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ABSTRACT
Many epigenetic association studies have attempted to identify DNA methylation markers in blood that
are able to mirror those in target tissues. Although some have suggested potential utility of surrogate
epigenetic markers in blood, few studies have collected data to directly compare DNA methylation across
tissues from the same individuals. Here, epigenomic data were collected from adipose tissue and blood in
143 subjects using Illumina HumanMethylation450 BeadChip array. The top axis of epigenome-wide
variation differentiates adipose tissue from blood, which is confirmed internally using cross-validation and
externally with independent data from the two tissues. We identified 1,285 discordant genes and 1,961
concordant genes between blood and adipose tissue. RNA expression data of the two classes of genes
show consistent patterns with those observed in DNA methylation. The discordant genes are enriched in
biological functions related to immune response, leukocyte activation or differentiation, and blood
coagulation. We distinguish the CpG-specific correlation from the within-subject correlation and
emphasize that the magnitude of within-subject correlation does not guarantee the utility of surrogate
epigenetic markers. The study reinforces the critical role of DNA methylation in regulating gene
expression and cellular phenotypes across tissues, and highlights the caveats of using methylation
markers in blood to mirror the corresponding profile in the target tissue.
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Introduction

Adipose tissue functions as a metabolic and endocrine organ
that regulates dynamic storage of triglycerides and coordinates
energy intake and usage.1 Blood is a mixture of numerous dif-
ferent specialized immune cell types, and the composition of
the leukocyte population is well known to reflect particular
phenotypic traits or external toxicant exposures.2 In the process
of normal mammalian development, DNA methylation plays a
critical role in controlling cell differentiation, such that differ-
ent tissues have been shown to have distinct patterns of DNA
methylation.3,4

In epigenetic epidemiology, it is often fairly straightfor-
ward to obtain blood samples in studies due to existing
infrastructure to obtain those samples, and the utility of
blood samples to assess many biomarkers across a large
variety of disease domains. Epigenetics is inherently tissue-
specific. Consequently, it is useful to know how methylation
patterns are different and similar across tissues types, so
that alterations in methylation in one tissue type (such as
blood) can be more rigorously inferred to other tissues
types (such as adipose tissue). Many studies to date have
investigated methylation in single tissue types. For example,
epigenome-wide association studies (EWAS) have reported

that epigenetic alterations in adipose tissue are associated
with metabolic process-related phenotypes such as type 2
diabetes,5,6 and may be modulated by physical activity.7,8

EWAS using blood DNA methylation showed associations
of DNA methylation with immune-related conditions such
as rheumatoid arthritis 9 and clinical parameters such as
immunoglobulin E concentration.10 In addition, EWAS
have been conducted to investigate associations of body
mass index (BMI) or birth weight with DNA methylation
in one tissue such as blood, and the candidate CpG sites
were further examined in another tissue such as adipose tis-
sue.11-16 Several epigenetic biomarkers associated with BMI
were identified, such as DNA methylation of HIF3A.13

Some studies showed that corresponding methylation
markers in peripheral blood have consistent associations as
those discovered in adipose tissue. Overall, studies suggest
some success of EWAS in discovering informative bio-
marker loci that may have potential of allowing blood to be
used as a surrogate tissue for the epigenetics in adipose tis-
sue. This calls for a more in-depth assessment of the nature
of the DNA methylation profiles in different tissues from
the same person. This should allow for more rigorous
interpretation of surrogate tissue epigenetic methylation
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patterns. As epigenetic epidemiology emerges,17 the qualifi-
cation and characteristics of epigenetic markers in periph-
eral blood need to be carefully assessed, with particular
attention to the correlation with the target tissue and the
phenotype of interest.

There are studies of tissue-specific DNA methylation directly
comparing human brain with blood,18,19 adipose tissue with
skeletal muscle,7 and blood with atrium tissue.20 In addition to
pair-wise comparison between two tissues, tissue-specific meth-
ylation patterns have also been studied across multiple tissue
types or primary cell lines from various tissues, including
peripheral tissues, such as blood and buccal swabs, and internal
tissues obtained with invasive procedures.21-25 However, despite
the evidence of tissue-specific DNA methylation profiles,
knowledge regarding the similarity and dissimilarity of adipose
tissue and blood remains incomplete. Consequently, the ques-
tion of whether DNA methylation in peripheral tissues can
serve as a surrogate for the target internal tissues in relation to
the phenotypic traits of interest is largely unanswered. We
hypothesize that the DNA methylation profile varies across tis-
sues and that the differentially methylated genes play important
roles in tissue-specific biological functions. To investigate the
hypotheses, we conduct a population-based study comparing
epigenome-wide DNA methylation in adipose tissue with
matched blood samples in healthy individuals.

Results

Epigenome-wide profile and tissue difference

The DNA methylation levels of 285,163 CpG sites are pre-
sented with a heatmap (Fig. 1). Hierarchical clustering well

differentiated adipose tissue from blood, which strongly sug-
gests more epigenome-wide similarity within tissue type than
within a participant. In general, adipose tissue was hypomethy-
lated compared with its blood counterpart. We further studied
the epigenome-wide variation in DNA methylation with princi-
pal component analysis (PCA), which shows that the leading
axis of epigenomic variation reflects the tissue type, even after
adjusting for age, gender, race and BMI (P < 10¡12) (Fig. 2A-
B). The first three principal components explain 81.3%, 2.1%,
and 0.9% of epigenome-wide variation, respectively.

The accurate differentiation was robust and confirmed by 4-
fold cross-validation (Supplementary Fig. 1). In an effort to
confirm that this is not simply attributable to a within-subject
effect (e.g., it is not genetically controlled within the same indi-
vidual), we sought to confirm this in another data set. The
external data set 21,26 also validates the finding (Fig. 2C). Inter-
estingly, the association of tissue type and the epigenome-wide
variation was exclusively in the first principal component, but
not the remaining principal components (Fig. 2A). PCA with
median centering for each individual or each locus revealed
similar findings (data not shown). The analyses based on aver-
age methylation of 20,073 genes are presented in Supplemen-
tary Figs. 2 and 3, which reveal similar findings compared to
those using CpG methylation levels.

Epigenome-wide variation, BMI, gender, and race

In order to further characterize the nature of the variation in
the epigenome-wide data, we examined its association with
BMI, gender, and race (Fig. 2A, Supplementary Fig. 4). The top
four axes of variation were significantly associated with BMI
and, notably, such association was only observed in adipose tis-
sue and not in blood. The association with gender was observed
in both blood and adipose tissue for the 6th, 7th, and 10th axes of
CpG methylation variation, while the association with race was
mostly observed in the 2nd, 4th, and 5th axes with consistent
directionality in both tissues. The findings that the leading axes
of epigenome-wide variation were associated with BMI, race,
and gender were similar in analyses using gene-methylation
(Supplementary Figs. 3 and 5).

Concordant and discordant genes

From the PCA of gene-average methylation, we extracted the
loading of genes corresponding to the first axis. As the axis
accurately differentiated adipose tissue from blood, the top
1,285 genes with largest loadings (the absolute value greater
than two times the standard deviation of all loadings) were
termed “discordant genes.”We calculated the gene-specific cor-
relation between adipose tissue and blood in 143 subjects. The
distribution of the correlation in 20,073 genes is shown in
Fig. 3A. The majority of genes shared low correlation across
the two tissue types. The 1,961 genes with a correlation greater
than 0.5 across adipose tissue and blood were termed “concor-
dant genes.” The methylation levels of all 20,073 genes (adipose
tissue vs. blood) in 143 subjects are shown in Fig. 3B where
concordant and discordant genes are highlighted in blue and
red, respectively. The concordant genes followed closely on the
diagonal line whereas the discordant genes spread over the off-

Figure 1. Epigenome-wide methylation level in 285,163 CpG loci characterizes tis-
sue-specific profile across adipose tissue and blood. Hierarchical clustering is
performed based on the Euclidean distance of epigenome-wide b¡values, and
well differentiates adipose tissue (yellow) from blood (red).
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diagonal region. Note the scatter plot represents an overall
between-tissue correlation by collapsing all genes and subjects.

While we defined the concordant and discordant genes
based on DNA methylation, we further assessed the corre-
sponding transcriptomic pattern using previously published
data.27 We compared the RNA expression of the two classes of
genes in adipose tissue and bone marrow as a proxy tissue of
blood. For the concordant genes, RNA expression in the two
tissue types had a correlation of 0.84 (Fig. 3C and 3E), but the
correlation across tissues for the discordant genes was very low,
at 0.08 (Fig. 3D and 3F). In contrast, the correlation between
fat tissue and thyroid was 0.71 and 0.47 for the concordant
and discordant genes, respectively (Supplementary Fig. 6).
Together, the analyses suggest that the concordant genes have
constant gene expression pattern across tissues, but the discor-
dant genes critical for tissue-specific biological functions have

distinct epigenetic and transcription patterns. Compared with
CpG-specific correlation between the adipose tissue and blood
in all 285,163 sites (black bars), the CpG sites with higher cor-
relation are enriched in concordant genes (blue bars), whereas
the sites with lower correlation are enriched in discordant genes
(red bars) (Supplementary Fig. 7).

Gene ontology analyses were performed to better character-
ize the biological features of concordant and discordant genes.
The biological processes enriched in discordant genes were
related to immune cell activation, lymphocyte differentiation,
and blood coagulation (Table 1), and those enriched in concor-
dant genes were related to cell adhesion and response to xeno-
biotic stimulus (Supplementary Table 1). The findings from
GO analyses support the hypothesis that the discordant genes
are critical for tissue-specific biological functions while the con-
cordant genes are mostly responsible for maintaining basic

Figure 2. Top axes of epigenome-wide variation estimated by principal component analyses differentiate tissue type (adipose and blood), BMI, gender, and race. (a) Z-sta-
tistic characterizes the statistical association of the phenotypes with the top principal components (PCs). (b) The first PC differentiates adipose tissue from blood in the
LEAP study. (c) The external validation study shows that the first PC predicted from the LEAP study differentiates adipose tissue from blood in the 47 samples archived on
the GEO (GSE58622 and GSE48472).
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cellular functions. While the Fisher exact test of over-represen-
tation is used to examine the enrichment of biological functions
in two types of genes, we note that the P-values from such a test
is based on a sampling scheme with respect to genes rather than
study subjects28 and should be interpreted with caution.

BMI and within-subject epigenome-wide correlation
between adipose tissue and blood

For each subject, we calculated the correlation of DNA methyl-
ation between adipose tissue and blood, termed the within-sub-
ject correlation. As shown in Fig. 4A, the within-subject
correlations between the two tissue types in all 143 subjects

were all very high. BMI was significantly associated with the
within-subject correlation of CpG methylation across the two
tissues (P D 4.5£10¡4; Fig. 4B). For the subjects with higher
BMI, the DNA methylation between adipose tissue and blood
was more consistent (Fig. 4C), while the epigenome-wide pat-
tern in those with lower BMI tended to spread out with slightly
lower correlation (Fig. 4D). The above analyses are based on
CpG-site methylation, and the association based on average
gene methylation was also highly significant (P D 6.3£10¡6,
Supplementary Fig. 8). Comparison of DNA methylation in
adipose tissue and blood across the three BMI groups (�25,
25–30 and �30) suggests that the DNA methylation profile of
adipose tissue in subjects with higher BMI becomes more simi-
lar to that of blood, but not the reverse that blood DNA methyl-
ation becomes more similar to adipose tissue (Supplementary
Fig. 9).

Blood DNA methylation as a surrogate in adipose tissue

With the available epigenome-wide data on both adipose tissue
and blood from the same subjects, we evaluated whether the
blood DNA methylation markers mirror those in adipose tis-
sue. Specifically, we investigated whether the high within-sub-
ject correlation observed in Fig. 4A can be translated to
qualification of blood DNA methylation as a surrogate marker
for that in adipose tissue. We have introduced two different
ways of examining interdependence between adipose tissue and
blood: one was to focus on epigenome-wide correlation of all
CpG loci or all genes within an individual, or within-subject
correlation (Fig. 4A); and the other was on CpG- or gene-spe-
cific correlation across tissue types (Fig. 3A and Supplementary
Fig. 7), which we argue is more relevant to most epigenetics
association studies. The magnitude of CpG- or gene-specific
correlation across adipose tissue and blood was not high. Only
5.2% of CpG loci and 9.8% of genes had correlation coefficients
greater than 0.5. Although the magnitude of correlation was
low, 19.0% CpG- and 38.9% gene-specific correlation was posi-
tively correlated and significantly different from 0 (FDR<0.05).
Among these CpG loci and genes, if the modest correlation pre-
served across tissue types was associated with phenotypic traits
of interest, then the blood DNA methylation may still serve as
a surrogate marker for adipose tissue. We illustrated with the
example of HIF3A in the following.

To better understand the discrepancy of high within-subject
correlation and low gene-specific correlation, we illustrated
with three genes, C21orf81, fatty acid synthase (FASN), and
hypoxia inducible factor 3, alpha subunit (HIF3A). The three
genes were selected to represent high, moderate, and low corre-
lation of methylation across tissues. Among 20,073 genes,
C21orf81 had the highest correlation (0.96) of average methyla-
tion levels between adipose tissue and blood, and HIF3A and
FASN had correlation of 0.40 and ¡0.08, respectively. Despite
their moderate to low correlation, studies have suggested that
FASN is involved in regulation of body weight,29,30 and recent
studies discovered DNA methylation of HIF3A is associated
with body weight.12,13,15 We again looked at the scatter plot of
all 20,073 genes in 143 subjects, but assessed how methylation
levels of the three genes were distributed in the plot (Fig. 5A).
The methylation level of C21orf81 ranged from 10 to 90% and

Figure 3. Concordant (1,966) and discordant (1,286) genes are identified using
gene-specific correlation and PCA, respectively. (a) Histogram of gene-specific cor-
relation indicates the majority of genes share low correlation across adipose tissue
and blood. (b) DNA methylation M-values of 20,073 genes in 143 adipose tissues
are plotted against those in the 143 matched blood samples, superimposed by the
concordant genes (blue color) and discordant genes (red color). (c) RNA expression
level of the concordant genes across adipose tissue and bone marrow shows high
correlation, 0.84. (d) RNA expression level of the discordant genes across adipose
tissue and bone marrow shows low correlation, 0.08. (e, f) RNA expression of the
top 200 concordant (e) and discordant (f) genes sorted by the expression level of
adipose tissue (orange).
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had high correlation (0.96) between adipose tissue and blood.
Methylation levels of HIF3A ranging from 45 to 57% in adipose
tissue and blood had moderate correlation (0.40) across tissues.
On the other hand, FASN had high methylation level (>95%),

but the correlation between tissues was extremely low (¡0.08).
The correlation of CpG loci within these three genes revealed
very similar results (Supplementary Figs. 10–12). We con-
firmed the previously reported findings that BMI was

Table 1. Gene ontology enriched in discordant genes with P < 10¡4.

GOBPID� P-Value Odds Ratio Expected Count Observed Count Size Term

GO:0050900 3.76E-08 2.69 19.38 46 311 leukocyte migration
GO:0006955 5.83E-08 1.74 83.68 132 1343 immune response
GO:0006952 7.75E-08 1.71 88.98 138 1428 defense response
GO:0050896 8.18E-08 1.43 452.50 531 7262 response to stimulus
GO:0001775 1.64E-07 1.90 52.65 91 845 cell activation
GO:0002376 1.68E-07 1.56 138.39 195 2221 immune system process
GO:0060326 1.51E-06 2.83 12.84 32 206 cell chemotaxis
GO:0045321 4.07E-06 1.91 38.82 68 623 leukocyte activation
GO:0030595 5.18E-06 3.09 9.28 25 149 leukocyte chemotaxis
GO:0050851 9.42E-06 3.14 8.41 23 135 antigen receptor-mediated signaling pathway
GO:0097529 1.31E-05 3.28 7.42 21 119 myeloid leukocyte migration
GO:0006954 1.43E-05 1.88 35.70 62 573 inflammatory response
GO:0007155 1.55E-05 1.58 80.94 118 1299 cell adhesion
GO:0022610 1.91E-05 1.57 81.32 118 1305 biological adhesion
GO:0042129 2.20E-05 3.15 7.66 21 123 regulation of T cell proliferation
GO:0042098 3.16E-05 2.80 9.66 24 155 T cell proliferation
GO:0002683 5.17E-05 2.12 20.06 39 322 negative regulation of immune system process
GO:0007166 5.31E-05 1.36 196.53 245 3154 cell surface receptor signaling pathway
GO:0002429 5.70E-05 2.46 12.59 28 202 immune response-activating cell surface receptor signaling pathway
GO:0070887 8.55E-05 1.40 141.32 183 2268 cellular response to chemical stimulus
GO:0098542 9.54E-05 1.98 23.55 43 378 defense response to other organism

� GOBPID: gene ontology biological process id.

Figure 4. Body mass index is associated with within-subject correlation of CpG site methylation in 132 subjects. (a) DNA methylation across adipose tissue and blood
shares high within-subject correlation of 285,163 CpG sites in 132 subjects. (b) Within-subject correlation of 285,163 CpG sites is associated with body mass index, P D
4.5£10¡4. Subjects with higher BMI have high within-subject correlation across tissues (c,d) DNA methylation M-values of adipose tissue against those of blood in a sub-
ject with higher BMI (c) and low BMI (d). The scatter plots are superimposed by concordant (blue) and discordant (red) genes.
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associated with HIF3A methylation in both adipose tissue (P D
8.9£10¡5) and blood (P D 0.060) (Fig. 5D). The association of
BMI with FASN was highly significant in adipose tissue (P D
1.8£10¡10), but not in blood (P D 0.66) (Fig. 5B); BMI was not
associated with C21orf81 methylation in either adipose tissue
(P D 0.92) or blood (P D 0.91) (Fig. 5C). Similar findings were
observed in CpG-specific analyses (Supplementary Figs. 13-15).
The analyses suggest that the positively correlated epigenome-
wide pattern does not mirror the correlation in specific genes
or CpG loci, and that the qualification of being a surrogate epi-
genetic marker does not necessarily depend on the CpG-spe-
cific correlation and has to be evaluated case by case.

Discussion

We report, to our knowledge, the first large-scale comparison of
epigenome-wide DNA methylation from adipose tissue and
blood in the same people. These analyses reveal the lead axis of
epigenome-wide variation is related to the difference between
the two tissues and identify their concordant and discordant
genes. We have interrogated the within-subject correlation and
gene- or CpG-specific correlation and demonstrated the caveats
and qualifications required when using blood EWAS data as

surrogate markers for the target tissue. In addition to the large
sample size, this study has several advantages. First, all the
blood and fat samples are paired and collected from the same
individuals. Second, the age of the study subjects is similar,
ranging from 44 to 50 years. As age is shown to be associated
with DNA methylation profile and gene expression,19,31 the
narrow range minimizes its potential confounding. Third, both
internal cross-validation and external validation studies were
conducted and confirmed the finding that the first principal
component of epigenome-wide variations differentiates adipose
tissue from blood. Finally, the concordant and discordant genes
identified in the study are supported by a consistent pattern in
gene expression measured using RNA sequencing. The limita-
tions of our work include the lack of information on cell
decomposition and RNA profile for blood and adipose tissue,
and the lack of adipose tissue from different anatomical sites.
This limits our ability to conduct integrated analysis for both
transcriptomics and epigenomics across a finer cellular pheno-
typing profile.

The discordant genes across adipose tissue and blood are
enriched in biological processes related to immune response,
leukocyte and lymphocyte activation or differentiation, and
blood coagulation. The results support the distinct physiologic

Figure 5. We illustrate gene-specific correlation and the association with BMI in adipose tissue and blood for three genes: HIF3A, FASN, and C21orf81. (a) DNA methylation
M-values of 20,073 genes in 143 adipose tissues are plotted against those in the 143 matched blood samples, superimposed by DNA methylation levels of HIF3A, FASN,
and C21orf81. The scatter plot reveals that a highly correlated epigenome-wide correlation does not necessarily suggest gene-specific correlation. (b) DNA methylation of
FASN in adipose tissue is highly associated with BMI (P D 1.8£10¡10), but such association does not exist in blood. (c) DNA methylation of C21orf81 in adipose tissue or
blood is not associated with BMI. (d) DNA methylation of HIF3A is associated with BMI, which is highly significant in adipose tissue (P D 8.9£10¡5) and marginally signifi-
cant in blood (P D 0.060).
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role of blood as an important discriminator in these data. Dif-
ference in DNA methylation profile across other tissues has
also been studied. Distinct tissue-specific differentially methyl-
ated regions (TS-DMRs) between brain and blood were identi-
fied and the TS-DMRs were enriched near genes with
biological functions related to neurodevelopment and neuronal
differentiation.18 Another study found that the top axes of
methylomic variations across blood and brain are related to the
tissue type, anatomical regions of the brain, and age.19 In addi-
tion to comparison across non-pathological tissues, studies
have also been conducted to examine the tumor and non-
tumor tissues. Comparing soft-tissue sarcoma tumor or cell
line and non-neoplastic fat samples, Rener et al. identified a set
of CpG sites that differentiates the subphenotypes.32 A study
reported a high epigenome-wide correlation (0.92) of cell-free
serum DNA methylation and the matched DNA methylation
in esophageal adenocarcinoma.33 An algorithm has also been
developed to predict methylation profile across tissues.20 How-
ever, as shown in Fig. 5, the high epigenome-wide correlation is
not directly translated to a high gene- or CpG site-specific cor-
relation and therefore, does not necessarily guarantee clinical
utility as surrogate biomarkers for the target tissue.

Since epigenomics is tissue-specific, there has been a press-
ing need to understand whether the DNA methylation profile
in one tissue can serve as a useful surrogate for another. There
are two major reasons for potentially using a surrogate: one is
to investigate a biomarker in peripheral tissue that might pre-
dict a disease or a phenotypic trait. Because the target tissue for
some diseases is not readily accessible, a surrogate marker in
peripheral tissue such as blood enjoys many practical advan-
tages. Many epigenome-wide association studies have adopted
as a common practice that once an epigenetic biomarker for a
phenotype is found in one tissue, replication using another tis-
sue is then conducted.11-13,15 Data from the current study sug-
gest that there may be limited utility to this approach. For
example, the relationship of BMI with methylation profile in
blood and adipose tissue is distinct; the DNA methylation pro-
file of adipose tissue in subjects with higher BMI becomes more
similar to that of blood. This finding is consistent with the
known ability of adipose tissue in obese individuals to elaborate
inflammatory cytokines, potentially mimicking similar proper-
ties of leukocytes.34 At the same time, as shown in Fig. 5, DNA
methylation in HIF3A shares moderate correlation between
adipose tissue and blood, and both are associated with BMI. In
contrast, methylation in FASN is poorly correlated across tis-
sues, but the DNA methylation in adipose tissue but not blood
is highly associated with BMI. To serve as a biomarker, the sur-
rogate marker has to share some correlation with the target
DNA methylation, and the shared correlation has to be at least
partially attributable to their association with the phenotype of
interest. Since both conditions have to be satisfied, the concor-
dant genes identified from the study do not guarantee the quali-
fication of being a good surrogate. Moreover, the surrogate
markers are phenotype-specific, e.g. a surrogate biomarker for
BMI is not necessarily a marker for another trait such as
asthma.

The other purpose for choosing a surrogate is to understand
its biological mechanism of development. The concordant
genes we identified serve this purpose. The methylation

markers that are consistent across tissues reflect fundamental
biological functions such as cell-cell adhesion and oxidation-
reduction process. Some concordant genes may be simulta-
neously activated or silenced across tissues given their develop-
mental stage.35 Although such type of surrogate markers are
not necessarily related to a specific disease or phenotype, the
markers may still be tissue specific: the concordant genes
between blood and adipose tissue may not be identical to the
ones between blood and another tissue.

It is well-acknowledged that DNA methylation profile in
blood reflects the leukocyte composition,36 and algorithms
were developed to account for the leukocyte mixture in the
analysis.37 Adipose tissues of different anatomical origins have
different gene expression.38 There is cell mixture even within
adipose tissue, and genes are differentially expressed in differ-
ent adipocytes 39 or within the same cell type.40 A statistical
method has been proposed to adjust for latent classes of DNA
methylation attributable to cell mixture.41 Hence, accounting
for cellular heterogeneity within individual tissues is an impor-
tant future direction for this research. It is plausible that differ-
ential developmental environments may alter the degree of
heterogeneity within tissues across individuals. This difference
could translate to differences in disease susceptibility or poten-
tially even to therapeutic response in diseased tissues. DNA
methylation can provide a window into the components of tis-
sues (e.g. distinct immunophenotypes are known to have spe-
cific differentially methylated regions). This affords the unique
opportunity to interrogate blood to define the profile of
immune cells in any normal or disease individual using DNA
methylation rather than flow cytometry, for example. Cell sort-
ing in solid tissue or finer cellular phenotyping42 will provide
better insight into the nature and importance of individual tis-
sue heterogeneity.

The current work reinforces the fundamental nature of dif-
ferent DNA methylation profiles in different tissues and
emphasizes the critical role of DNA methylation in regulating
gene expression across tissues. We also believe this work high-
lights the limitations of using methylation markers in periph-
eral tissues such as blood to mirror the corresponding profile in
the target tissue. At the same time, the cross-tissue epigenomic
comparison may shed light on the developmental heterogeneity
of individual tissues, providing a novel mechanism for disease
susceptibility. This warrants further study, including assessing
DNA methylation after tissue specific fine-phenotyping,
anatomically, histologically, and temporally.

Methods

Study subjects of the LEAP project

The current study, termed the Longitudinal Effects on Aging
Perinatal (LEAP) Project, was nested within the New England
Family Study (NEFS),43 which comprised 17,921 offspring of
pregnant women in the Collaborative Perinatal Project 44,45

from Providence, Rhode Island and Boston, Massachusetts,
United States, recruited between 1959 and 1974. In the LEAP
study, four hundred Providence-born participants were
enrolled and assessed during 2010-11. Of these, 316 had ade-
quate adipose tissue biopsy performed, 68 refused and 16 had
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inadequate biopsy specimens. Blood and adipose tissue DNA
methylation analyses were performed on a representative sam-
ple of 143 of these 316 participants. The study protocol was
approved by the institutional review boards at Brown Univer-
sity and Memorial Hospital of Rhode Island (#0908000028).

Collection of covariates and tissue samples

Body weight and height measures were obtained using a cali-
brated stadiometer by trained personnel, and converted into
body mass index (kg/m2). Covariates of interest, including age,
race, gender, socioeconomic status, were obtained for all sub-
jects. Due to the small sample size of non-African American
minorities, race was collapsed into dichotomous categories of
white and non-white. DNA was extracted from 143 adipose tis-
sues and the matched 143 blood samples. Whole blood samples
were centrifuged to obtain buffy coat, and subcutaneous adi-
pose tissue samples were collected from the upper outer quad-
rant of the buttock using a 16-gauge needle and disposable
syringe. DNA was extracted from adipose tissue samples or
buffy coat, using the Qiagen DNeasy Blood & Tissue Kit (Qia-
gen, Valencia, CA) and the Zymo Genomic DNA Clean & Con-
centrator Kit, according to the manufacturers’ protocol.

Methylation profiling

DNA was sodium bisulfite-converted using the EZ-96 DNA
Methylation-Direct and EZ DNA Methylation-Direct kits
(Zymo Research, Orange, CA), according to the manufacturer’s
instructions. Blood and adipose tissue samples were randomly
distributed across 18 BeadChips on the plates, and analyzed
using the Infinium HumanMethylation450 BeadChip array
(Illumina, San Diego, CA) at the Genomics Core Facility at the
UCSF Institute for Human Genetics (San Francisco, CA),
according to the Illumina protocols for the Infinium platform.

Background correction and dye bias correction were per-
formed using the methylumi package in R.46 Normalization
was conducted using Beta-Mixture Quantile Dilation (BMIQ)
approach.47 Batch effect was adjusted with linear mixed mod-
els. For each of the CpG sites, average b¡values were calculated
as M 6 MCU C 100ð Þ, where M and U , respectively, are the
signals from the probe corresponding to the methylated and
unmethylated target CpG site. Prior to analyses, probes on sex
chromosomes, not on CpG sites, or CpG sites with single
nucleotide polymorphisms (dbSNP entries within 10 bp of the
CpG cites) were excluded, followed by a further exclusion of
CpG sites with variance of M-values (the logit-transformed val-
ues from b¡values) in 286 samples less than the first quartile
of all variances. After filtering, there were 285,163 CpG sites
included in the analyses.

External validation data of DNA methylation

To validate our finding of methylomic difference between adi-
pose tissue and blood, we also collected data from the public
repository of genomic data, Gene Expression Omnibus (GEO).
The data of Dahlman et al. (GSE58622) included 30 samples of
fat cells collected from 30 post-obese or never-obese women.26

The data of Slieker et al. (GSE48472) contained blood and

subcutaneous fat tissue samples from six cadavers within
12 hours postmortem (mean age 65.5 years) and blood samples
from five healthy volunteers (mean age 28 years).21 In total, we
had 36 subcutaneous adipose tissue or fat cell samples and 11
blood samples with available epigenomic data measured by
Infinium HumanMethylation450 BeadChip array.

External validation data of gene transcriptomics

Fagerberg et al. collected RNA-seq data on tissue samples from
95 human individuals representing 27 tissues in order to deter-
mine tissue specificity of all protein coding genes.27 Due to lack
of blood samples in the study, we used bone marrow samples
as a proxy tissue for blood. We compared the average log-trans-
formed RNA count C1 of concordant and discordant genes
(defined in the following) between bone marrow and adipose
tissues to confirm the findings from our methylomic analyses,
and we also compared between bone marrow and thyroid tissue
as a negative control. There were 4 bone marrow samples, 3
adipose tissue samples, and 4 thyroid samples. Sample mean
was calculated within each tissue type to represent the average
RNA expression of the tissue.

Statistical analyses

We conducted two sets of analyses: one for methylation of
285,163 CpG loci and the other for average methylation of
20,073 genes. Two sets of analyses provided complementary
information. While CpG site-based analyses better reflect the
current practices in conducting EWAS, gene-based analyses
avoid the multiplicity issue within a gene and serve as an
appropriate approach to investigate functional annotation for
genes with tissue-specific methylation profile and to perform
gene ontology analyses. CpG sites from 1500 bps of a transcrip-
tion start site to 30 untranslated region of a gene were mapped
to the gene. Note we did not cover all genes because we filtered
CpG loci with less variability and those on sex chromosomes.
Hierarchical clustering was performed based on Euclidean dis-
tance of methylation levels of 285,163 CpG sites. Epigenome-
wide variations of b-values were studied using principal com-
ponent analysis (PCA).48 Association of the leading principal
component with the tissue type was examined using generalize
estimating equations 49 assuming a constant correlation
between adipose tissue and blood within the same subject and
adjusting for age, gender, race, BMI, cigarette smoking and
socioeconomic index. To ensure robust findings, we conducted
4-fold cross-validation for PCA. The randomly selected 214
training samples were included for PCA, and the loading of the
first principal component (PC) was then used to predict the
first two PCs of the remaining 72 testing samples. The internal
validation process was repeated over four complementary test-
ing sets. For external validation, we performed PCA with all
286 samples and predicted the first two PCs and the tissue type
of 11 blood samples and 36 samples from subcutaneous fat or
fat cells.

Within-subject correlation was calculated for all 143 subjects
using Spearman correlation: the correlation of all 285,163 CpG
site methylation or 20,073 average gene methylation within
each subject, between adipose tissue and blood. Gene-specific
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correlation was calculated for all 20,073 genes with Spearman
correlation: the correlation of 143 methylation values in adi-
pose tissue and the matched 143 blood methylation values for
the same gene. CpG-specific correlation was calculated similar
to the gene-specific correlation. Statistical significance was eval-
uated with P-value and false discovery rate (FDR).50 The associ-
ation of leading principal components with BMI, gender and
race was investigated within the tissue type using least square
estimator adjusting for covariates described above. The associa-
tion of methylation M-values of FASN, HIF3A, and C21orf81
with BMI was analyzed with least square estimator adjusting
for above covariates. Enrichment of gene ontology (GO) 51,52

was examined for (1) discordant genes: the genes with the abso-
lute value of loading for the first PC greater than two times of
the standard deviation, and (2) concordant genes: the genes
with gene-specific correlation greater than 0.5. The reason we
did not define discordant genes based on the low correlation is
that the majority of genes have pretty low correlation (Fig. 3A).
A scatter plot of the loading versus correlation is shown in
Supplementary Fig. 16, and the absolute values of the two have
significant negative correlation, ¡0.076 (P<2.2£10¡6). Further-
more, with the significant discrimination by PCA (Fig. 2), the
discordant genes based on the loading of the first principal com-
ponent should attain better specificity. GO enrichment analysis
was performed using Fisher exact test.53 Statistical analyses
including data preprocessing were performed using R 3.2.0.
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