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Emerging nexus between RAB GTPases, autophagy and neurodegeneration
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ABSTRACT
The RAB class of small GTPases includes the major regulators of intracellular communication, which are
involved in vesicle generation through fusion and fission, and vesicular trafficking. RAB proteins also play
an imperative role in neuronal maintenance and survival. Recent studies in the field of neurodegeneration
have also highlighted the process of autophagy as being essential for neuronal maintenance. Here we
review the emerging roles of RAB proteins in regulating macroautophagy and its impact in the context of
neurodegenerative diseases.
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Intracellular trafficking is essential for neurons—a specialized type
of cell that has long axonal processes that extend up to a few
meters long—for maintaining polarity, stimulus dependent recep-
tor uptake and degradation, and for axonal transport of organelles.
RAB (Ras-genes from rat brain) GTPases are critical regulators
that provide identity to vesicles and aid in the formation, move-
ment and fusion of their respective membranes. RAB proteins
thus play an indispensable role in neuronal processes such as
NTF/neurotrophin-mediated signaling1 and thus consequently in
neurite outgrowth.2 Another such active molecular process regu-
lated by RAB proteins is macroautophagy (hereafter autophagy) a
cellular catabolic process essential for neuronal maintenance.
Defects in this pathway are strongly associated with several neuro-
degeneration disorders.3 The process of autophagy involves the
formation of a double-layered membrane that engulfs the cellular
contents to be degraded, followed by the fusion of the double-lay-
ered vesicle with a lysosome for cargo degradation. Classically,
autophagy was viewed as being induced upon starvation, but
recent literature highlights its importance as a housekeeping
mechanism for clearing damaged organelles and potentially toxic
protein aggregates. Thus, its requirement in cells of neuronal ori-
gin becomes important, and recent discoveries have shed light on
various regulators, including a few on the role of a number of RAB
proteins involved in multiple steps of autophagy.4 A number of
studies also suggest the importance of RAB proteins in mainte-
nance of healthy neurons, and how an overdose of RAB might
reverse the phenotype inflicted by accumulation of misfolded pro-
teins.5 Figure 1 provides a schematic view on the proposed role of
the core autophagicmachinery and its regulation by RAB proteins.
In this article, we attempt to discuss isolated studies that ascribe
aberration of this RAB-mediated autophagic regulation on the
pathobiology of neurodegenerative diseases.

RAB-regulated autophagy in neuronal survival

An early report suggested the requirement of RAB24 for survival
of injured neurons.6 Both Rab24 and Map1lc3b/Lc3 gene tran-
scripts were upregulated, and the 2 proteins colocalized in
injured motor neurons as well as under proteotoxic stress
induced by proteasomal blockade. The authors postulated
RAB24-mediated autophagy to be required for nerve regenera-
tion.6 A similar, activity-dependent relocalization of RAB24 was
observed on pharmacological induction of autophagy, although
in CHO cells.7 Recent studies have elegantly shown the role of
RAB24 in autophagic clearance.8 Through the use of electron
microscopy, it was suggested that it is not during the formation
of the autophagosome that RAB24 plays a role. In fact, an early
study had hinted at its role in maturation of autophagosomes as
they reported the presence of RAB24 on late endocytic compart-
ments.9 Overexpression of mutant HTT (huntingtin) protein
with an expanded polyQ repeat in a defective RAB24 background
leads to the accumulation of polyglutamine aggregates in HeLa
cells.8 Thus, it would be safe to conclude that RAB24 not only
plays a role in basal autophagy, but also helps in clearing the pro-
tein load through autophagy, thereby highlighting its importance
in post-mitotic cell types, such as neurons. Supporting this find-
ing was the genetic study of canine heredity ataxia that ascribed
mutations in RAB24 to be a cause of the disease.10 The authors
also described Purkinje neurons harboring a number of
uncleared late autophagic vesicles.10 Thus, RAB24-mediated
autophagy induction might protect neurons against cell death.

Abnormal RABs in neurodegenerative diseases

The importance of RABs in neuronal survival and maintenance
became obvious with the identification of mutations in the
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RAB7A gene, which were found to be associated with the Char-
cot-Marie-Tooth disease type 2B, an axonal neuropathy.11 Cul-
tured Purkinje neurons require the activity of RAB7A for
efficient clearance of autophagosomes on trophic factor deple-
tion.12 Specifically, RAB7A facilitates the crosstalk between

endosomes and autophagosomes. An example of this crosstalk
is the compensatory clearance of cargo by the other pathway if
one is blocked. In the retina of Drosophila, for example,
upregulation of RAB7A protein induced on blocking
autophagy leads to compensatory degradation of ninaE/

Figure 1. Core autophagic machinery and its regulation by RAB proteins. Schematic diagram showing the role of the core autophagic machinery and its regulation by
RAB proteins. 1. Induction: The initial phagophore assembly site (PAS) could be contributed to by any of the multiple organelles, each requiring a set of proteins regulated
by RAB activity. The signal is most often under the control of ULK1, the activity of which can also be regulated by RAB accessory proteins. 2. Nucleation: At the PAS, binds
the initial set of proteins that help in membrane elongation/expansion, mediated by activated lipid (PtdIns3P), to which bind proteins such as PIK3C3/VPS34, that is a
direct effector of activated RAB5. 3. Elongation: The ubiquitin-like conjugation machinery of ATG12–ATG5–ATG16L1 is also under the control of an ER resident RAB,
RAB33B. 4. Completion: The fusion of the final double-layered autophagosome with the acidic lysosome for degradation of cargo is also under the control of activity of
the late endosome-specific RAB7A and RAB24. Protein names in star-shaped boxes represent the proteins that are directly regulated by the respective RAB proteins.
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rhodopsin through endo-lysosomal degradation, thus prevent-
ing retinal degeneration.13 The significance of increased levels
of RAB4A, RAB5A, RAB7A and RAB27A gene transcripts seen
in brains of patients with Alzheimer disease (AD), or mild cog-
nitive impairment is yet to be understood.14 Upregulation of
RAB4A in AD, might be a consequence of AD-associated mito-
chondrial damage, as RAB4A is required for mitochondrial
clearance in HeLa cells.15 RAB5A protein levels are also upre-
gulated in mice models of Lafora disease, a neurodegenerative
disorder associated with polyglucosan inclusions.16 Such a
compensatory upregulation of RAB in pathologies such as
Lafora disease could also be speculated. In brains of patients
with dementia with Lewy bodies, large RAB7A-positive endo-
somes are seen, as well as increases in the protein level.17 The
upregulation of RAB7A in such conditions could possibly rep-
resent a failed attempt for neuronal survival since MTOR
(mechanistic target of rapamycin [serine/threonine kinase])-
dependent autophagy induction (using a rapamycin analog) in
a murine model of tauopathy also leads to an increase in
RAB7A levels.18 A list of RAB proteins having a role in auto-
phagy and mutated or misexpressed in neurodegenerative
diseases is provided inTable 1.

RAB regulators and their role in neurodegeneration

Functional studies on disease-associated proteins have led to
the identification of novel regulators of RAB proteins and their
involvement in autophagy. For example, wild-type HTT is
required for movement of RAB7A-positive vesicles through
neurons of a Drosophila model of Huntington disease.19 Any
perturbation of HTT activity might thus impact RAB7A-medi-
ated autophagy, and could be a cause of buildup of uncleared
autophagosomes in Huntington disease. Another instance
where a disease-associated protein regulates autophagy through
RAB activity is that of LRRK1 (leucine-rich repeat kinase 1)
involved in Parkinson disease (PD). Upon autophagic induc-
tion, LRRK1 mediates RAB7A GTPase activity through the reg-
ulation of TBC1D2—a RAB7A GTPase activating protein—and
a loss in its activity leads to accumulation of autolysosomes and
undegraded cargo.20 PARK2/Parkin, mutations in which are
also associated with PD, also regulates the activity of the RAB-
GTPase activating proteins TBC1D15 and TBC1D17, which
are required for routing of damaged mitochondria to autopha-
gosomes through RAB7.21 These proteins thus have an impact

on the hydrolytic activity of RAB GTPases and thus might have
a functional outcome on autophagy.

Crosstalk of ATG and RAB proteins

The biogenesis of the autophagosome requires the formation of
double-membrane vesicles. Yet the aqueous intracellular envi-
ronment would not favor de novo synthesis of a hydrophobic
membrane. Therefore, the autophagosomal membrane precur-
sor, the phagophore, is thought to originate from an intracellu-
lar organelle or a vesicle, onto which ATG proteins bind and
induce membrane elongation/expansion. The organelle that
contributes to the phagophore membrane in mammalian cells
has been an enigma for a number of years. Recent discoveries,
however, have established the contribution of almost all intra-
cellular organelles. The different membrane sources reported
for the biogenesis of the phagophore include the plasma mem-
brane, recycling endosomes, endoplasmic reticulum, mitochon-
dria and Golgi body.22 One can assume synaptic vesicles to be
such a membrane donor as they employ RAB26-dependent
autophagy elongation molecules: ATG16L1 and MAP1LC3B.23

In this regard, it is also interesting to note that early endosomal
RAB5A-induced autophagy can lead to clearance of HTT
aggregates, albeit in cellular and fly models of Huntington dis-
ease.24 The interaction between BECN1/Beclin 1, RAB5A, and
PIK3C3/VPS34 is required for both the processes of autophagy
as well as endocytosis.25 Based on this evidence we propose the
partitioning of RAB5A into the autophagic elongation and
early endosomal compartments, and channeling into each
depending upon the specific cellular requirement. Thus, the
RAB5A-decorated enlarged endosomes observed in models
and patients of Alzheimer disease could be a consequence of
decreased autophagy; in addition leading to enhanced genera-
tion of amyloid beta.26

RAB proteins rescue neurodegeneration by inducing
autophagy

The possibility that RAB proteins could serve as stress response
molecules comes from a study that demonstrated enhanced
extracellular secretion of SNCA/alpha-synuclein through a
RAB11A-dependent mechanism following an autophagy
block.27 These examples do not come as a surprise, as overex-
pression of RAB proteins alleviates neurodegeneration in

Table 1. List of neurodegenerative disorders with abnormal activities for RAB GTPase.

Alzheimer disease (AD) and mild RAB4A: Required for mitochondrial autophagy.14

RAB5A: Regulates activity of PIK3C3-BECN1 complex.14

cognitive impairment (MCI) RAB7A: Required for autophagosome-lysosome fusion.14

RAB27A: Transcripts were upregulated in brains of AD and MCI patients.14

RAB4 and RAB6A are upregulated in the triple-transgenic mouse model of AD.33

Amyotrophic lateral sclerosis (ALS) RAB1A: Involved in endoplasmic reticulum-mediated autophagosome formation, and accumulated as inclusions in neurons of
sporadic ALS patients.31

RAB1A: Overexpression rescued inclusion formation in mouse model of ALS.32

Charcot-Marie-Tooth type 2B (CMT2B) RAB7A: Mutations resulting in its enhanced activity are a causative factor for familial CMT2B.11

Dementia with Lewy bodies (DLB) RAB7A: Levels are increased in brains of patients with DLB.17

Huntington disease (HD) RAB11A: Involved in recycling endosome-mediated autophagosome formation, interacts with HTT and is inactive in knock-in
mouse model of HD.34

Lafora disease (LD) RAB5A: Required for autophagosome formation, is upregulated in mouse model of LD.16

Note. MCI, mild cognitive impairment.
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multiple models. For example overexpression of RAB11A in
Drosophila models of Parkinson and Huntington diseases leads
to a decrease of SNCA aggregates, reduced neuronal death and
synaptic dysfunction.28,29 Since RAB11A plays a positive role in
autophagic maturation,30 one could speculate that the allevia-
tion of symptom is an outcome of induced autophagy.

Development of disease could be a consequence of RAB1A
misfolding and inactivation as was seen in a model of amyotro-
phic lateral sclerosis.32 Mutant FUS (FUS RNA binding pro-
tein) is responsible for one of the familial forms of
amyotrophic lateral sclerosis, and impairs autophagy. The
impaired autophagic phenotype is reversed by overexpression
of RAB1A in a mutant FUS background,34 thus underscoring
the nexus between RABs, autophagy and neurodegeneration.
Further studies on RAB proteins and RAB regulators in neuro-
degenerative disorders could offer insight into the complex pro-
cess of autophagy and its role in neurodegeneration.

Abbreviations

AD Alzheimer disease
ATG autophagy related
DLB dementia with lewy bodies
GTPase guanosine-50-triphosphatase
HD Huntington disease
HTT Huntingtin
LRRK1 leucine-rich repeat kinase 1
PAS phagophore assembly site
PD Parkinson disease
RAB Ras related protein in brain
TBC Tre-2, Bub2 and Cdc16 domain containing protein
ULK1 unc-51 like autophagy activating kinase 1
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