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Reactivation of latent human cytomegalovirus is a significant infectious complication of organ

transplantation and current therapies target viral replication once reactivation of latent virus has

already occurred. The specific molecular pathways that activate viral gene expression in

response to transplantation are not well understood. Our studies aim to identify these factors,

with the goal of developing novel therapies that prevent transcriptional reactivation in transplant

recipients. Murine cytomegalovirus (MCMV) is a valuable model for studying latency and

reactivation of CMV in vivo. We previously demonstrated that transplantation of MCMV-latently

infected kidneys into allogeneic recipients induces reactivation of immediate early (IE) gene

expression and epigenetic reprogramming of the major immediate early promoter (MIEP) within

48 h. We hypothesize that these events are mediated by activation of signalling pathways that

lead to binding of transcription factors to the MIEP, including AP-1 and NF-kB. Here we show

that transplantation induces rapid activation of several members of the AP-1 and NF-kB

transcription factor family and we demonstrate that canonical NF-kB (p65/p50), the junD

component of AP-1, and nucleosome remodelling complexes are recruited to the MIEP

following transplantation. Proteomic analysis of recipient plasma and transcriptome analysis of

kidney RNA identified five extracellular ligands, including TNF, IL-1b, IL-18, CD40L and IL-6,

and three intracellular signalling pathways associated with reactivation of IE gene expression.

Identification of the factors that mediate activation of these signalling pathways may eventually

lead to new therapies to prevent reactivation of CMV and its sequelae.
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INTRODUCTION

Human cytomegalovirus (HCMV) is an opportunistic
herpesvirus that has the ability to establish a lifelong
latent infection and to reactivate. Reactivation of HCMV
in transplant recipients is associated with CMV disease,
increased risk of acute and chronic allograft rejection,

infection with other opportunistic pathogens, graft failure
and death (Razonable et al., 2013). Due to the high preva-
lence of latent infection, more than 75 % of solid organ
transplant recipients experience reactivation of latent
HCMV (Fishman et al., 2007). Although effective antiviral
drugs have reduced the incidence of CMV-related post-
transplant complications, use of these drugs is limited by
their toxicity and the emergence of resistant strains (Razon-
able et al., 2013). Thus, a greater understanding of the mol-
ecular events controlling reactivation from latency is needed
to develop alternative strategies to prevent CMV disease.

Reactivation of HCMV has been associated clinically with
conditions that generate an inflammatory milieu, including
allograft rejection, sepsis and acute illness (Cook et al., 1998;
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Döcke et al., 1994; Fietze et al., 1994; Grattan et al., 1989;
Heininger et al., 2001; Hibberd et al., 1992; Kalil &
Florescu, 2009; Kutza et al., 1998; Lao et al., 1997; Limaye
et al., 2008; Mutimer et al., 1997; Portela et al., 1995;
Razonable et al., 2001; Reinke et al., 1994a, 1994b) and
the inflammatory cytokine TNF has been proposed to
drive reactivation through NF-kB-mediated activation of
the major immediate early promoter (MIEP) (Döcke
et al., 1994; Fietze et al., 1994; Prösch et al., 1995; Stein
et al., 1993). However, due to the species specificity of
HCMV, it has not been possible to test this hypothesis in
the context of organ transplantation. Murine cytomegalo-
virus (MCMV) is very similar to HCMV in many important
ways, including: (i) ability to establish latency and to reacti-
vate; (ii) hierarchical regulation of viral gene expression;
(iii) structure, function and organization of the major
immediate early (IE) genes (Keil et al., 1987a, b; Meier &
Stinski, 2013; Stenberg et al., 1984); (iv) repression of IE
gene expression during latency by heterochromatinization
of viral genomes (Grzimek et al., 2001; Hummel &Abecassis,
2002; Hummel et al., 2001; Kurz et al., 1999; Liu et al., 2008;
2010; Reeves & Sinclair, 2013; Reeves et al., 2005; Seckert
et al., 2013); (v) the presence of similar regulatory elements
(e.g. NF-kB, AP-1, Sp1 and CREB/ATF binding sites) in the
viral IE enhancers (Liu et al., 2013; Meier & Stinski, 2013);
and (vi) (re)activation of the MIEP and/or IE transcription
in response to inflammatory mediators or allogeneic stimu-
lation (Döcke et al., 1994; Fietze et al., 1994; Huang et al.,
2012; Hummel & Abecassis, 2002; Hummel et al., 2001;
Kew et al., 2014; Lee et al., 2004; Liu et al., 2013;
O’Connor & Murphy, 2012; Prösch et al., 1995; Reeves &
Compton, 2011; Simon et al., 2005; Stein et al., 1993).

Because the IE genes are the first set of genes expressed in
lytic infection (Mocarski et al., 2007), and are required

to activate the viral replication programme, transcriptional
reactivation of IE gene expression is likely a key event in

reactivation of the virus. We previously developed a renal

transplant model for reactivation of MCMV IE gene
expression (Hummel et al., 2001). In this model, transplant-

ation of latently infected kidneys into allogeneic recipients
induced IE gene expression and epigenetic reprogramming

of the MIEP within 48 h (Hummel et al., 2001; Liu et al.,

2013). In addition, allogeneic transplantation induced
expression of a lacZ reporter transgene under the control

of the HCMV MIEP (MIEP-lacZ) (Hummel et al., 2001).
Although TNF was sufficient to induce both MCMV IE

gene expression and the HCMV MIEP-lacZ reporter, it was

not required to activate IE gene expression in response to
allogeneic transplantation in either of these models (Zhang

et al., 2008, 2009). We therefore hypothesized that multiple
factors may contribute to reactivation of IE gene expression

in the complex environment of an allogeneic transplant. The

goal of the present study is to identify additional candidates
that may contribute to reactivation of IE gene expression in

allogeneic transplants, with the long-term goal of developing
novel therapeutic approaches to preventing reactivation of

the virus. In addition to the TNF/NF-kB and

IL-6/mitogen-activated protein kinase (MAPK) signalling
pathways, which have been previously implicated in reactiva-
tion of HCMV (Döcke et al., 1994; Fietze et al., 1994; Hargett
& Shenk, 2010; Huang et al., 2012; Kew et al., 2014; O’Connor
& Murphy, 2012; Prösch et al., 1995; Reeves & Compton,
2011; Stein et al., 1993), we have identified novel signalling
pathways that have not to our knowledge been previously
associated with reactivation of HCMV. Our results suggest
that it may be necessary to target multiple signalling pathways
to prevent transcriptional reactivation of CMV.

RESULTS

Multiple NF-kB and AP-1 family members are
rapidly activated by renal transplantation

TheMCMVMIEP is strikingly enriched in NF-kB and AP-1
binding sites (Dorsch-Häsler et al., 1985; Seckert et al.,
2013). NF-kB consists of homo- and heterodimeric com-
plexes of p65/RelA, p50, p52, c-rel and RelB subunits
(reviewed by Oeckinghaus et al., 2011). Canonical NF-kB
(p65/p50) activates transcription of immune response
genes in response to inflammatory mediators, including
TNF, IL-1b, Toll-like receptor ligands and oxidative stress.
Non-canonical NF-kB (p52/RelB) is activated by CD40L,
BAFF and lymphotoxin beta. AP-1 is a dimeric complex of
Fos, Jun,Maf and ATF familymembers. Different complexes
of this diverse family have varying roles in cellular prolifer-
ation, inflammatory immune response and oxidative stress
(Eferl & Wagner, 2003; Hernandez et al., 2008; Karin,
1995; Karin & Shaulian, 2001; Shaulian & Karin, 2002).

We previously demonstrated that NF-kB p50/p65 and the
junD component of AP-1 were activated within 48 h after
renal transplantation and that transcription factor acti-
vation correlated with reactivation of IE expression
(Hummel et al., 2001; Zhang et al., 2008). Here, we have
expanded our analysis to include earlier times and
additional NF-kB and AP-1 family members (Fig. 1).
Latently infected kidneys were transplanted into allogeneic
recipients and analysed at 3, 24 or 48 h. Multiple members
of the AP-1 family were rapidly activated by transplantation
but they differed in the kinetics of subsequent inactivation.
c-Fos was strongly, but transiently, activated; junD was also
strongly activated at 3 h, and this activation was sustained
through 48 h, albeit at lower levels; c-jun was rapidly acti-
vated, but was no longer active at 48 h. No activation of
JunB, FosB, Fra-1 or Fra-2 was observed at any time point
(data not shown). Both the p65/RelA and RelB subunits
of NF-kB were activated within 3 h and remained activated
at 24 and 48 h, but RelB activity increased between 3 and
24 h, while p65 activity remained constant.

NF-kB and AP-1 family members are differentially
regulated in allogeneic transplants

Transcription factor activity is regulated at multiple
levels, including RNA transcription and stability, as well
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as protein localization, stability and post-translational
modification. To gain insight into the mechanisms control-
ling changes in activity of NF-kB and AP-1 family mem-
bers, we analysed expression of RNAs encoding these
proteins (Fig. 2). The results show that expression of
p65/RelA was upregulated at 3 h post-transplant, then fell
below control levels at 24 h and returned to basal levels
by 48 h. Expression of RelB peaked at 3 h, but in contrast
to p65/RelA, its expression remained elevated relative to
controls at 24 and 48 h. These results suggest that the
increased activity of NF-kB family members observed in
allogeneic transplants (Fig. 1) may be due in part to
increased RNA expression. NF-kB activity is controlled
by a complex regulatory circuit (Ruland, 2011). IkBalpha
is an inhibitory subunit that sequesters the active p65/
p50 complex in the cytoplasm and its expression is induced
by NF-kB as part of a negative feedback loop to prevent
damage associated with prolonged expression of inflamma-
tory genes controlled by NF-kB. Consistent with these
observations, IkB alpha expression was rapidly, but transi-
ently, induced by transplantation (Fig. 2).

Expression of AP-1 family members was also differentially
regulated in allogeneic transplants (Fig. 2). Expression of
c-jun and c-fos RNAs were unchanged at 3 h, but
were sharply downregulated 24 and 48 h after transplant.

The transient increase in activity of c-jun and c-fos at 3 h
(Fig. 1) was therefore due to post-transcriptional regulation.
In contrast, expression of junD was significantly induced at
3 h post-transplant, and subsequently downregulated.

NF-kB and AP-1 are recruited to the MIEP
concomitant with reactivation of IE gene
expression

The MCMV MIEP controls expression of two differentially
spliced genes, IE-1 and IE-3. IE-3 is the MCMV functional
homologue of HCMV IE-2, which is the major transactiva-
tor of early gene expression (Angulo et al., 2000; Keil et al.,
1987a, 1987b; Martı́nez et al., 2010; Messerle et al., 1992).
We previously showed that allogeneic transplantation
induced reactivation of IE gene expression 48 h after trans-
plant, and that RNA polymerase phosphorylated at Ser2
(Pol II pS2) was recruited to both the MIEP and the IE-3
coding region (Hummel et al., 2001; Liu et al., 2013).
Here, we show that IE-3 RNA expression was detectable
by reverse transcriptase-qPCR at 48 h, but not at 3 or
24 h post-transplant (Fig. 3a and data not shown).
To determine whether reactivation of IE gene expression
was associated with recruitment of NF-kB and AP-1 to
the MIEP, latently infected kidneys were transplanted
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Fig. 1. Transcription factor activation induced by allogeneic transplantation. Kidneys from latently infected BALB/c mice were
transplanted into allogeneic C57BL/6 recipients and harvested 3, 24 or 48 h post-transplant (G), as indicated on the x-axis.
The contralateral latent donor kidney (C) was harvested at the time of the transplant as a matching Day 0 control. Nuclear
extracts were prepared and analysed by TransAm assays, n55/time point. Results are expressed as the mean plus standard
error. **P,0.01; *P,0.05.
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into allogenic recipients and analysed at 48 h by chromatin
immunoprecipitation (ChIP) analyses. We analysed bind-
ing of histones, Pol II pS2, NF-kB/RelA and p50 and the
junD component of AP-1 to the MIEP. Analysis of Pol II
and histone modification was published separately (Liu
et al., 2013). These results showed that allogeneic trans-
plantation induced major changes in viral chromatin,
including recruitment of pS2-Pol II to the MIEP and the
downstream IE-3 exon 5, loss of repressive histone marks
and gain of activating marks.

Our previous studies showed activation of NF-kB in
response to transplantation by analysing binding to oligo-
nucleotides containing consensus NF-kB binding sites
(Fig. 1 and Hummel et al., 2001; Zhang et al., 2008). Activation
of the transcription factor does not necessarily result in
binding to the gene of interest. Here, we show that NF-kB
p50 and p65/RelA are in fact bound to the viral MIEP 48 h
after transplantation into allogeneic recipients (Fig. 3b).
As controls, we show that NF-kB is also bound to the NF-
kB-responsive CCL2 promoter (Teferedegne et al., 2006;
Wolter et al., 2008), but not to the NF-kB-deficient Hes-1
promoter. In addition, junD was recruited to the MIEP
and to the junD-responsive IL-6 promoter (Baccam et al.,
2003; Mann et al., 2002; Ndlovu et al., 2009; Smart et al.,
2001; Viedt et al., 2002; Zerbini et al., 2003), but not the
transcriptionally silent Ant4 promoter (Fig. 3c).

Chromatin remodelling complexes are
recruited to the MIEP upon reactivation
of IE gene expression

MCMV genomes are highly enriched in histones in latently
infected mice, suggesting that the nucleosomes are in a
compacted configuration, which is closed to transcription
(Liu et al., 2008). Many inducible genes require remodel-
ling of the chromatin by the SWI/SNF complex in order
to activate gene expression (Ramirez-Carrozzi et al.,

2009). SWI/SNF complexes contain common subunits,
including actin, and one of two ATPases, Brahma (BRM)
or Brahma-related gene 1 (BRG-1), which confer gene
specificity (Kadam & Emerson, 2003; Mohrmann & Verrij-
zer, 2005). AP-1 family members, including c-jun and
c-fos, interact with BRG-1. We therefore analysed recruit-
ment of actin and BRG-1 to the MIEP; there was insuffi-
cient material to analyse BRM. Increased binding of actin
(Fig. 3d), but not BRG-1 (data not shown), to the MIEP
was observed in 48 h allografts. These data indicate that
chromatin remodellers may be recruited to the MIEP,
although the specific complexes remain to be identified.

Collectively, Figs 1–3 show that allogeneic transplantation
induces transcriptional reactivation of IE gene expression
and that this correlates with changes in expression, acti-
vation and binding of NF-kB and AP-1 transcription fac-
tors to the MIEP. In order to develop new strategies that
may prevent reactivation of latent CMV, it is important
to understand how these transcription factors are activated
in the context of transplantation.

Inflammatory mediators are elevated in
recipient plasma

Allogeneic transplantation activates both innate and
adaptive inflammatory immune responses at early times
post-transplant (Einecke et al., 2005; El-Sawy et al., 2004;
Famulski et al., 2007, 2006; Hummel et al., 2009). Tran-
scriptional reactivation of IE gene expression and remodel-
ling of viral chromatin may be mediated by activation of
inflammatory signalling pathways induced by interaction
of ligands in the plasma, which are elevated in response
to allogeneic transplantation, with receptors expressed on
cells of the kidney. To identify potential mediators of re-
activation, we analysed plasma taken from recipient mice
at the time of sacrifice for biomarkers of inflammation.
These results showed that several inflammatory cytokines,
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including IL-1b, IL-18 and IL-6, were elevated relative to
controls (Fig. 4). Plasma levels of IL-6 protein were
strongly elevated at 3 h, and fell at 24 h (Fig. 4a, b), but
were elevated relative to controls at 48 h (Fig. S1, available
in the online Supplementary Material). Plasma levels of
IL-1 and IL-18 rose more gradually (Fig. 4), but were
also elevated relative to controls at 48 h (Fig. S1).

Inflammatory signalling pathways are activated in
renal allografts

To further investigate the response to allogeneic transplant-
ation, we analysed global changes in gene expression within
the transplanted kidney by microarray and Ingenuity Path-
way Analysis. As controls, we analysed RNA from the con-
tralateral donor kidneys removed at the time of the
transplant. The results (Fig. 5a) showed that TNFR1,
TNFR2, IL-1, CD40 and IL-6 signalling, as well as their
downstream effector pathways, including NF-kB, JAK/
STAT and ERK/MAPK, were differentially regulated at
multiple time points. The heat map showing expression
of the individual members of these pathways (Fig. 5b)
illustrates the complex and rapidly evolving nature of

the inflammatory response induced by allogeneic trans-
plantation. Five patterns of expression were apparent in
the genes in these signalling pathways: genes in Cluster I
were induced 24–48 h after transplant; genes in Cluster II
were induced at 3 h and subsequently downregulated;
genes in Cluster III were rapidly downregulated and
returned to near baseline levels after 24 h; genes in Cluster
IV were rapidly downregulated and recovered expression
more slowly, while genes in Cluster V were slowly down-
regulated and remained below baseline at 48 h. Mapk9/
JNK2, which phosphorylates and activates c-jun (Jaeschke
et al., 2006; Gupta et al., 1996), was among the genes
rapidly downregulated at 3 h. Genes induced at 3 h
included genes involved in both positive (Tnfrsf1b,
IL1R1, TLR4, p65/RelA, Nfkb2/p100, RelB, Map3k14/
NIK, IRAK, Ube2v1, Peli1, Bcl10) and negative (Nfkbia/
IkB alpha, Tnfaip3/A20) regulation of the NF-kB signal-
ling pathway (Oeckinghaus et al., 2011; Ruland, 2011).
Increased expression of these negative regulators may
account for the decreased expression of some genes in
this pathway observed at 24–48 h. Positive (NF-IL6/
CEBPb, STAT3) and negative (SOCS3, Map2k6) regulators
of IL-6 signalling (Akira et al., 1990; Bode et al., 2001;
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Heinrich et al., 2003) were also strongly upregulated at 3 h.
IL-6 expression itself did not meet the threshold for statisti-
cal significance in the microarray analysis, due to sample
variability, but IL-6 expression was significantly induced
in the same RNA samples when analysed by the more
quantitative method of RT-qPCR (Fig. 6). Upregulation
of TNF expression in response to allotransplantation was
also confirmed by RT-qPCR (Fig. 6). In contrast to IL-6,
which was upregulated rapidly and transiently, TNF
expression increased gradually from 3 to 48 h.

IL-6 and IL-1b proteins were also elevated in plasma of
recipient mice (Fig. 4), indicating a good correspondence
between the presence of the ligand in the plasma and the
response of the cells in the kidney. CD40 was not included
among the plasma analytes, and thus, a correlation between
the ligand and receptor signalling could not be determined
for this factor. Despite increased expression of TNF RNA in

the allografts (Fig. 6) and pathway analysis showing upre-
gulation of TNFR1 and TNFR2 signalling (Fig. 5), TNF
protein was not detected in the plasma above threshold
levels. This may be due to rapid turnover of TNF protein
(plasma t1/256–7 min) (Beutler et al., 1985), or to dilution
of the protein in recipient plasma.

DISCUSSION

CMV genomes are heterochromatinized and the IE genes,
which are required for lytic replication, are transcriptionally
silent in latent infection (Grzimek et al., 2001; Hummel
et al., 2001; Kurz et al., 1997, 1999; Liu et al., 2008, 2010;
Seckert et al., 2013; Simon et al., 2005). Activation of IE
gene expression, through recruitment of transcription fac-
tors that control MIEP activity and remodelling of viral
chromatin, is therefore likely required for reactivation of
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the virus. The MIEP has multiple potential binding sites for
AP-1 and NF-kB (Hummel et al., 2001; Seckert et al., 2013).
Here, we show that several members of these transcription
factor families are rapidly activated and bound to the
MIEP following allogeneic transplantation.

Interestingly, individual family members showed dynamic
changes in the kinetics of activation/inactivation, as well
as changes in RNA expression. c-fos was rapidly and transi-
ently activated following transplantation (Fig. 1). c-fos is an
unstable protein whose expression and activity is regulated
at multiple levels (Sasaki et al., 2006). Activation of c-jun
was also rapidly induced, but in contrast to c-fos, retained
some activity relative to controls at 24 h. Loss of c-jun
activity may be due in part to the rapid downregulation
of Mapk9/JNK2 (Fig. 5b), which activates and phosphory-
lates c-jun (Jaeschke et al., 2006). In addition, expression
of c-jun/c-fos RNA was strongly downregulated by 48 h
(Fig. 2). This result is consistent with their roles as early
response genes whose RNAs are rapidly expressed in
response to stimuli and quickly degraded due to recognition
of an AU-rich RNA decay element in the 39 UTR (Chen &
Shyu, 1995). While c-jun and c-fos are well-known onco-
proteins with roles in cellular proliferation, junD is atypical
of other AP-1 family members in both regulation of gene
expression and in biological function (Hernandez et al.,
2008). JunD is activated by oxidative stress, including
renal ischaemia/reperfusion injury (Kim et al., 2005) and
protects cells against apoptosis through upregulation of
genes that mitigate oxidative damage (Gerald et al., 2004;
Hernandez et al., 2008; Lamb et al., 2003; Pillebout et al.,
2003; Tsuji, 2005). As with c-jun and c-fos, junD was
rapidly activated by transplantation, but, in contrast to
these proteins, junD activity was sustained for 48 h (Fig. 1
and Hummel et al., 2001; Zhang et al., 2008) and downre-
gulation of the RNA relative to controls was less dramatic.

Both p65/RelA and RelB NF-kB family members were
rapidly activated by allogeneic transplantation, and
remained active at 48 h (Fig. 1), despite downregulation
of the RNAs and increased expression of negative regula-
tory molecules, including Nfkbia (IkBalpha) at 3 h and
Nfkbie at 48 h (Figs 2 and 5b). While many studies have
focused on canonical signalling pathways leading to acti-
vation of p65/RelA, non-canonical pathways leading to
activation of RelB have not to our knowledge been pre-
viously implicated in reactivation of CMV. The relative
roles of different NF-kB family members in regulation of
the MIEP requires further investigation. Collectively, the
data in Figs 1, 2 and 5 show that MIEP-regulatory transcrip-
tion factor expression and activity following transplant is
regulated by complex and dynamic processes, which are con-
trolled both transcriptionally and post-transcriptionally.

We previously demonstrated that allogeneic transplant-
ation induces transcriptional activation of IE gene
expression, and epigenetic reprogramming of MCMV chro-
matin, including a switch from heterochromatic to euchro-
matic histones and recruitment of RNA polymerase II to
the MIEP (Hummel et al., 2001; Liu et al., 2013). Here
we show that transcription factors thought to be important
in regulation of IE gene expression, including the canonical
NF-kB subunits p50 and p65/RelA and the junD com-
ponent of AP-1, are bound to the MIEP in response to allo-
geneic transplantation. To our knowledge, this is the first
demonstration that these transcription factors are not
only activated by stimuli that induce reactivation; they are
in fact recruited to the viral DNA concomitant with reacti-
vation of IE gene expression. Though not definitive, these
correlative results strongly suggest that these factors play
an important role in activating expression of the IE genes.

In this respect, the MCMV MIEP is similar to other viral
enhancers, which mimic inflammatory immune response
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Fig. 5. Dynamic changes in inflammatory signalling pathways are induced by allogeneic transplantation. (a) Ingenuity Pathway
Analysis of selected signalling pathways upregulated by allogeneic transplantation at 3, 24 and 48 h. Pathways with –log
P value .1.3 (dashed line) are statistically significant. (b) Heat map of RNA expression of genes within these pathways deter-
mined by microarray analysis.
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genes (Kropp et al., 2014). Cellular inflammatory response
genes have been divided into two classes, primary and
secondary, based on their requirement for new protein syn-
thesis (Hargreaves et al., 2009; Medzhitov & Horng, 2009;
Ramirez-Carrozzi et al., 2009, 2006). Primary response
genes are rapidly inducible, due to constitutive binding
of RNA polymerase to nucleosome-free promoters, and
elongation of transcription is the rate-determining step in
activating expression of these genes. Conversely, the pro-
moter regions of secondary response genes are covered by
nucleosomes, and remodelling of the chromatin is required
for binding of RNA polymerase to activate transcription.
Our studies show that binding of RNA polymerase to the
MIEP is not detectable in latent mice and that, in addition
to RNA polymerase and transcription factors, actin, a com-
ponent of many chromatin-remodelling complexes, is
recruited to the MIEP following transplantation. Thus,
regulation of the MIEP may be more similar to secondary
immune response genes.

Remodelling complexes can alter the configuration of the
chromatin through: (i) nucleosome sliding, in which
the position of the nucleosome on the DNA changes;
(ii) remodelling, in which histones remain bound but the
DNA becomes more accessible; (iii) ejection of nucleo-
somes from the DNA; and (iv) replacement of canonical
histones with a variant histone (Mohrmann & Verrijzer,
2005). We previously observed no change in binding of his-
tone H3 to the MIEP in allografts (Liu et al., 2013). These
results therefore suggest that remodelling does not occur
through eviction.

Current antiviral therapies target viral DNA replication in
cells in which reactivation of latent genomes has already
occurred. An alternative strategy, which would be less sus-
ceptible to viral escape mutants, would be to target cellular
pathways that lead to transcriptional reactivation of IE gene
expression. A greater understanding of the molecular
mechanisms leading to activation of the MIEP is required
to realize this goal. TNF expression is upregulated by allo-
geneic transplantation (Fig. 6 and Hummel et al., 2009,
2001) and TNF is sufficient to activate MCMV IE gene
expression and/or reactivation in vivo (Cook et al., 2006;
Hummel et al., 2001; Simon et al., 2005). However, our
previous studies showed that TNF was not required for
reactivation of IE gene expression in response to allogeneic
transplantation (Zhang et al., 2009). These results suggest
that multiple factors may contribute to transcriptional
reactivation of viral gene expression in the context of allo-
geneic transplantation. To identify additional factors, we
performed plasma proteomic analysis and transcriptional
profiling of genes that were differentially expressed follow-
ing allogeneic transplantation. While many pathways are
activated in the complex environment of an allogeneic

transplant, our studies identified five extracellular ligands

that may contribute to reactivation of IE gene expression

and reprogramming of viral chromatin. These include

TNF, IL-1 and IL-18, which activate canonical NF-kB
through engagement of their cell surface receptors, and

CD40/CD40L, which activates both canonical and non-

canonical NF-kB (Pomerantz & Baltimore, 2002).

These pathways also activate AP-1, through activation of

JNK-mediated phosphorylation of jun family members

(Quezada et al., 2004; Weber et al., 2010; Wullaert et al.,

2006). In addition, we found elevated levels of IL-6 in

the plasma, increased IL-6 expression and activation of

IL-6 signalling pathways in the kidney. Recent studies indi-

cate that IL-6 activates the HCMV MIEP in monocyte-

derived dendritic cells through recruitment of CREB (cAMP

response element-binding protein) and MSK (mitogen-

and stress-activated protein kinase)-mediated histone phos-

phorylation (Kew et al., 2014; Reeves & Compton, 2011).

Although reactivation of the MIEP may occur through

different pathways in different models, our results suggest

that IL-6 may also have a role in reprogramming of viral

chromatin in transplant-induced reactivation of CMV.

The alloimmune response to a transplanted organ is
initiated by non-specific injury resulting from mitochon-
drial damage, oxidative stress and release of ‘danger signals’
from damaged tissue (de Groot & Rauen, 2007; Gallucci
et al., 1999; Kono & Rock, 2008). These signals induce
maturation of antigen-presenting cells in the graft that
migrate to the lymph nodes and activate the adaptive
arm of the immune response. NF-kB and AP-1 are acti-
vated by ischaemia/reperfusion injury and oxidative stress
as well as inflammatory cytokines (Gloire et al., 2006;
Kamata et al., 2005; Karin, 1995; Karin & Shaulian, 2001;
Kim et al., 2005; Morgan & Liu, 2011; Oeckinghaus
et al., 2011; Shaulian & Karin, 2002). In our studies, we
observed very rapid activation of NF-kB and AP-1 family
members, and biphasic activation of some pathways,
including CD40, IL-6, NF-kB and JAK/STAT signalling
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(Fig. 5a). These observations suggest that different factors
may contribute to activation of NF-kB and AP-1 at differ-
ent times in the rapidly evolving environment of an allo-
geneic transplant, and that it may be necessary to target
mediators of intracellular damage, such as reactive
oxygen species, as well as extracellular ligands, to prevent
reactivation of IE gene expression. Identification of the sig-
nalling pathways that lead to reactivation and the factors
that activate these pathways will be the focus of future
studies.

Allograft rejection, sepsis, acute illness, IL-6 and TNF have
long been implicated in reactivation of HCMV in patients
(Cook et al., 1998; Döcke et al., 1994; Fietze et al., 1994;
Grattan et al., 1989; Heininger et al., 2001; Hibberd et al.,
1992; Kalil & Florescu, 2009; Kutza et al., 1998; Lao
et al., 1997; Limaye et al., 2008; Mutimer et al., 1997;
Portela et al., 1995; Razonable et al., 2001; Reinke et al.,
1994a) and allogeneic stimulation, TNF, IL-6 and lipopoly-
saccharide have been shown to induce reactivation of
HCMV in experimental models (Hargett & Shenk, 2010;
Huang et al., 2012; Kew et al., 2014; O’Connor &
Murphy, 2012; Reeves & Compton, 2011; Söderberg-Nau-
clér et al., 1997). Allogeneic transplantation and TNF are
sufficient to activate both an HCMV MIEP-lacZ transgene
and MCMV IE gene expression (Hummel et al., 2001).
Thus, there is considerable convergence between clinical
studies of patients infected with HCMV, experimental
models of HCMV latency/reactivation and animal studies
with MCMV. Identification of the factors that induce reac-
tivation of MCMV IE gene expression may therefore even-
tually lead to new approaches to prevent reactivation of
HCMV and its sequelae.

METHODS

Mice and transplants. BALB/c and C57BL/6 mice were purchased
from The Jackson Laboratory (Bar Harbor, ME). MCMV (Smith
strain) was purchased from the American Type Culture Collection,
and propagated in mice by harvesting salivary glands 14 days post-
infection. Virus stocks were titrated on confluent monolayers of
murine embryo fibroblasts. To establish latency, 3–4-week old female
BALB/c mice were infected by intraperitoneal injection with 5|105

p.f.u. of MCMV (Smith strain) and housed for 3–6 months in the
Northwestern University Center for Comparative Medicine. Donor
kidneys from latently infected BALB/c mice were transplanted into
recipient C57BL/6 mice as previously described (Zhang et al., 1995),
except that recipients were bilaterally nephrectomized at the time of
the transplant. The pararenal glands were left intact. The contralateral
donor kidneys were frozen in liquid nitrogen at the time of the
transplant for use as matching, Day 0 latent controls. Transplanted
kidneys were frozen in liquid nitrogen at the time of sacrifice, and
recipient plasma was collected for analysis of plasma proteins. Reci-
pients were sacrificed at 3, 24 or 48 h, as indicated in the text. These
studies were approved by the Northwestern University Institutional
Animal Care and Use Committee and conducted accordingly.

Transcription factor activation. Analysis of transcription factors
was performed on nuclear extracts isolated from frozen kidney tissue
using TransAm kits as directed by the manufacturer (Active Motif).

Nuclear extract (10 or 5 mg) was used to analyse NF-kB or AP-1
family members, respectively.

ChIP analyses. Transplanted kidneys were harvested at 48 h for
ChIP analysis. The contralateral donor kidneys were removed at the
time of the transplant for use as latent controls. Fresh tissue was finely
minced on ice, and the chromatin was fixed in 1 % formaldehyde as
previously described (Liu et al., 2008, 2010), and frozen in liquid
nitrogen. Due to the very low MCMV DNA copy number in kidneys
of latent mice [*1 copy of MCMV DNA per 10 000 cellular genomes
(Li et al., 2012)] and the large amount of chromatin required for each
ChIP, chromatin from 5–6 kidneys was pooled for each antibody.
Frozen pellets of fixed tissue from 30–50 transplants were resus-
pended in hypotonic lysis buffer, and processed for immunopreci-
pitation as previously described (Liu et al., 2008, 2010). Ten per cent
of the chromatin was removed for analysis of input DNA. The
remaining chromatin was pre-cleared with IgG and incubated over-
night at 4 uC with antibodies against target proteins as previously
described (Liu et al., 2008, 2010). The following antibodies were used:
NF-kBp65 (Abcam, Ab7970-1), NF-kBp50 (Abcam Ab7971), junD
(SantaCruz Biotech, sc-74x) and actin (SantaCruz Biotech, sc-7210).
qPCR analysis to quantify input and immunoprecipitated DNA were
performed as previously described (Liu et al., 2008, 2010).

Plasma protein analysis. Plasma (70 ml) from transplant recipients
or untreated C57BL/6 control mice was frozen in liquid nitrogen and
analysed for inflammatory proteins at MyriadRBM by Luminex using
the Rodent MAPv3.1 platform.

Transcriptome analysis. Frozen tissue was immediately transferred
to tubes containing TriZol and 5 mm stainless steel beads (Qiagen)
and the tissue was disrupted by mechanical shaking in a TissueLyser
(Qiagen) at room temperature for 5 min. RNAs were purified with
PureLink RNA Minikits (Ambion), using on-column DNase treat-
ment as directed by the manufacturer. RNA was quantified on a
nanodrop spectrophotometer and quality was assessed on an Agilent
2100 bioanalyser. Genome-wide RNA expression was analysed using
Affymetrix MoGene-2_1-st-v1 microarrays.

RT-qPCR. cDNAs were synthesized from 2 mg total cell RNA using a
High Capacity cDNA Reverse Transcriptase kit (Applied Biosystems)
for analysis of cellular gene expression. Gene-specific RNAs were
amplified from 10 ng cDNA under standard conditions with the
following TaqMan Gene Expression Assays (Applied Biosystems):
TNF, Mm00443260_g1; RelA (p65), Mm00501346_m1; Nfkb1 (p50),
Mm00476361_m1; RelB, Mm00485664_m1; c-jun, Mm00495062_s1;
c-fos, Mm00487425_m1; junD, Mm04208316_s1; Nfkbib/IkBalpha,
Mm00456849_m1. Relative gene expression was determined using
hypoxanthine phosphoribosyltransferase (HPRT) RNA (Mm01545399_m1)
as the internal control. MCMV IE-3 expression was analysed as pre-
viously described (Liu et al., 2008).

Statistical analysis. To identify changes in plasma protein
expression, the MyriadRBM data were first filtered by excluding analytes
in which w75 % of the measurements were below the detection
threshold. Fisher’s exact test was performed to ensure that none of the
excluded proteins was significantly more likely to be undetectable in
one group than another. The filtered multi-analyte protein MAP data
were first log-transformed for better approximation to normal dis-
tribution and then analysed by a linear model, in which the common
variance is estimated with the pooled data per protein wise. P values
were obtained by performing t-test between the conditions for each
protein, and then adjusted by Benjamini-Hochberg false discovery
rate procedure for multiple comparisons. Changes in expression were
visualized with a heat map generated in R.

For genome-wide RNA expression, microarrays were normalized
using Robust Multichip Average (RMA) (Bolstad et al., 2003) and
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signal filters of Log2 v5.69 were used to exclude probe sets with low
signal intensities. Pairwise class comparisons were carried out using a
one-way ANOVA by the Method of Moments (Eisenhart, 1947) in
Partek Genomics Suite 6.6. A False Discovery Rate (FDR) of v5 %
was used for all class comparisons. Pathway mapping to biologically
significant pathways was done using Ingenuity Pathway Analysis.
All pathways were adjusted using the Benjamini-Hochberg correction
for multiple testing. The microarray expression data from the study
were deposited at the NIH Gene Expression Omnibus (GEO) website
under the accession number GSE 72392.

Student’s t-test was used to determine statistical significance for
expression of individual RNAs and plasma proteins. Pv0.05 was
considered statistically significant.
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Dérijard, B. & Davis, R. J. (1996). Selective interaction of JNK protein
kinase isoforms with transcription factors. EMBO J 15, 2760–2770.

Hargett, D. & Shenk, T. E. (2010). Experimental human
cytomegalovirus latency in CD14+ monocytes. Proc Natl Acad Sci
U S A 107, 20039–20044.

Hargreaves, D. C., Horng, T. & Medzhitov, R. (2009). Control of
inducible gene expression by signal-dependent transcriptional
elongation. Cell 138, 129–145.

Mechanisms of transplant-induced MCMV reactivation

http://jgv.microbiologyresearch.org 951



Heininger, A., Jahn, G., Engel, C., Notheisen, T., Unertl, K. &
Hamprecht, K. (2001). Human cytomegalovirus infections in
nonimmunosuppressed critically ill patients [see comments]. Crit
Care Med 29, 541–547.

Heinrich, P. C., Behrmann, I., Haan, S., Hermanns, H. M.,
Müller-Newen, G. & Schaper, F. (2003). Principles of interleukin
(IL)-6-type cytokine signalling and its regulation. Biochem J 374, 1–20.

Hernandez, J. M., Floyd, D. H., Weilbaecher, K. N., Green, P. L. &
Boris-Lawrie, K. (2008). Multiple facets of junD gene expression are
atypical among AP-1 family members. Oncogene 27, 4757–4767.

Hibberd, P. L., Tolkoff-Rubin, N. E., Cosimi, A. B., Schooley, R. T.,
Isaacson, D., Doran, M., Delvecchio, A., Delmonico, F. L.,
Auchincloss, H., Jr. & Rubin, R. H. (1992). Symptomatic
cytomegalovirus disease in the cytomegalovirus antibody seropositive
renal transplant recipient treated with OKT3. Transplantation 53,
68–72.

Huang,M.M., Kew, V. G., Jestice, K.,Wills,M. R. &Reeves,M. B. (2012).
Efficient human cytomegalovirus reactivation is maturation dependent
in the Langerhans dendritic cell lineage and can be studied using a
CD14+ experimental latency model. J Virol 86, 8507–8515.

Hummel, M. & Abecassis, M. M. (2002). A model for reactivation of
CMV from latency. J Clin Virol 25 (Suppl 2), 123–136.

Hummel, M., Zhang, Z., Yan, S., DePlaen, I., Golia, P., Varghese, T.,
Thomas, G. & Abecassis, M. I. (2001). Allogeneic transplantation
induces expression of cytomegalovirus immediate-early genes
in vivo: a model for reactivation from latency. J Virol 75, 4814–4822.

Hummel, M., Kurian, S. M., Lin, S., Borodyanskiy, A., Zhang, Z., Li, Z.,
Kim, S. J., Salomon, D. R. & Abecassis, M. (2009). Intragraft
TNF receptor signaling contributes to activation of innate and
adaptive immunity in a renal allograft model. Transplantation 87,
178–188.

Jaeschke, A., Karasarides, M., Ventura, J. J., Ehrhardt, A., Zhang, C.,
Flavell, R. A., Shokat, K. M. & Davis, R. J. (2006). JNK2 is a positive
regulator of the cJun transcription factor. Mol Cell 23, 899–911.

Kadam, S. & Emerson, B. M. (2003). Transcriptional specificity of
human SWI/SNF BRG1 and BRM chromatin remodeling
complexes. Mol Cell 11, 377–389.

Kalil, A. C. & Florescu, D. F. (2009). Prevalence and mortality
associated with cytomegalovirus infection in nonimmunosuppressed
patients in the intensive care unit. Crit Care Med 37, 2350–2358.

Kamata, H., Honda, S., Maeda, S., Chang, L., Hirata, H. & Karin, M.
(2005). Reactive oxygen species promote TNFalpha-induced death
and sustained JNK activation by inhibiting MAP kinase phosphatases.
Cell 120, 649–661.

Karin, M. (1995). The regulation of AP-1 activity by mitogen-activated
protein kinases. J Biol Chem 270, 16483–16486.

Karin, M. & Shaulian, E. (2001). AP-1: linking hydrogen peroxide and
oxidative stress to the control of cell proliferation and death. IUBMB
Life 52, 17–24.

Keil, G. M., Ebeling-Keil, A. & Koszinowski, U. H. (1987a).
Immediate-early genes of murine cytomegalovirus: location,
transcripts, and translation products. J Virol 61, 526–533.

Keil, G. M., Ebeling-Keil, A. & Koszinowski, U. H. (1987b). Sequence
and structural organization of murine cytomegalovirus immediate-
early gene 1. J Virol 61, 1901–1908.

Kew, V. G., Yuan, J., Meier, J. & Reeves, M. B. (2014). Mitogen and
stress activated kinases act co-operatively with CREB during the
induction of human cytomegalovirus immediate-early gene
expression from latency. PLoS Pathog 10, e1004195.

Kim, S. J., Varghese, T. K., Zhang, Z., Zhao, L. C., Thomas, G.,
Hummel, M. & Abecassis, M. (2005). Renal ischemia/reperfusion

injury activates the enhancer domain of the human cytomegalovirus
major immediate early promoter. Am J Transplant 5, 1606–1613.

Kono, H. & Rock, K. L. (2008). How dying cells alert the immune
system to danger. Nat Rev Immunol 8, 279–289.

Kropp, K. A., Angulo, A. & Ghazal, P. (2014). Viral enhancer mimicry
of host innate-immune promoters. PLoS Pathog 10, e1003804.

Kurz, S., Steffens, H. P., Mayer, A., Harris, J. R. & Reddehase, M. J.
(1997). Latency versus persistence or intermittent recurrences:
evidence for a latent state of murine cytomegalovirus in the lungs.
J Virol 71, 2980–2987.

Kurz, S. K., Rapp, M., Steffens, H. P., Grzimek, N. K., Schmalz, S. &
Reddehase, M. J. (1999). Focal transcriptional activity of murine
cytomegalovirus during latency in the lungs. J Virol 73, 482–494.

Kutza, A. S., Muhl, E., Hackstein, H., Kirchner, H. & Bein, G. (1998).
High incidence of active cytomegalovirus infection among septic
patients [see comments]. Clin Infect Dis 26, 1076–1082.

Lamb, J. A., Ventura, J. J., Hess, P., Flavell, R. A. & Davis, R. J. (2003).
JunD mediates survival signaling by the JNK signal transduction
pathway. Mol Cell 11, 1479–1489.

Lao, W. C., Lee, D., Burroughs, A. K., Lanzani, G., Rolles, K.,
Emery, V. C. & Griffiths, P. D. (1997). Use of polymerase chain
reaction to provide prognostic information on human
cytomegalovirus disease after liver transplantation. J Med Virol 51,
152–158.

Lee, Y., Sohn, W. J., Kim, D. S. & Kwon, H. J. (2004). NF-kappaB- and
c-Jun-dependent regulation of human cytomegalovirus immediate-
early gene enhancer/promoter in response to lipopolysaccharide and
bacterial CpG-oligodeoxynucleotides in macrophage cell line RAW
264.7. Eur J Biochem 271, 1094–1105.

Li, Z., Wang, X., Yan, S., Zhang, Z., Jie, C., Sustento-Reodica, N.,
Hummel, M. & Abecassis, M. (2012). A mouse model of CMV
transmission following kidney transplantation. Am J Transplant 12,
1024–1028.

Limaye, A. P., Kirby, K. A., Rubenfeld, G. D., Leisenring, W. M.,
Bulger, E. M., Neff, M. J., Gibran, N. S., Huang, M. L., Santo Hayes,
T. K. & other authors (2008). Cytomegalovirus reactivation in
critically ill immunocompetent patients. JAMA 300, 413–422.

Liu, X. F., Yan, S., Abecassis, M. & Hummel, M. (2008).
Establishment of murine cytomegalovirus latency in vivo is
associated with changes in histone modifications and recruitment of
transcriptional repressors to the major immediate-early promoter.
J Virol 82, 10922–10931.

Liu, X. F., Yan, S., Abecassis, M. & Hummel, M. (2010). Biphasic
recruitment of transcriptional repressors to the murine
cytomegalovirus major immediate-early promoter during the course
of infection in vivo. J Virol 84, 3631–3643.

Liu, X. F., Wang, X., Yan, S., Zhang, Z., Abecassis, M. & Hummel, M.
(2013). Epigenetic control of cytomegalovirus latency and
reactivation. Viruses 5, 1325–1345.

Mann, J., Oakley, F., Johnson, P. W. & Mann, D. A. (2002). CD40
induces interleukin-6 gene transcription in dendritic cells:
regulation by TRAF2, AP-1, NF-kappa B, and CBF1. J Biol Chem
277, 17125–17138.

Martı́nez, F. P., Cosme, R. S. & Tang, Q. (2010). Murine
cytomegalovirus major immediate-early protein 3 interacts with
cellular and viral proteins in viral DNA replication compartments
and is important for early gene activation. J Gen Virol 91, 2664–2676.

Medzhitov, R. & Horng, T. (2009). Transcriptional control of the
inflammatory response. Nat Rev Immunol 9, 692–703.

Meier, J. L. & Stinski, M. F. (2013). Major immediate-early enhancer
and its gene products. In Cytomegaloviruses: From Molecular

X.-F. Liu and others

952 Journal of General Virology 97



Pathogenesis to Intervention, pp. 152–173. Edited by M. J. Reddehase.
Norfolk, UK: Caister Academic Press.

Messerle, M., Bühler, B., Keil, G. M. & Koszinowski, U. H. (1992).
Structural organization, expression, and functional characterization
of the murine cytomegalovirus immediate-early gene 3. J Virol 66,
27–36.

Mocarski, E. S., Shenk, T. & Pass, R. F. (2007). Cytomegaloviruses.
In Fields Virology, 5th edn, pp. 2702–2772. Edited by D. M. Knipe
& P. M. Howley. Philadelphia: Wolters Kluwer Health/Lippincott
Williams & Wilkins.

Mohrmann, L. & Verrijzer, C. P. (2005). Composition and functional
specificity of SWI2/SNF2 class chromatin remodeling complexes.
Biochim Biophys Acta 1681, 59–73.

Morgan, M. J. & Liu, Z. G. (2011). Crosstalk of reactive oxygen species
and NF-kB signaling. Cell Res 21, 103–115.

Mutimer, D., Mirza, D., Shaw, J., O’Donnell, K. & Elias, E. (1997).
Enhanced (cytomegalovirus) viral replication associated with septic
bacterial complications in liver transplant recipients.
Transplantation 63, 1411–1415.

Ndlovu, M. N., Van Lint, C., Van Wesemael, K., Callebert, P.,
Chalbos, D., Haegeman, G. & Vanden Berghe, W. (2009).
Hyperactivated NF-kappaB and AP-1 transcription factors promote
highly accessible chromatin and constitutive transcription across the
interleukin-6 gene promoter in metastatic breast cancer cells. Mol
Cell Biol 29, 5488–5504.

O’Connor, C. M. & Murphy, E. A. (2012). A myeloid progenitor cell
line capable of supporting human cytomegalovirus latency and
reactivation, resulting in infectious progeny. J Virol 86, 9854–9865.

Oeckinghaus, A., Hayden, M. S. & Ghosh, S. (2011). Crosstalk in
NF-kB signaling pathways. Nat Immunol 12, 695–708.

Pillebout, E., Weitzman, J. B., Burtin, M., Martino, C., Federici, P.,
Yaniv, M., Friedlander, G. & Terzi, F. (2003). JunD protects against
chronic kidney disease by regulating paracrine mitogens. J Clin
Invest 112, 843–852.

Pomerantz, J. L. & Baltimore, D. (2002). Two pathways to
NF-kappaB. Mol Cell 10, 693–695.

Portela, D., Patel, R., Larson-Keller, J. J., Ilstrup, D. M., Wiesner, R. H.,
Steers, J. L., Krom, R. A. & Paya, C. V. (1995). OKT3 treatment for
allograft rejection is a risk factor for cytomegalovirus disease in
liver transplantation. J Infect Dis 171, 1014–1018.
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