is 

directed by PRDM16 (Cohen et al., 2014; Long et al., 2014). Because smooth muscle 

develops from heterogeneous cellular lineages (i.e. neural crest, proepicardium, 

mesothelium, etc.), beige fat may have multiple developmental origins that are depot-

specific (Majesky, 2007; Long et al., 2014). White adipose tissue also has diverse cellular 

origins, developing from ectoderm and mesoderm, including neural crest (ectoderm), 

mesenchyme (lateral mesoderm), dermis, etc. (Billon & Dani, 2012; Wojciechowicz et al., 
2013). (B) Mitochondria are the energetic workhorses of cells; therefore, their properties 

match the metabolic requirements and/or demand of the cell type. The mitochondrial 

proteomes of brown adipose tissue (BAT) and white adipose tissue (WAT) were compared to 

the mitochondrial proteomes of skeletal muscle and liver. A large portion of the proteomes 

of WAT and BAT overlapped, which mostly included proteins integral to basic mitochondrial 

structure and function. The mitochondrial proteome of BAT closely resembles that of 

skeletal muscle. Both are enriched in proteins involved in catabolic processes such as 

lipolysis, fatty acid metabolism, citric acid cycle, etc. On the other hand, WAT mitochondria 

share a similar mitochondrial protein profile with liver. WAT mitochondria, in contrast to 

BAT mitochondria, are specialized for anabolic functions including lipogenesis and 

detoxification processes. Adapted from Forner et al. (2009)
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Fig. 5. 
Sarcolipin (SLN) is evolutionarily conserved and is abundant in large mammals. (A) 

Alignment of SLN protein sequences from various vertebrates. SLN is highly conserved 

among vertebrate species. Importantly, the transmembrane and C-terminal domains, 

responsible for inhibition of sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA), are 

remarkably conserved from amphibians to humans. The N-terminal region has unique 

conservation among different vertebrate groups; however, the physiological relevance of 

these unique residues has yet to be studied. All sequences were obtained from GenBank. 

The house sparrow (Passer domesticus) sequence was obtained, by our laboratory (L.A. 

Rowland and N.C. Bal), by DNA cloning from the pectoralis muscle and is highly 

homologous to the published SLN sequence of the American sparrow (Zonotrichia 
albicollis). The function of SLN in avian species is yet to be investigated. (B) Analyses of 

SLN and SERCA expression in rabbit skeletal muscle. SLN is abundantly expressed in most 

skeletal muscle tissues, whereas the homologous protein, phospholamban (PLB), is only 

found in slow muscles. CASQ2, calsequestrin; EDL, extensor digitorum longus; TA, tibialis 

anterior. (C) Expression of SLN in large mammals, including humans and dogs (Vangheluwe 

et al., 2005; Babu et al., 2007), is significantly greater than in rodents. SLN protein is 

detectable in 0.5 and 1.0 μg of rabbit and human quadriceps muscles, respectively, but is not 

detectable in 20 μg mouse quadriceps. In mouse muscles where SLN protein is detectable 

(soleus and diaphragm), total SLN content is still significantly lower than in rabbit and 

human muscle. Quad, quadriceps; Diaph, diaphragm. (D) Proposed model showing relative 

contributions of uncoupling protein 1 (UCP1) and SLN to thermogenesis in birds and 

mammals. We propose that in adult humans, birds, and other non-hibernating mammals, 

SLN-based muscle thermogenesis constitutes the largest component of thermogenesis, 
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whereas in rodents and hibernating mammals, UCP1 (BAT) is the dominant heat producer. 

Tissues used to generate (B) and (C) were approved by the institutional animal care 

committee and institutional review board.
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Table 1

Characteristics and compositions of tissues contributing to thermogenesis in extant endotherms

Characteristic

Eutherian mammals

BirdsSmall Large

BAT (volume) High (~16% body mass)* Low (scant to <1%)* None

SLN expression Low, restricted to slow-twitch muscles High, present in most/all muscles Unknown

Muscle composition (fibre 
type and mitochondrial 
abundance)

Partitioned fibre types; restricted 
muscles with abundant mitochondria; 
preponderance of Type IIB fibres; 
lesser reliance on postural muscles

Muscles are mostly mixed with high 
mitochondrial number; considerable 
reliance on postural muscles; Type IIB 
fibres minimal or absent

Most muscles rich in 
mitochondria

Body temperature ~37°C ~37–38°C 38–42°C

Surface area to volume ratio High Low High

Physical activity Usually bursts of activity (occupy 
small ecological space)

High range of activity (occupy large 
ecological space)

Long range of activity 
(occupy large ecological 
space)

BAT, brown adipose tissue; SLN, sarcolipin.

*
Adapted from Frontini & Cinti (2010) and Virtanen & Nuutila (2011).
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