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Weediness in ephemeral plants is commonly characterized by rapid cycling, prolific all-in flowering, and loss of perenniality.
Many species made transitions to weediness of this sort, which can be advantageous in high-disturbance or human-associated
habitats. The molecular basis of this shift, however, remains mostly mysterious. Here, we use transcriptome sequencing, genome
resequencing scans for selection, and stress tolerance assays to study a weedy population of the otherwise nonweedy Arabidopsis
arenosa, an obligately outbreeding relative of Arabidopsis thaliana. Although weedy A. arenosa is widespread, a single genetic
lineage colonized railways throughout central and northern Europe. We show that railway plants, in contrast to plants from
sheltered outcrops in hill/mountain regions, are rapid cycling, have lost the vernalization requirement, show prolific flowering,
and do not return to vegetative growth. Comparing transcriptomes of railway and mountain plants across time courses with and
without vernalization, we found that railway plants have sharply abrogated vernalization responsiveness and high constitutive
expression of heat- and cold-responsive genes. Railway plants also have strong constitutive heat shock and freezing tolerance
compared with mountain plants, where tolerance must be induced. We found 20 genes with good evidence of selection in the
railway population. One of these, LATE ELONGATED HYPOCOTYL, is known in A. thaliana to regulate many stress-response
genes that we found to be differentially regulated among the distinct habitats. Our data suggest that, beyond life history
regulation, other traits like basal stress tolerance also are associated with the evolution of weediness in A. arenosa.

Life history traits differ between and within plant
species and commonly reflect the requirements of the
habitats in which they are found (Baker, 1974; Weinig
et al., 2003; Grime, 2006). Depending on abiotic and
biotic conditions, a variety of strategies can be favored,
and accordingly, weeds are phenotypically diverse. In
environments that are unpredictable, with frequent
occurrences of stresses like drought, temperature fluc-
tuations, or human-associated perturbations, rapid

cycling and early flowering are common (Hall and
Willis, 2006; Sherrard and Maherali, 2006; Franks et al.,
2007; Wu et al., 2010). Life history adaptations can help
mediate tradeoffs between resource accumulation and
stress avoidance and are important for wild species as
well as for crops (Jung and Müller, 2009). Comparing
results among species, as well as the correlates of these
traits with other fitness-related traits, promises new
insights into the mechanisms of adaptation to unpre-
dictable habitats.

A common phenotype of plants in unpredictable
habitats is early and prolific flowering relative to related
populations in more stable habitats (Baker, 1965;
Grotkopp et al., 2002; Blair and Wolfe, 2004; Burns,
2004; Hall and Willis, 2006; Sherrard and Maherali,
2006; Franks et al., 2007). The complex genetic archi-
tecture of flowering has been well studied in the annual
Arabidopsis thaliana (Andrés and Coupland, 2012),
where independent changes in two genes in particular,
FLOWERING LOCUSC (FLC) and FRIGIDA (FRI), have
been repeatedly found to underlie natural variations
in flowering time and vernalization responsiveness
(Michaels and Amasino, 1999; Johanson et al., 2000;
Le Corre et al., 2002; Gazzani et al., 2003; Lempe et al.,
2005; Shindo et al., 2005; Werner et al., 2005; Brachi et al.,
2010; Méndez-Vigo et al., 2011, 2016; Salomé et al., 2011;
Song et al., 2013). The same genes also are important in
the closely related Arabidopsis lyrata (Kuittinen et al., 2008)
and in other species in the Brassicaceae (Slotte et al., 2009;
Wang et al., 2009; Guo et al., 2012). Active FRI alleles
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enhance the expression of FLC, which in turn represses
floral activators including FLOWERING LOCUS T and
SUPPRESSOROFOVEREXPRESSIONOFCONSTANS1
(SOC1; Michaels and Amasino, 1999; Searle et al., 2006).
Arabidopsis thaliana accessions with functional alleles of
both FRI and FLC are late flowering in the laboratory, but
prolonged exposure to cold (vernalization) epigenetically
represses FLC expression, allowing flowering upon the
return to warm temperatures (Song et al., 2013). Many
independent disruptions of FRI or FLC have been iden-
tified in A. thaliana (Johanson et al., 2000; Le Corre et al.,
2002;Gazzani et al., 2003; Shindo et al., 2005;Werner et al.,
2005; Méndez-Vigo et al., 2011) that result in reduced or
abrogated FLC expression, leading to earlier flowering
and reduced need for vernalization. However, nonfunc-
tional FRI alleles are associated with negative pleiotropic
effects on branching and fitness, likely limiting the
adaptive potential of the FRI locus (Scarcelli et al., 2007).
Natural variation in FLC and FRI also affects other im-
portant life history traits, including seed germination
(Chiang et al., 2009), water use efficiency,which is amajor
dehydration avoidance mechanism (McKay et al., 2003),
and even flower tolerance to heat shocks (Bac-Molenaar
et al., 2015). FLC also plays a role in more long-lived
plants. In the perennial Arabis alpina, an ortholog of FLC,
PERPETUAL FLOWERING1 (PEP1), contributes to late
flowering and the vernalization requirement as it does in
A. thaliana but it also promotes a return to vegetative
development after each flowering episode, which is an
important feature of perennial life cycles (Wang et al.,
2009). Variation in PEP1 activity is associatedwith distinct
life histories in different A. alpina accessions (Albani et al.,
2012).

Arabidopsis arenosa is a close relative ofA. thaliana and
A. lyrata (O’Kane, 1997; Clauss and Koch, 2006). In
contrast to A. thaliana A. arenosa is a perennial obligate
outcrosser with high genetic diversity and both diploid
and tetraploid variants (Hollister et al., 2012; Schmickl
et al., 2012). The autotetraploid A. arenosa arose from a
single diploid population closely related to populations
found today in the Carpathian Mountains of Slovakia
around 19,000 generations ago; by 15,000 generations
ago, autotetraploid lineages had begun radiating across
the landscape into the distinct types found in diverse
habitats across Europe today (Arnold et al., 2015).
Distinct genetic lineages correlate with geography and
habitat. Rocky outcrops are generally populated by a
perennial mountain form, while ruderal settings, espe-
cially railways, are colonized by an annual, flatland form
(Scholz, 1962). Although themountain form comprises at
least four distinct genetic lineages associated with geog-
raphy, we found previously that railway populations
from geographically distant locations are extremely
closely related, suggesting that this habitat was colonized
just once by a single genetic lineage that subsequently
spread along this habitat (Arnold et al., 2015).

Here, we study representative populations of the
perennial mountain form and the flatland form of
A. arenosa. Specifically, we use phenotypic, genomic,
and transcriptomic experiments to assess flowering

time, vernalization responsiveness, and stress resilience.
We found that populations from ruderal sites are rapid
cycling, do not require vernalization, and do not resume
vegetative growth after a single flowering episode, while
mountain populations remain vernalization responsive.
We compared transcriptomes of early-flowering (rail-
way) and late-flowering (mountain) plants across time
series that were either vernalized or not. We found that
rapid-cycling plants from railway populations have very
low FLC expression and a sharply abrogated vernaliza-
tion response, while plants from a mountain population
show transient repression of FLC by vernalization similar
to what was described in A. alpina (Wang et al., 2009;
Albani et al., 2012). We also found constitutive differ-
ences in the expression of cold and heat stress-response
genes. Consistentwith the expression data,we found that
railway plants had higher basal heat and cold stress tol-
erance than mountain plants. A genome-resequencing
scan for divergence identified 20 loci with evidence of
positive selection in the weedy railway lineage. Among
these is the circadian clock regulator LATE ELONGATED
HYPOCOTYL (LHY), which regulates many of the cold-
and heat-responsive genes we found to be differentially
expressed in these twoA. arenosa types. Our data suggest
that, in addition to flowering behavior, traits like flow-
ering induction andheat and cold stress tolerance that are
environmentally inducible in mountain plants became
constitutive in the weedy railway plants.

RESULTS

Flowering Time and Vernalization Response in A. arenosa

We grew plants from seeds sampled from five moun-
tain and four railway populations of A. arenosa in con-
trolled conditions from seeds collected from wild plants
(Fig. 1A). We measured flowering time (as days from
germination to first open flower) for plants grown with
or without an 8-week vernalization period that consisted
of a cold treatment (4°C) under short-day conditions (8 h
of light instead of 16 h; see “Materials andMethods”). All
mountain populations flowered significantly later than
all railway populations when unvernalized (Fig. 1B), but
all populations flowered similarly when vernalized. This
shows that all sampled railway populations are rapid
cycling and have lost vernalization responses, while all
mountain populations retain them and flower late
without cold treatments. We previously showed that the
railway plants are all extremely closely related, suggest-
ing a single colonization event that is consistent with the
genetic similarity of the different railway populations
(Arnold et al., 2015).

We selected a single railway population (TBG) and a
single mountain population (KA) as representative of
the two types to analyze in more depth the molecular
basis of their phenotypic differences. TBG is from a
railway at Triberg railway station in southwest Ger-
many. KA is from a limestone outcrop on Kasparstein
Mountain, near Loschental, Austria (Fig. 1A). These
populations are members of genetically distinct
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mountain and railway lineages with no evidence of
recent gene flow between them (Arnold et al., 2015).
Among unvernalized plants, those from KA flowered
much later than those from theTBG (WilcoxonP, 10e26):
time to open flower averaged 56 d for unvernalized TBG
plants, while 67% of KA plants had not yet flowered by
200 d, at which point we ended the experiment (Fig. 1B).
There was no significant difference in flowering times of
cold-treated (vernalized) plants from the two populations
(Fig. 1B; Wilcoxon P. 0.08). We confirmed the similarity
of flowering behavior of the two vernalized populations
using aMann-WhitneyU test (P. 0.6). Vernalization had
no significant effect on the mean flowering time of
TBG, although there was a reduction in the SD from
12 d (nonvernalized) to 4 d (vernalized), implying that
TBG plants, although lacking a true vernalization re-
sponse, still show a residual response to prolonged cold
treatment. The difference inflowering behavior persists in
subsequent generations in the laboratory, showing that
this is not merely a maternal environmental effect result-
ing from differences in conditions in wild populations
(data not shown).
After flowering, vernalized KA plants reverted to

vegetative growth while TBG flowered continuously
until senescence (Fig. 1C), paralleling the distinction

between perpetual and episodic flowering described
previously inA. alpina (Wang et al., 2009). Furthermore,
from our initial phenotyping of 13 KA plants and 20
TBG plants, it was also clear that TBG plants grewmore
rosette inflorescence branches (RB in Fig. 1D; average
rosette inflorescences longer then 5 cm at 20 d after
flowering = 14.35) compared with KA, which usually
had none or only one (average rosette branches longer
then 5 cm at 20 d after flowering = 0.54; Student’s t test
P = 83 1027). The number of inflorescence branches (PB
in Fig. 1D) also differs similarly dramatically (0.23
branches in KA versus 18.15 branches in TBG; P = 1.73
1029). Thus, TBG plants show common weedy pheno-
typic characteristics, including rapid cycling and bushy
and abundant inflorescence growth (Baker, 1965;
Grotkopp et al., 2002; Blair and Wolfe, 2004; Burns,
2004; Hall and Willis, 2006).

Abrogated Vernalization Responsiveness and Loss of FLC
Expression in a Railway Accession

To compare the vernalization responses of KA and
TBG, we analyzed the transcriptomes of plants from
these two populations by transcriptome sequencing
(RNA-seq) at four time points (3, 4, 9, and 13 weeks)

Figure 1. Phenotypes of railway and mountain
A. arenosa plants. A, Map of central Europe with
locations of A. arenosa populations sampled from
railway (yellow) andmountain (green) sites. TBG5
Triberg, Germany; RT 5 Upper Danube Valley,
Germany; BGS5Berchtesgaden,Germany; SZB5
Salzburg, Austria; HO 5 Hochlantsch, Austria;
KA5 Kasparstein, Austria; TR5 Trencin, Slovakia;
SP 5 Spisska, Slovakia. B, Box plots showing
flowering phenotypes of plants grown from seeds
collected from railway and mountain populations.
Flowering time was quantified as the time from
germination to the first open flower for vernalized
(left) and nonvernalized (right) plants from both
accessions. Plants that did not flower by the end of
the experiment (200 d)were assigned 200 d as their
flowering date. C, Images of two representative
vernalized individuals taken at 38 weeks. TBG
plants flower continuously, while KA plants revert
to vegetative growth after an episode of flowering.
The development of secondary rosettes along
branched stems of KA plants can then be observed.
D, Representative greenhouse-grown A. arenosa
indicating scored phenotypes of primary inflores-
cence branches (PB) and rosette branches (RB). PI
indicates the primary inflorescence.

Plant Physiol. Vol. 171, 2016 439

The Evolution of Weediness in Arabidopsis arenosa



with or without a 6-week vernalization period at weeks
4 to 10 (see “Materials and Methods”). We quantified
expression by read depth after aligning to the A. lyrata
reference genome (Hu et al., 2011), which includes
32,670 annotated genes (see “Materials and Methods”).
We first examined the expression of 151 A. lyrata ho-
mologs of 174 genes associated with flowering regula-
tion in A. thaliana (Fornara et al., 2010). Among these,
FLC was the most differentially expressed between the
two vernalized time series of KA and TBG, with virtu-
ally undetectable expression in TBG. FLC showed ini-
tially strong expression in KA followed by a clear
suppression by vernalization but a subsequent return
to prevernalization levels after plants were returned
to warmer conditions. We confirmed this expression
profile by quantitative reverse transcription-PCRwith a
finer sampling resolution (Fig. 2A).

In the A. arenosa genome, FLC is present in two full-
length copies and one truncated duplicate copy (Nah
and Chen, 2010), but only one copy was annotated in
the version of theA. lyrata genome we used for aligning
RNA-seq reads (scaffold 6: 4,040,170–4,045,798). Since
finalizing this work, a newer annotation has been
published (Rawat et al., 2015) that recognizes two FLC
genes in A. lyrata. Because of the very close similarity
between the two genes, we could not use our coverage
estimates from read alignments to A. lyrata or to the A.
arenosa bacterial artificial chromosome (BAC) to dif-
ferentiate the expression of the two copies. Thus, to
estimate relative expression levels, we genotyped our
read alignments for polymorphisms that distinguish
the two full-length FLC copies. We found a total of nine
single-nucleotide polymorphisms that differ between
the paralogs in our transcriptome samples (Fig. 2B).
Seven of these single-nucleotide polymorphisms had
been identified previously in a BAC sequence of the
A. arenosa FLC locus from the Care-1 strain (Nah and
Chen, 2010). Only three were among the 16 polymor-
phisms differentiating the two A. lyrata paralogs. At all
nine positions, the nucleotides characteristic of AaFLC2
were at low frequency in our transcriptome alignments
relative to those characteristic of AaFLC1, indicating
low expression of AaFLC2 relative to AaFLC1.

To more finely quantify the differential expression of
AaFLC1 andAaFLC2, we mapped our RNA-seq data on
the BAC sequence and followed a previously described
method for the detection of allelic expression differ-
ences (Perez et al., 2015), estimating the expression of
the two transcripts with MMSEQ (Turro et al., 2011).
This approach confirmed the differential expression of
AaFLC1 and AaFLC2 in the KA samples (where suffi-
cient levels of expression were detected). In the two
time series of this population,AaFLC1 contributed to an
average of 77% of the total AaFLC expression. The rel-
ative ratios of the duplicates remain consistent in our
time series, indicating that, although AaFLC1 domi-
nates in terms of total expression, both paralogs re-
spond similarly to vernalization in KA (Fig. 2C).

As expected, positive regulators of flowering showed
opposite trends to the floral repressor FLC, including

SOC1, SQUAMOSA PROMOTER-BINDING PROTEIN-
LIKE15 (SPL15), and SPL4, which were all expressed
throughout the time course in TBG but only after vernal-
ization in KA. The expression profile of SOC1, a flowering
promoter, was especially strongly anticorrelatedwith FLC
expression (Supplemental Fig. S1; Pearson correlation,
20.87). VERNALIZATION INSENSITIVE3 (VIN3), which
encodes a component of the POLYCOMB REPRESSIVE
COMPLEX2 responsible for establishing the repression of
FLCduring vernalization, is up-regulated by vernalization

Figure 2. Differential FLC expression and responsiveness to vernaliza-
tion. A, Quantitative reverse transcription-PCR of FLC expression relative
to ACTIN (ACT) in vernalized KA and TBG plants. While undetectable in
TBG, FLC is suppressed by vernalization in KA but comes back to
unvernalized levels after plants are returned to warm conditions. B,
Single-nucleotide differences between the coding sequences of the two
AaFLC1 and AaFLC2 paralogs in our sample. Gray boxes are exons.
Yellow indicates differences between AaFLC1 andAaFLC2 present in our
samples as well as the published BAC sequence (Nah and Chen, 2010).
Black indicates differences between AaFLC1 and AaFLC2 in the BAC not
found in our accessions. Red indicates differences between AaFLC1 and
AaFLC2 in our samples but not present in the BAC. Blue indicates dif-
ferences between AaFLC1 and AaFLC2 where both paralogs differ from
the BAC. C, Expression levels of AaFLC1 as a proportion of total AaFLC
locus expression across the vernalized (V) and nonvernalized (NV) time
series, showing that the relative expression of the two FLC copies does not
change by treatment or through the time series.
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in A. thaliana (Sung and Amasino, 2004). VIN3 is similarly
up-regulated in both TBG and KA (Supplemental Fig. S1),
but the magnitude of the response is lower in TBG than in
KA, consistent with the hypothesis that TBG maintains
some vernalization responsiveness, albeit in a strongly
abrogated form, and that the cause of this abrogationmay
lie upstream of VIN3.

Vernalization-Response Differences

We next set out to characterize the vernalization-
responsive subset of genes within the entire tran-
scriptomes of KA and TBG with two goals: (1) to
understand the vernalization response in A. arenosa, and
(2) to compare the responsiveness of the two accessions
qualitatively and quantitatively. Within each genotype,
we identified vernalization-response genes as the inter-
section of genes that differ between growth conditions
(vernalized versus nonvernalized) and those that change
expression through the time course within each of the
conditions. We used a nonparametric ranking test (see
“Materials and Methods”) to identify significantly dif-
ferentially expressed vernalization-responsive genes. We
considered genes to be vernalization responsive if they
showed a differential expression during the vernalized
time series and had a significant growth condition in-
teraction. This category includes genes that are (Fig. 3A,
a) or are not (Fig. 3A, b) differentially expressed at dif-
ferent time points in the nonvernalized time series.
Using our criteria, we identified 1,088 genes as ver-

nalization responsive in KA, almost 6 times more than
the 187 found in TBG (Supplemental Table S1). Only a
small percentage of transcripts (representing 53 genes)
are vernalization responsive in both accessions (Fig.
3B), but when we compared expression ratios between
vernalized and nonvernalized time points in KA and
TBG, 60% of these genes showed a significant correla-
tion (r2 = 0.83) between the two accessions. The slope of
the log regression was significantly higher than 1 (1.62),
suggesting that TBG still has some vernalization re-
sponsiveness, but the magnitude of the response is
strongly dampened relative to that in KA (Fig. 3C). This
reduced responsiveness likely explains the lower
number of genes passing our thresholds of detection for
vernalization responsiveness in TBG.
Gene Ontology (GO) analysis of KA vernalization-

responsive genes showed a very strong representation
of genes implicated in light sensitivity and abiotic stress
responses. The light-related GO terms included re-
sponse to UV light (GO:0009411; P = 0.002), response to
light stimulus (GO:0009416; P = 0.007), and long-day
photoperiod flowering (GO:0048574; P = 2 3 1025);
these were equally divided between the two categories
(a and b) of the KA vernalization response (Fig. 3B). On
the other hand, the cold stress terms, including cold
response (GO:0009409; P = 13 1028), water deprivation
response (GO:0009414; P = 0.03), salt stress response
(GO:0009651; P = 5 3 1028), and hyperosmotic stress
response (GO:0006972; P = 6 3 1025), were mainly
present in the b category, meaning that their expression

shifts over the vernalized time course but not over the
nonvernalized time course (Fig. 3B), suggesting that they
might be coregulated with or by the vernalization re-
sponse. In particular, the cold acclimation term was only
enriched in the b category (GO:0009631; P = 0.003) and
included well-known cold-regulated genes like COLD-
REGULATED47 (COR47), EARLY RESPONSIVE TO
DEHYDRATION, LOW TEMPERATURE-INDUCED,
and KINASE1 (Maruyama et al., 2004). The b category
also included other known components of the cold re-
sponse of A. thaliana such as COR15A, COR15B, COR78,
and PSEUDO-RESPONSE REGULATOR9. These genes
have been shown to confer different degrees of freezing
tolerance (Artus et al., 1996; Jaglo-Ottosen et al., 1998;
Steponkus et al., 1998) aswell as acclimation, the capacity
to increase freezing tolerance after exposure to non-
freezing cold temperatures (Thomashow, 1999).

In our two A. arenosa populations, the magnitude of
the response of most of the vernalization genes is am-
plified in KA relative to TBG, but the nonvernalized
basal levels of expression of stress-responsive genes are
higher in TBG (slope of 0.79 in nonvernalized expres-
sion levels, r2 = 0.75; Fig. 4A). The core cold-responsive
genes highlighted previously are outliers from this
correlation, with an even stronger tendency to be highly
expressed in TBG. This relationship is inverted by cold
treatment, due to the stronger magnitude of the KA
response to vernalization treatment (slope of 1.2 in
vernalized expression levels, r2 = 0.95; Fig. 4B).

The expression results led us to hypothesize that
there might be a difference in the constitutive and ac-
quired freezing tolerance of KA and TBG. To test this,
we quantified the freezing tolerance of these two ac-
cessions by measuring electrolyte leakage from de-
tached leaves of vernalized and nonvernalized plants
exposed to freezing (Sukumuran and Weiser, 1972).
Leaves from nonvernalized KA plants showed a very
high electrolyte leakage at 26°C (72%), while TBG
leaves were significantly lower, at 33% (one-tailed
Student’s t test P , 0.005). Both accessions showed
significant reductions of leakage after 1 week of ver-
nalization, to 18% and 16% for KA and TBG, respec-
tively (Fig. 4C). This suggests that, while tolerance is
constitutively higher in TBG than in KA, after prior
exposure to 4°C, KA can achieve levels of freezing tol-
erance comparable to TBG. In addition, the tolerance of
TBG also increases further with cold exposure, again
consistent with the hypothesis that it retains some
ability to respond to cold.

Global TBG-KA Expression Differences

We next compared the overall transcriptomes of the
KA and TBG time series for both the nonvernalized and
vernalized samples (Fig. 5). For each comparison, we
obtained a q value (false discovery rate corrected; see
“Materials and Methods”) for every gene annotated in
the A. lyrata reference genome (Hu et al., 2011). Out of
the 326 genes that constitute the 1% most strongly dif-
ferentially expressed genes between TBG and KA, 35
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have no orthologs in A. thaliana (Fig. 5A; Supplemental
Table S2), even though orthologless genes more fre-
quently display null mean and variance of expression
levels than genes with orthologs (Supplemental Fig.
S2). Over the whole genome, the expression difference
of FLC ranked third in comparisons of TBG and KA in
both vernalized and unvernalized time series, making it
the most differentially expressed gene between these
accessions overall. The only genes more highly ranked
for differential expression between TBG and KA in the
nonvernalized series are ALPHA TUBULIN1, a pollen
specific a-tubulin gene (Kim and An, 1992), and BTB
AND TAZ DOMAIN PROTEIN4. In the vernalized se-
ries, the top two differentially expressed genes are
At4g10320 (which encodes a tRNA synthetase) and
g932613 (which has no A. thaliana homolog).

We next asked if there are any GO terms for biolog-
ical processes enriched in the 1% top differentially
expressed genes between KA and TBG in both time
series. The significantly overrepresented categories in-
clude several stimulus-response gene categories, in-
cluding heat response (GO:0009408; P = 0.023), protein
unfolding (GO:0043335;P= 0.015), Golgi vesicle transport
(GO:0048193; P = 0.02), detection of visible light
(GO:0009584; P = 0.001), and DNA repair (GO:0006281;
P = 0.044). Overall, these categories point to a generalized
elevation of stress-associated genes in TBG. The GO cat-
egory detection of visible light (GO:0009584) has the most
significant P value in our analysis. Among differentially
expressed genes in this category are PHYTOCHROME
C (PHYC) and PHYD, two of the four phytochromes an-
notated in theA. lyrata genome. Both are involved in light
signaling (Hu et al., 2013) and are expressed at lower
levels in TBG. Mutation of PHYC leads to early flowering
inA. thaliana (Monte et al., 2003), while polymorphisms in
PHYC are thought to be involved in climatic adaptation
(Balasubramanian et al., 2006; Samis et al., 2008; Méndez-
Vigo et al., 2011). PALE CRESS, which in A. thaliana is
important in chloroplast development and regulating
levels of carotenoids and chlorophyll (Reiter et al., 1994), is
more highly expressed inKA relative to TBG. Carotenoids
are known to be important in the chloroplast capacity
to respond to high-light stress (Havaux, 1998). In parallel,
several genes implicated in DNA repair and recombina-
tion also show significant differential expression be-
tween KA and TBG in both time series, including DNA
LIGASE6, MMS ZWEI HOMOLOG2, AT3G07930,
REPLICATIONPROTEINA1B (RPA1B),RECQHELICASE
SIM (RECQSIM), and Y-FAMILY DNA POLYMERASE H
(POLH). All but RECQSIM have lower expression in TBG

Figure 3. Vernalization response differences between KA and TBG
mainly due to a reduced magnitude of response in TBG. A, Venn dia-
gram representing the seven categories of differential responses for each
accession. The top circle (dark gray) includes genes with significant
differential expression when comparing the vernalized and unvernal-
ized time series. The bottom left circle contains genes with significant
differential expression among time points in the unvernalized time se-
ries. The bottom right circle contains genes with significantly different
expression among time points in the vernalized time series. Cartoon
curves show schematic vernalized (black) and unvernalized (gray)
expression profiles of genes found in each category. Vernalization-
responsive genes are found for each accession at the intersection be-
tween the top and bottom right circles. Within this pattern, a represents
genes that change across the time series in both vernalized and
unvernalized plants, but in distinctways,while b includes genes that show
changes in the vernalized time series but not in the unvernalized time
series. B, Decomposition of each vernalization response showing which
genes change in both accessions (yellow), which are accession specific
(blue), and how they are partitioned between a- and b-category patterns
(camembert diagrams). Almost 6 times more genes are identified as

vernalization responsive in KA compared with TBG. C, Comparison of
vernalization responsiveness in KAversus TBG. The responsiveness of a
gene is calculated for each accession as the log2 ratio of vernalized over
nonvernalized expression levels. Only ratios significantly different from
1 (log2 ratios different from 0) in both accessions are displayed. Several
genes discussed here are highlighted. Colors signify plot density. The
dotted line indicates the linear regression fit line based on n = 608 data
points. The slope and r2 values for the fit are given on the chart.
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than in KA. POLH and RPA1B, in particular, are known
to be involved in the DNA repair response to UV light
damage (Ishibashi et al., 2005; Anderson et al., 2008).

A number of heat-responsive proteins are differentially
expressed in TBG and KA, including HEAT SHOCK
FACTOR1 (HSF1) and HEAT SHOCK PROTEIN101
(HSP101), which are both expressed at higher levels in
TBG, and HSFA1D, which is expressed at lower levels in
TBG than in KA (Fig. 5B). HSF1 and HSFA1D are mem-
bers of a four-gene family of classAheat shock factors that
are regulators of the heat shock response and other abiotic
stress responses (Liu et al., 2011; Yoshida et al., 2011).
Overexpression ofHSF1 inA. thaliana induces tolerance to
heat shocks (Qian et al., 2014), but its absence does not
completely impede acquired thermotolerance (Liu and
Charng, 2012). HSP101 also plays a role in acquired ther-
motolerance (Gurley, 2000; Hong and Vierling, 2000,
2001; Queitsch et al., 2000). Additional modulators
of thermotolerance, FK506-BINDING PROTEIN62,
GALACTINOL SYNTHASE1 (GOLS1), and VPS53
(Lobstein et al., 2004; Lee et al., 2006; Wang et al., 2011),
are also among our top differentially expressed genes.

The generally high constitutive expression of heat-
responsive genes in TBG led us to hypothesize that the
heat tolerance of TBG might be elevated relative to KA.
To test this, we exposed 5-d-old KA and TBG seedlings
to a 45°C heat shock for 1 h, with and without an ac-
climation treatment at 37°C for 3 h (see “Materials and
Methods”), which allows us to assay basal and acquired
tolerance, respectively. After a 5-d recovery period at
20°C, we screened seedlings for partially or totally
bleached cotyledons. After heat shock without prior
acclimation, fewer than 20% of TBG seedlings showed
signs of bleaching after 5 d, while more than 95% of KA
seedlings were partially or entirely bleached (Fig. 6).
When acclimated at 37°C 2 d before heat shock, both
lines performed similarly with little or no bleaching.
This fits with constitutive differences in the expression
of heat response genes between KA and TBG associated
with higher basal tolerance to heat shock by the railway
line, while KA retains a capacity for acquired tolerance.

Evidence of Selection in the Railway Population

We next looked for evidence of genetic differentiation
that might be responsible for the abrogation of the ver-
nalization response and/or constitutive induction of the
stress responses in TBG relative to KA. To do so, we first
complemented our previously generated genome se-
quence data for A. arenosa (Hollister et al., 2012) by se-
quencing a total of eight KA and seven TBG individuals,
which samples 32 and 28 copies of each chromosome,
respectively. To identify candidate genomic regions
showing habitat-associated genetic differentiation, we
used FST (a measure of differentiation; Weir, 1990), which
is generally low among tetraploid A. arenosa populations
(0.047–0.063; Hollister et al., 2012), as well as Fay and
Wu’sH, a statistic sensitive to an excess of high-frequency
variants compared with neutral expectations (Fay and
Wu, 2000).

Figure 4. Expression of vernalization-responsive genes in KA versus TBG.
A, Expression levels of vernalization-responsive genes in unvernalized KA
plotted against their levels in unvernalized TBG. The slope of the linear
regression (0.79with r2 = 0.75) indicates that vernalization-responsive genes
have a higher expression in TBG in unvernalized plants. Known cold-
responsivegenesarehighlighted in red, and inparticular,COR15A,COR15B,
COR47, and RD29A show even stronger bias toward higher constitutive
expression in TBG. B, Expression levels of vernalization-responsive genes
in vernalized KAversus vernalized TBG.Due to the stronger vernalization
response in KA, the relationship is inversed comparedwith A (slope of 1.2
with r2 = 0.95). C, Electrolyte leakage measured after freezing at26˚C of
leaves from 7-week-old KA and TBGplants vernalized for 1week (V; dark
blue bars) or not vernalized (NV; light blue bars). Two asterisks indicate
significant differences of vernalized KA and nonvernalized TBG compared
with the high leakage of unvernalized KA plants (Student’s t test P, 1%).
One asterisk denotes a significant difference of vernalized TBG from the
controlled leakage of unvernalized TBG (Student’s t test P , 5%).
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We identified 20 genes that showed evidence of
strong differentiation between TBG and KA (Table I).
With respect to the expression differences in cold and
heat responses, one candidate stood out: LHY, which
plays a central role in the regulation of the plant circa-
dian clock (Alabadí et al., 2001) but is also known to
broadly affect downstream cold-response genes (Vogel
et al., 2005; Bieniawska et al., 2008). LHY is an outlier for
Fay and Wu’s H in TBG but not in KA; nucleotide di-
versity measured by the number of pairwise differences
is lower in TBG than in KA (Supplemental Fig. S3A),
and 22 derived polymorphisms have significantly
higher frequencies in TBG than in KA (average 82%
versus 37%) in a region concentrated around exons 6

and 7 (Supplemental Fig. S3B). These patterns are
consistent with the hypothesis that TBG experienced
positive selection on LHY. Twenty of these polymor-
phisms fall within the coding sequence of LHY, and 14
are nonsynonymous. These 14 polymorphisms are all
distributed along exons 6 and 7, with a dense cluster
positioned at the beginning of exon 7 (Supplemental
Fig. S3C). Of these 14 polymorphisms, two induce a
strong change of hydrophobicity of the amino acids
they encode (acidic Glu versus hydrophobic Gly) and
one induces a charge change (Glu versus basic Lys;
Supplemental Fig. S3C).

To determine whether the amino acid changes in
TBG all lie on the same haplotype, we first cloned and
sequenced a fosmid of the LHY locus from a TBG in-
dividual. The fosmid clone carried the derived alleles at
all 22 positions, showing that the derived polymor-
phisms are all found together on a single haplotype that
seems to have been the target of selection in TBG. We
then cloned and sequenced additional PCR products
from another TBG plant and found the same to be true
for the exon 6/7 region in this individual as well. Since
the derived polymorphismswere all present also in KA,
albeit at low frequency, we asked if they were also all
found on a single haplotype in KA identical to the
haplotype found in KA.We cloned and sequenced PCR
products from the exon 6/7 region and confirmed, first,
that the derived polymorphisms were rare in KA but,
also, that no KA haplotype within our sampling had all
of the derived polymorphisms together. The rare de-
rived polymorphisms in KA are in blocks of up to 18 of
the 22 derived polymorphisms (Supplemental Fig. S4).
In each case, a single recombination event between two
haplotypes would suffice to toggle between the haplo-
type found in TBG and the rare haplotypes present
in KA.

Figure 5. Overall transcriptome differential ex-
pression between KA and TBG. A, Genome-wide
distribution of q values comparing KA and TBG
nonvernalized (NV; x axis) and vernalized (V;
y axis) time series. FLC is highlighted, as it is ranked
third in both comparisons, whichmakes it themost
differentiated expression pattern overall. The top
1% (326 genes) overall (sum of both q values) are
colored in red if a homolog is known in A. thaliana
and in black if not. Yellow dots represent genes
with low expression across all time points, geno-
types, and conditions and, therefore, excluded
from further consideration in the top 1% subset. B,
Expression heat map of genes that are both within
the 1% most differentiated pattern and associ-
ated with the GO category response to stimulus
(GO:0050896). For each gene, the mean expres-
sion of both vernalized and nonvernalized time
series is given for KA and TBG. Expression is given
in normalized gene counts.

Figure 6. Constitutive heat shock tolerance in railway plants. The per-
centage of seedlings exhibiting partial or total bleaching of their coty-
ledons and leaves after heat shock treatment is shown. H indicates
healthy after treatment (green), and B indicates bleached after treatment
(orange). Acclimated seedlings were subjected to a 3-h 37˚C pretreat-
ment 2 d prior to a 1-h heat shock at 45˚C, while nonacclimated
seedlings were incubated directly for 1 h at 45˚C. Bleaching was often
nonlethal even for KA plants.
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DISCUSSION

Here, we investigated the molecular basis of pheno-
typic differences between two A. arenosa populations,
one of which has weedy traits associated with the col-
onization of railways in flatland Europe. The ancestral
form usually inhabits shaded sites on hills or moun-
tains, often in forests. These two distinct types corre-
spond to a previously recognized distinction between a
flatland and a mountain type within A. arenosa (Scholz,
1962). We previously showed that all railway plants we
have sampled are members of a single genetically dis-
tinct lineage within tetraploid A. arenosa that diverged
from mountain lineages fewer than 15,000 generations
ago (Arnold et al., 2015). This suggests that the weedy
phenotype of railway plants evolved once within
A. arenosa, followed by the spread of this lineage
throughout flatland Europe. We show here that the
weedy phenotype of A. arenosa includes rapid cycling,
abundant inflorescence growth, loss of the vernaliza-
tion requirement, loss of other traits associated with
perenniality, and constitutive stress tolerance. These are
hallmarks of an all-in phenotype commonly observed
in weedy colonizers (Baker, 1965; Grotkopp et al., 2002;
Blair and Wolfe, 2004; Burns, 2004; Hall and Willis,
2006). The phenotypes observed in weedy A. arenosa
likely reflect that railway sites are sunnier and more
exposed to other abiotic stresses, including more rapid
temperature fluctuations than would generally be ex-
perienced in the usually forested outcrop sites where
most other A. arenosa populations are found. Although
these types of adaptations are not uncommon for plants
found in unpredictable and often human-associated
habitats, their molecular basis has remained largely
unknown.
Using transcriptome and phenotypic analyses, we

found evidence that a major feature of the colonization
of ruderal railway sites in A. arenosa is that responses to

heat and cold that are inducible in mountain accessions
became constitutive in railway accessions. These fea-
tures include reproductive initiation, heat shock resis-
tance, and freezing tolerance. Railway plants also
exhibit perpetual flowering and are heavily branched,
while mountain plants flower more modestly and
return to vegetative growth after flowering, paralleling
a distinction described previously in A. alpina of epi-
sodic versus perpetual flowering (Wang et al., 2009).
This fits with the description of mountain accessions as
perennial and ruderal railway accessions as rapid-
cycling annuals, suggesting that the loss of perennial
life history traits also accompanied the transition to
weediness in A. arenosa.

One of the most differentially expressed genes when
comparing railway and mountain plants was FLC,
which is almost undetectable at any time point in the
rapid-cycling railway plants. This gene has been iden-
tified frequently as a cause for independent transitions
to rapid cycling and loss of vernalization sensitivity in
A. thaliana (Méndez-Vigo et al., 2011; Guo et al., 2012).
In A. alpina, an ortholog of FLC, PEP1, has been linked
to a switch between late-flowering perennial life habits
and rapid and perpetual flowering (Wang et al., 2009;
Albani et al., 2012), but whether this FLC homolog is
causal in A. arenosa remains to be tested. The low ex-
pression of FLC in the railway form, or its down-
regulation in the mountain form upon vernalization,
is strongly correlated with an up-regulation of floral
promoters, including SOC1. This is also consistent with
the known repression exerted by the FLC-SVP complex
on SOC1 in A. thaliana (Michaels and Amasino, 2001; Li
et al., 2008). Similarly, SPL transcription factors, which
redundantly promote both vegetative phase change
and flowering in A. thaliana (Schwarz et al., 2008; Wang
et al., 2008), are constitutively expressed in railway
plants and are initially absent but up-regulated during
the vernalization period in mountain plants. Thus, in
general, floral promoters are constitutively expressed in
the railway accession and induced by vernalization in the
mountain form, where their expression is anticorrelated
with FLC expression. This suggests that the vernalization
and flowering responses in A. arenosa, as well as the im-
plication of FLC in life history changes, are consistent
with findings in A. thaliana and related species.

In plants from the KA mountain site, FLC is initially
expressed at very high levels and rapidly repressed
during exposure to prolonged cold, just as it is in
A. thaliana (Sung and Amasino, 2004; Coustham et al.,
2012). However, as the plants begin to flower after a
return to warm conditions, FLC expression returns to
prevernalization levels within about 3 weeks. This
suggests a mechanism similar to what is found in
A. alpina, where meristems switch from vegetative to
reproductive fate during vernalization, and any meri-
stem arising during or after vernalization remains vege-
tative, leading to episodic flowering cycles characteristic
of perennials (Wang et al., 2009). This cyclical FLC ex-
pression could explain the formation of secondary ro-
settes as branches frombasal rosettes inA. arenosa (Fig. 1).

Table I. List of 1% genomic outliers for FST and Fay and Wu’s H

TAIR Identifier Common Name

AT3G03510
AT3G56670
AT1G01060 LHY
AT1G08135 AtCHX6B
AT1G48090
AT1G72300 PSY1R
AT1G78770 APC6
AT3G14980 IDM1
AT2G17140
AT2G31260 APG9
AT2G41700 ABCA1
AT3G56900
AT5G10560
AT5G21160 AtLARP1a
AT4G32410 ANY1
AT4G25970 PSD3
AT2G24680
AT3G20660 AtOCT4
AT2G15620 AtHNIR
AT3G57590

Plant Physiol. Vol. 171, 2016 445

The Evolution of Weediness in Arabidopsis arenosa



We also observed this phenotype in diploid A. arenosa,
suggesting that it is ancestral (data not shown). Paral-
leling phenotypes reported in A. alpina (Albani et al.,
2012), these secondary rosettes require an additional
vernalization treatment to flower. These secondary ro-
settes can form roots and allow the plants to make use of
vegetative reproduction. In A. alpina, there are two PEP1
transcripts, and these show different expression patterns
thought to be associated with the perennial life cycle of
this species (Albani et al., 2012). In A. arenosa, there are
also two full-length FLC genes (Nah andChen, 2010), but
we detected no significant difference in the response of
the two paralogs to vernalization:AaFLC1was expressed
at higher levels than AaFLC2, but this difference remains
consistent over our time course.

From our transcriptome analyses, we found that the
railway plants have a generally strongly dampened
vernalization response. Almost 6 times more genes
were vernalization responsive in the mountain acces-
sion KA than in the railway accession TBG, but for 60%
of them, the stronger magnitude of response in KA is
nonetheless log-linearly correlated with a weaker re-
sponse in railway plants, suggesting that the vernali-
zation response is strongly abrogated but not completely
absent in the railway plants.

We also found that the reduced vernalization re-
sponsiveness in railway plants was coupled with a
constitutively high expression of a number of cold- and
heat-response genes. A cross talk between flowering
and the cold response has been described in A. thaliana
and is associated with the flowering regulators SOC1,
FLC, and FVE (Kim et al., 2004; Seo et al., 2009; Richter
et al., 2013). Several COR genes are induced during
vernalization in mountain A. arenosa plants, including
COR15A, COR15B, COR47, COR314, and COR78, and
reach higher levels after vernalization in mountain than
in railway plants. COR genes are an essential compo-
nent of the cold-acclimation response (Thomashow,
1999). The same genes, however, show higher expres-
sion before vernalization in railway plants than in
mountain plants. The ability to cold acclimate increases
the freezing tolerance of a plant after exposure to low
temperature, and freezing tolerance has been shown to
correlate with winter temperatures in natural acces-
sions of A. thaliana (Hannah et al., 2006). For A. arenosa,
we found that (fitting with COR gene expression
trends) the mountain accession showed a much greater
capacity to cold acclimate than the railway accession,
but among unacclimated plants, those from railways
had a higher basal tolerance to freezing than mountain
plants. This is consistent with results from a CBF1-
overexpressing A. thaliana mutant, which has high ex-
pression of the COR genes as well as enhanced freezing
tolerance (Jaglo-Ottosen et al., 1998), as well as findings
that naturally increased nonacclimated freezing toler-
ance can result from the constitutive activation of the
CBF pathway (Hannah et al., 2006).

The COR genes are also implicated in the response to
dehydration (Liu et al., 1998; Shinozaki and Yamaguchi-
Shinozaki, 2000). AtGOLS1, which is constitutively

overexpressed in railway plants, is involved in the ac-
cumulation of galactinol and raffinose (Panikulangara
et al., 2004), two compounds known for their protective
properties against oxidative stress (Nishizawa et al.,
2008), and is involved in drought, cold, and high-salinity
stresses (Taji et al., 2002). Therefore, constitutive over-
expression of the COR genes, as well as AtGOLS1, could
possibly also reflect selection for higher drought toler-
ance in the railway environment, where soil is drier and
more exposed to water loss in the heat of summer. Per-
haps constitutive freezing and drought tolerance could
both have arisen as pleiotropic effects of alterations
of COR gene expression during adaptation to railway
habitats.

In addition to cold tolerance genes, we saw a similar
shift toward constitutive expression in railway plants of
heat response-associated genes. This includes HSF1,
known in A. thaliana to be involved in thermotolerance
(Qian et al., 2014), and HSP101, a key component of
acquired thermotolerance (Gurley, 2000; Hong and
Vierling, 2000, 2001; Queitsch et al., 2000). HSPs are
molecular chaperones rapidly activated by the binding
of HSFs in response to environmental stresses such as
heat stress or other proteotoxic stresses such as drought
and freezing (Schöffl et al., 1998). Twenty-oneHSF genes
have been annotated inA. thaliana (Nover et al., 2001), but
the HSFA1s (a–d) constitute the main transcriptional ac-
tivators in response to heat shock (Yoshida et al., 2011).
Overexpression of HSF1 leads to stronger induction of
HSPs by heat shock and increased stress tolerance but not
to the acquisition of basal thermotolerance, as observed
in HSFA1b-overexpressing plants (Prändl et al., 1998;
Qian et al., 2014). Indeed, HSF1 requires the stress-
induced formation of homotrimers to be activated and
accumulate in the nucleus (Yoshida et al., 2011; Liu et al.,
2013). Here, we observed in the railway accession con-
stitutively high expression of HSF1 and HSP101 corre-
lated with an increased basal thermotolerance. Together,
these patterns of overexpression of heat shock genes
suggest a constitutive activation of the heat shock re-
sponse pathway in the railway accession, which was
corroborated by the high basal heat shock tolerance of
these plants: seedlings of railway plants show stronger
heat shock tolerance than those of mountain plants, but
we detected no difference in the acquired thermotol-
erance of the two types. The acquisition of constitutive
thermotolerance, thus bypassing the requirement for a
priming event, may be a significant advantage for pop-
ulations colonizing habitats like railways, where they are
more likely to be exposed to abrupt temperature fluctu-
ations (Zerebecki and Sorte, 2011).

Given that the mountain and railway A. arenosa plants
show clearly distinct environmental response pheno-
types that are likely adaptive to their respective habitats,
we used a genome-scanning approach to determine if
any genomic regions show evidence of selection. By our
criteria, 20 genes in the genome showed evidence of
having been under selection in the railway population.
The encoded proteins are important for a variety of
processes, and a few have possible implications for the
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differences between railway and mountain types:
CATION/H+EXCHANGER6B (AtCHX6B) andORGANIC
CATION TRANSPORTER4 (AtOCT4) are both members
of gene families involved in cation transmembrane trans-
port (Remy et al., 2012; Ye et al., 2013), and NITRITE
REDUCTASE1 (AtHNIR) is involved in the nitrate re-
sponse (Konishi and Yanagisawa, 2010), which together
hint at possible adaptation to substrate differences. This
may be relevant, as KA is from a high-pH limestone site
(which is likely the ancestral habitat forA. arenosa) andTBG
is from railway ballast in the Black Forest, an acidic
silicaceous region.LA-RELATEDPROTEIN1A (AtLARP1A)
is required for the heat-dependent degradation of mRNA
involved in the thermotolerance of A. thaliana with con-
sequences for its acclimation capacity (Merret et al., 2013).
AUTOPHAGY9 (APG9) mutants have accelerated seed
set and senescence (Hanaoka et al., 2002), which may be
related to the senescence difference between the rapid-
cycling TBG and the perennial mountain type KA.
For the overall control of stress responsiveness, one

candidate target of selection stood out: the circadian
clock regulator LHY. In A. thaliana LHY is known to
affect flowering, albeit indirectly (Schaffer et al., 1998;
Mizoguchi et al., 2002), but also cold responsiveness
(Vogel et al., 2005; Bieniawska et al., 2008) and freezing
tolerance (Bieniawska et al., 2008; Espinoza et al., 2008;
Nakamichi et al., 2009; Dong et al., 2011). Double mu-
tants for LHY and another circadian regulator, CCA1,
show a greatly diminished induction of cold responses
and the COR genes, including COR15A, COR47, and
COR78 (Dong et al., 2011), that were differentially
expressed among our A. arenosa strains. Thus, it is en-
ticing to hypothesize that the derived variant of LHY
that seems to have been under selection pressure in
railway plants may somehow lead to a change in the
regulation of downstream stress tolerance as well as
possibly flowering responses. Whether LHY variation
is actually responsible for the phenotypic differences
in stress tolerance or flowering we observe between
these mountain and railway populations remains to be
tested.
Overall, we found that an A. arenosa lineage that

adapted to railway sites in flatland Europe evolved
features commonly observed in weedy plants found in
human-associated habitats, including rapid cycling,
perpetual flowering, extensive inflorescence growth,
and constitutive heat and cold tolerance (Baker, 1965;
Grotkopp et al., 2002; Blair and Wolfe, 2004; Burns,
2004; Hall and Willis, 2006). These phenotypes are all
inducible in the mountain accession. Thus, there is a
general trend that normally inducible phenotypes have
become constitutive in the weedy A. arenosa form,
which was likely important in the colonization of a
volatile and risky human-associated habitat. The fact
that these A. arenosa populations are autotetraploids
appears to be in line with a strong potential for habitat
colonization and the transition to weediness by pol-
yploids (Soltis and Soltis, 2000; Pandit et al., 2006;
Prentis et al., 2008). However, it is clear that, in this case,
neither weediness nor other traits associated with the

ruderal railway habitats were immediate consequences
of genome duplication. Among five tetraploid A. arenosa
lineages we have sampled, only one successfully colo-
nized ruderal habitats (Arnold et al., 2015), and we
show here that it has distinct phenotypic traits consis-
tent with specific adaptations to that habitat not shared
by other tetraploids. Thus, while colonization of the
railway habitat was perhaps facilitated by the increased
genetic diversity available in tetraploids (Otto et al.,
2007; Hollister et al., 2012; Arnold et al., 2015), the au-
totetraploids as a group are not globally tolerant of
ruderal habitats, and adaptation was required post-
polyploidy for this colonization.

MATERIALS AND METHODS

Plant Materials and Growth Conditions

We collected seeds from natural populations in June and July, 2009 to 2011.
All populations are autotetraploid; all originate from regions where only au-
totetraploids occur (Jørgensen et al., 2011), and ploidy of a subset of individuals
from each population was confirmed using flow cytometry (Hollister et al.,
2012). For flowering time phenotyping, we grew 48 single progeny from each of
several individuals per population. Plants were grown as described previously
(Hollister et al., 2012) in ConvironMTPC-144 chambers with 8 h of dark at 12°C,
4 h of light (Cool-White fluorescent bulbs) at 18°C, 8 h of light at 20°C, and 4 h of
light at 18°C. A subset (24) of 4-week-old plants were transferred to a chamber
with a constant temperature of 4°C and short days (8 h of light) for 8 weeks and
then returned to warm and long-day conditions.

For the transcriptomic time series, we grew arrays of 48 siblings from seeds
harvested from single individuals growing in nature. Plants were grown under
similar growth conditions in threeflats inwhichwemixedTBGandKAplants in
order to avoid flat effects. Half of the plants from each flat were vernalized for
6weeks before being returned to theirflat of origin. For our RNAextractions, we
used tissue from young rosette leaves from both vernalized and unvernalized
plants using one biological replicate from eachflat. Leaveswere harvested every
7dafter 9 to 10h fromZeitgeber time 0 in long-day conditions and after 5 to 6 h in
short days. Zeitgeber time 0 is defined as the time of lights on.

Phenotyping of Flowering Time

Using germination date recorded as the first date when root tip emergence
was evident on agar plates, wemeasured flowering time as the time to first open
flower. We calculated flowering time for vernalized plants based on the total
number of growing days excluding the cold treatment. For plants that had not
floweredby experiment end (200d),we assigned these cutoff values. Phenotypic
values for time to first open flower were not normally distributed even after
transformation (Shapiro-Wilk W test P , 0.0001), so we used nonparametric
Wilcoxon tests to assess the significance of differences among populations.

RNA Isolation, Sequencing, and Expression Analysis

We extracted RNA using the RNeasy Plant Mini Kit (Qiagen). We synthesized
single-stranded complementary DNA (cDNA) from 500 ng of total RNA using VN-
anchored poly-T(23) primers with MuLV Reverse Transcriptase (Enzymatics)
according to themanufacturer’s recommendations.Quantitative PCRwas carriedout
on a StratageneMx3005Pmachine with an annealing temperature of 55°C using Taq
DNA polymerase (New England Biolabs). Reactions were carried out in triplicate,
and we normalized FLC expression against the expression of ACT using the 2–DDCT

method taking into account each primer’s efficiency as described in the Bio-RadReal-
Time PCR Applications Guide. The SD of each biological replicate was calculated
using a first-order propagation of error formula on the variance of the techni-
cal replicates. We used cDNA-specific primers 59-CAGCTTCTCCTCCGGCGA-
TAACCTGG-39 and 59-GGCTCTGGTTACGGAGAGGGCA-39 for FLC
(87% efficiency) and 59-CGTACAACCGGTATTGTGCTGGAT-39 and
59-ACAATTTCCCGCTCTGCTGTTGTG-39 for ACT (91% efficiency).

We prepared RNA-seq libraries using the TruSeq RNA Sample Prep Kit
version 2 (Illumina) on RNA samples from both vernalized and unvernalized
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plants at four time points (3, 4, 9, and 13 weeks). Libraries were sequenced on an
Illumina HiSeq 2000 with 50-bp single-end reads. We sequenced between 9.8 and
18.8 million reads (average, 13.6 million).We aligned reads to theArabidopsis lyrata
genome (Hu et al., 2011) using TopHat2 (Kim et al., 2013) and realigned unmapped
reads using Stampy (Lunter andGoodson, 2011).We acquired read counts for each
of the 32,670 genes using HTSeq-count (Anders et al., 2015) with A. lyrata gene
models (Hu et al., 2011). We normalized for sequencing depth using DEseq2 in
R (Anders and Huber, 2010). Further analyses were performed in MATLAB
(MathWorks) except GO enrichment analyses, realized with the Bioconductor
package GOstats (Falcon and Gentleman, 2007) in RStudio. RNA-seq read data
have been deposited in the National Center for Biotechnology Information Short-
Read Archive database under accession number SRP070489 within the National
Center for Biotechnology Information BioProject PRJNA312410.

Weobtainedestimatesofdifferential expression through the timeseriesusing
a combination of two tests, a Kruskal-Wallis test and a two-wayANOVA coded
on MATLAB. We used the first as a nonparametric ranking test within each
condition and accession, and this allowed us to detect significant effects of time
on the expression level of each gene within a time series without assuming a
normaldistributionofgenecounts.Wethenusedatwo-wayANOVAtoaccount for
paired data, screen for time series effects, and generate comparisons of gene ex-
pression profiles between time series. We combined the results of these tests into
seven categories of gene expression profiles for each pairwise comparison between
time series, of which two reflect the response to vernalization (Fig. 3A, a and b).

Global expression differences were estimated using a Kruskal-Wallis test be-
tween TBG and KA within each condition (vernalized and nonvernalized). The
P values obtainedwere then corrected for false discovery rate using the linear step-
up procedure originally introduced by Benjamini and Hochberg (1995). For each
gene, the two q values thus obtained for each conditionwere then summed in order
to establish the 1% most differentiated genes with the lowest sum (QQ50 in
Supplemental Table S2). Genes with a normalized gene count below 50 across all
time points, genotypes, and conditions were excluded in order to filter from this
1% subset genes with high relative but low absolute differences.

Heat Stress

We adapted a protocol by Meiri and Breiman (2009) to Arabidopsis arenosa.
Seedlings were germinated on plates containingMurashige and Skoogmedium
for 5 to 14 d. After 1 week at 4°C in the dark for stratification, seeds were grown
on plates at 20°C under long-day conditions (16 h of light and 8 h of dark).
Three-day-old seedlings were incubated for 3 h at 37°C in an incubator and then
returned to recovery conditions of 22°C under long days for 2 d (see figure
legends). For thermotolerance bioassays, the plates were then incubated for
60 min at 45°C under light. After the 45°C treatment, the plates were incubated
at 20°C for recovery under long-day conditions for another 5 d.

Freezing Tolerance

Cold tolerance was assessed after 1 week of acclimation at 4°C. Fully ex-
panded leaves of 7-week-old plants were harvested and placed in glass test
tubes containing 0.4 mL of deionized water. The tubes were placed on ice, and
extracellular freezing of the leaf tissues was initiated by the addition of
deionized ice chips to each tube. After transfer to the controlled freezing bath set
at 0°C and a 1-h equilibration period, the samples were cooled at 2°C h21 to26°C.
The tubes were withdrawn after 30 min at 26°C, placed on ice, and thawed
overnight at 4°C. After thawing, 12 mL of deionized water was added to each
tube, and tubes were shaken gently (200 rpm) at room temperature for 3 h. The
conductivity of the extraction solution was measured with an Orion con-
ductimeter (model 105), and the leaveswere frozen at280°C for 1.5 h. The same
extraction solution was readded to each tube after 30 min of reequilibration at
room temperature and shaken for 2.5 h, and the conductivity of the solutionwas
measured once again to normalize by the total amount of electrolytes.

Fosmid Libraries

We extracted DNA from 3-week-old TBG plants using a large-scale cetyl-
trimethyl-ammonium bromide protocol (Porebski et al., 1997) including treat-
ment with pectinase (Rogstad et al., 2001). We constructed a fosmid library
using the Copy Control Fosmid Library Production Kit (Epicentre) and
screened it as described previously (Bomblies et al., 2007) using digoxigenin-
labeled (Roche) PCR probes to LHY (primers 59-ACGCGGTTCAA-
GATGCTCCCA-39 and 59-GCTGCAGCATGAGCAGCAGGA-39). We bar
coded positive clones as described (Peterson et al., 2012) and sequenced 100-bp

paired-end reads on an Illumina HiSeq 2000. We assembled reads de novo
using Velvet (Zerbino and Birney, 2008).

Differentiation Analysis

To test for genetic differentiation,weused our previously published genomic
short-read sequences for A. arenosa (Hollister et al., 2012; Yant et al., 2013) that
we complemented with similarly processed genomes to reach a total of eight
KA and seven TBG individuals. We aligned reads to the A. lyrata genome (Hu
et al., 2011) using BWA (Li and Durbin, 2009) and realigned unmapped reads
using Stampy (Lunter and Goodson, 2011). We calculated FST (Weir, 1990) and
Fay and Wu’s H (Fay and Wu, 2000) after genotyping the alignments with
GATK (McKenna et al., 2010). LHY haplotypes were sequenced from one TBG
fosmid (see “Fosmid Libraries”) and PCR clones obtained from cDNA of three
KA and one TBG individuals. The PCR products amplified with primers 59-
TTTCCACGCGGGTATTGTGA-39 (forward) and 59-TGTGTTCCCAACTTG-
GCTCT-39 (reverse) were then ligated in pBluescript and sequenced from both
ends with M13 forward and reverse primers. Where more than four clones were
sequenced per individual, only four different haplotypes were reported.

Sequence data from this article can be found in the NCBI SRA data libraries
under accession number SRP070489 within the NCBI BioProject PRJNA312410.

Supplemental Data

The following supplemental materials are available.

Supplemental Figure S1. RNA-seq expression of SOC1 and VIN3.

Supplemental Figure S2. Marks of selection on a derived haplotype of
LHY in the railway accession.

Supplemental Figure S3. High frequency of null expression levels and/or
variance among genes without orthologs.

Supplemental Figure S4. LHY haplotypes in KA and TBG.

Supplemental Table S1. Vernalization response genes (a) + (b).

Supplemental Table S2. The 1% most differentially expressed genes.
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