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Carbonic anhydrases (CAs) are zinc metalloenzymes that interconvert CO2 and HCO3
2. In plants, both a- and b-type CAs are

present. We hypothesize that cytoplasmic bCAs are required to modulate inorganic carbon forms needed in leaf cells for carbon-
requiring reactions such as photosynthesis and amino acid biosynthesis. In this report, we present evidence that bCA2 and
bCA4 are the two most abundant cytoplasmic CAs in Arabidopsis (Arabidopsis thaliana) leaves. Previously, bCA4 was reported
to be localized to the plasma membrane, but here, we show that two forms of bCA4 are expressed in a tissue-specific manner
and that the two proteins encoded by bCA4 localize to two different regions of the cell. Comparing transfer DNA knockout lines
with wild-type plants, there was no reduction in the growth rates of the single mutants, bca2 and bca4. However, the growth rate
of the double mutant, bca2bca4, was reduced significantly when grown at 200 mL L21 CO2. The reduction in growth of the
double mutant was not linked to a reduction in photosynthetic rate. The amino acid content of leaves from the double mutant
showed marked reduction in aspartate when compared with the wild type and the single mutants. This suggests the cytoplasmic
CAs play an important but not previously appreciated role in amino acid biosynthesis.

Carbonic anhydrases (CAs) are zinc metalloenzymes
that catalyze the interconversion of CO2 and HCO3

2.
Flowering plants possess members of the aCA, bCA,
and gCA families. While all three CA families con-
tain zinc, they clearly have evolved independently
(Hewett-Emmett and Tashian, 1996). Most aCAs are
monomeric, although there are notable exceptions
(Whittington et al., 2001; Hilvo et al., 2008; Suzuki
et al., 2010, 2011; Cuesta-Seijo et al., 2011). The aCA
active site contains a single zinc molecule coordinated
by three His residues and a water molecule (Liljas
et al., 1972). bCAs also contain a zinc active site,
although the coordinating molecules are two Cys
residues, a His, and a water molecule (Bracey et al.,
1994). The active unit of the bCA is a dimer where the
active site is located at the interface of the two mono-
mers (Kimber and Pai, 2000). In contrast, gCAs are

trimers that have their active site zinc ion situated at
the interface of two subunits coordinated by His resi-
dues from both subunits (Kisker et al., 1996; Iverson
et al., 2000).

In Arabidopsis (Arabidopsis thaliana), there are three
gCA proteins and two g-like proteins that interact to
form an extra structure of complex I of the mitochon-
drial electron transport chain (Perales et al., 2004;
Sunderhaus et al., 2006). Although not active in vitro,
gCA has been shown to bind inorganic carbon (Martin
et al., 2009), affect complex I levels, plant growth, and
gas-exchange rates when deleted (Perales et al., 2004;
Soto et al., 2015), and cause plant sterility when ectop-
ically overexpressed (Villarreal et al., 2009). Arabi-
dopsis has eight aCA genes, but only aCA1, aCA2, and
aCA3 appear to be expressed in leaf tissue. aCA1 has
been reported to be localized to the chloroplast in leaf
tissue (Villarejo et al., 2005; Burén et al., 2011). The ex-
pression of aCA2 and aCA3 is quite low but higher
than that of aCA4 to aCA8. The physiological role of
the aCAs is unknown.

Arabidopsis has six bCA genes (Moroney et al.,
2001), and other plants with sequenced genomes have a
similar number of bCA genes (Grigoriev et al., 2012;
Kawahara et al., 2013). CAs are highly expressed and
can account for up to 1% of the soluble protein in a leaf
(Tobin, 1970), with the bCAs being the most highly
expressed CA genes in leaves (Fett and Coleman, 1994;
Schmid et al., 2005; Fabre et al., 2007;Winter et al., 2007;
Hu et al., 2010). The six bCA isoforms are found in a
number of subcellular locations. bCA1 and bCA5 have
been localized to the chloroplast (Fabre et al., 2007; Hu
et al., 2015), while bCA2 and bCA3 are found in the
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cytosol (Fabre et al., 2007). The two other bCAs, bCA4
and bCA6, have been reported to be localized to the
plasma membrane (Fabre et al., 2007; Hu et al., 2010,
2015) and the mitochondria (Fabre et al., 2007; Jiang
et al., 2014), respectively.
The abundance of CAs in plant leaves as well as

their various subcellular locations suggest that CAs
may play multiple roles in plant metabolism, notably
fatty acid synthesis, amino acid biosynthesis, and
photosynthesis (Hatch and Burnell, 1990; Badger
and Price, 1994; Fett and Coleman, 1994; Raven and
Newman, 1994; Hoang and Chapman, 2002). Clearly,
any metabolic reaction that produces or consumes
CO2 or HCO3

2 has the potential to be affected by CA
activity. In Gossypium hirsutum, it has been shown
that CAs are involved in lipid biosynthesis, as the
CA-catalyzed formation of HCO3

2 in the chloroplast
can be used by plastidal acetyl CoA carboxylase in
the first step of fatty acid biosynthesis. Using the
CA inhibitor ethoxyzolamide in cotton embryos de-
creased radiolabeled 14C incorporation into total
lipids (Hoang and Chapman, 2002). Also, tobacco
(Nicotiana tabacum) cell suspensions incubated with
ethoxyzolamide and tobacco CA antisense lines
show lower levels of 14C in total lipids (Hoang and
Chapman, 2002).
CA activity may play an important role in C4 pho-

tosynthesis, as the majority of carbon fixed by phos-
phoenolpyruvate carboxylase (PEPC) that moves
through the C4 cycle initially passes through a CA-
catalyzed reaction (Hatch and Burnell, 1990; Badger
and Price, 1994). CA antisense constructs, which reduce
the activity of cytosolic CA in Flaveria bidentis meso-
phyll cells by at least 70%, lead to diminished rates of
photosynthesis, although CA levels must be severely
reduced in order to see effects on photosynthesis rates,
due to the high enzymatic activity of CA (von Caem-
merer et al., 2004). In maize (Zea mays), insertional
mutants of the ca1 and ca2 genes decreased plant
growth but led to no significant changes in photosyn-
thesis rates, suggesting possible anapleurotic roles for
CA (Studer et al., 2014).
CAs can act as CO2 sensors in stomates (Hu et al.,

2010, 2015) by providing HCO3
2 for the protein kinase

OST1, which controls S-type anion channels involved in
CO2-dependent stomatal closing (Xue et al., 2011).
Arabidopsis transfer DNA (T-DNA) plants lacking
multiple CAs have reduced stomatal response to
changing CO2 concentrations, an overall higher sto-
matal conductance, and higher stomatal density
when compared with wild-type plants (Hu et al.,
2010, 2015; Engineer et al., 2014).
The roles of CAs in C3 photosynthesis are poorly

understood. CAs in the cytosol and chloroplast have
been proposed to help facilitate the diffusion of inor-
ganic carbon to the chloroplast; however, recent mod-
eling studies indicate that the effect of CA activity in the
cytoplasm might be minimal (Badger and Price, 1994;
Terashima et al., 2011; Tholen et al., 2012, 2014). Earlier
studies using antisense lines show that reducing

chloroplast CA levels below 10% of total CA activity in
tobacco did not significantly reduce photosynthesis
rates (Majeau et al., 1994; Price et al., 1994; Williams
et al., 1996). Other tobacco CA antisense lines have
shown reduced water use efficiency and increased
stomatal conductance (Majeau et al., 1994; Kim, 1997).
All of these studies were conducted before it was
known that there were multiple CA genes, so it is still
possible that other CA isoforms could compensate for
the loss of the targeted CA. Therefore, it is unclear
which CAs, if any, contributed to CO2 conductance or
fixation in C3 plants.

Based on previous reports and our preliminary
studies, we hypothesize that there are multiple forms of
CA in different cell compartments, and these CAs may
have overlapping functions. Here, we report our in-
vestigation of the physiological roles of cytoplasmic
bCAs. We have found that bCA2 and a previously
unknown short form of bCA4, bCA4.2, are the most
abundant cytoplasmic CAs in Arabidopsis leaves. Us-
ing a transgenic plant missing bCA2, bCA4.1, and
bCA4.2, we found that these cytosolic CAs are required
for optimal growth under low-CO2 conditions. We
put forth the hypothesis that optimal cytosolic PEPC
activity requires CA activity.

RESULTS

bCA2 and bCA4 Are Expressed in Leaves

There are eight aCA and six bCA genes in Arabi-
dopsis (Moroney et al., 2001; Fabre et al., 2007). EST
counts from The Arabidopsis Information Resource
(TAIR) show that all of the bCAs are well expressed and
that aCA1, aCA2, and aCA3 are weakly expressed.
There are few, if any, ESTs that match aCA4 through
aCA8 (www.arabidopsis.org). RNA was extracted
from roots and leaves of Arabidopsis plants for RNA
sequencing (RNAseq) analysis to determine which CAs
are significantly expressed in leaf tissue (RNAseq data
deposited in the National Center for Biotechnology
Information Sequence Read Archive database as Bio-
Sample:SAMN03339724). Using leaf RNAseq samples,
the normalized count of 100-bp reads that mapped
uniquely to a CA gene showed that all of the bCA genes
are expressed in leaves and that the overall quantitative
CA expression pattern agrees with the EST data from
TAIR (Table I). When assessing the uniquely mapped
reads generated from root RNA samples, bCA4 is the
highest expressed CA, whereas analyzing the uniquely
mapped reads generated from leaf RNA samples,
bCA1 is the most highly expressed CA in leaf tissue
(Table I).

The bCA2 RNAseq data did not match any of the
models in TAIR (Fig. 1A). In addition, bCA4 had two
distinct forms of mRNA (Fig. 1B). To further assess
these observations, uniquely mapped RNAseq reads
from root and leaf samples were viewed on a genome
browser aligned to the genomic region containing
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bCA2 in the Arabidopsis reference genome (TAIR 10).
RNAseq reads from both root and leaf samples that
mapped to the bCA2 reference gene show that only a
short form of bCA2 is expressed (Fig. 1A). The observed
transcription start site is at the predicted second exon,
and the predicted protein is significantly shorter than
the TAIR 10 model. The short bCA2, now lacking a
chloroplast transit peptide, is predicted to be a cyto-
plasmic protein, in agreement with the findings of
Fabre et al. (2007). Mapping the unique reads generated
from root and leaf tissue to the bCA4 reference gene
shows two forms of bCA4 mRNA (Fig. 1B), consistent
with a previous report by Aubry et al. (2014). The lon-
ger mRNA form, bCA4.1, contains two unique 59 exons
and appears to be expressed mainly in shoot tissues of
Arabidopsis, whereas the short mRNA form, bCA4.2,
contains one unique 59 exon and is expressed in both
roots and shoots (Fig. 1B).

The promoter region of bCA2 and two upstream re-
gions of bCA4 were PCR amplified and inserted up-
stream of the GUS gene in the pKGWFS7 (GUS) vector
to create the constructs pbCA2::GUS, pbCA4.1::GUS,
and pbCA4.2::GUS (Fig. 2, A and B). The promoter re-
gion pbCA4.1::GUS starts within the upstream gene,
At1g70420, and ends directly upstream of the ATG start
site in the second exon of the bCA4.1 gene. The pro-
moter region pbCA4.2::GUS starts after the transcrip-
tion start site of bCA4.1 and ends directly upstream of
the ATG start site of bCA4.2. While these promoters
were chosen because they displayed GUS expression, it
is possible that other promoter variants could give
different expression results. As a positive control, an
805-bp region directly upstream of the bCA1 ATG start
site, similar to the promoter region used by Wang et al.
(2014), was inserted into the GUS vector to produce the
construct pbCA1::GUS. Three-week-old Arabidopsis

Table I. All six bCAs of Arabidopsis are expressed in roots and shoots

Each bCA gene, gene identifiers, number of ESTs, and RNAseq values are listed. RNAseq values are
given in reads per kilobase per million mapped reads averaged from three biological replicates for root
and shoot samples.

Gene Gene Identifier ESTsa RNAseq Reads (Leaves) RNAseq Reads (Roots)

bCA1 At3g01500 1,538 109,333 662
bCA2 At5g14740 693 34,488 214
bCA3 At1g23730 51 376 21
bCA4 At1g70410 279 7,781 9,026
bCA5 At4g33580 116 2,262 2,443
bCA6 At1g58180 38 1,419 661
ACTIN1 At2g37620 65 1,471 1,056

aCA EST values were extracted from TAIR (http://www.arabidopsis.org).

Figure 1. bCA2 has one mRNA form,
while bCA4 has two mRNA forms.
RNAseq readswere aligned to thebCA2
and bCA4 gene models in the Arabi-
dopsis reference genome. A, Leaf and
root RNA samples yielded one form of
bCA2 mRNA consisting of nine exons,
excluding the first exon of the bCA2
reference gene from TAIR. B, Leaf and
root RNA samples yielded two forms of
bCA4 mRNA. The long mRNA form is
found primarily in the leaf and contains
10 exons, where the first two exons are
unique to the long form. The short
mRNA form has nine exons, where the
first exon is unique to the short mRNA
form and can be found in both the root
and shoot RNA samples.
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plants expressing pbCA1::GUS showed strong GUS
expression in the rosette (Fig. 2C). This expression
pattern is consistent with bCA1 being the most abun-
dant CA in the leaf and is in agreement with the bCA1
expression pattern observed by Wang et al. (2014).
pbCA2::GUS and pbCA4.1::GUS plants also showed
GUS expression in their rosettes (Fig. 2B). This confirms
the RNAseq data showing that bCA2, bCA4.1, and
bCA4.2 are expressed in the leaves of Arabidopsis. In
addition, the strong GUS staining is consistent with
bCA2 being the secondmost abundant CA in leaf tissue
and both forms of bCA4 being expressed in leaves.

Subcellular Locations of bCA2, bCA4.1, and bCA4.2

Since the N-terminal sequences of bCA2 and bCA4.2
were different from those predicted by TAIR, the
localization of bCA2, bCA4.1, and bCA4.2 was deter-
mined. Both coding regions of bCA4, bCA4.1 and
bCA4.2, were PCR amplified and fused to the N ter-
minus of the eGFP gene in the vector, pB7FWG2, to
create the constructs bCA4.1-eGFP and bCA4.2-eGFP,
powered by the 35S promoter. Also, the coding region
of bCA2was PCR amplified and fused to the N terminus
of the eGFP gene to produce the construct bCA2-eGFP,
powered by the 35S promoter. When sampling leaves
of stable Arabidopsis eGFP lines, the cytoplasmic
localization of bCA2-eGFP was confirmed (Fig. 3;

Fabre et al., 2007). bCA4.1-eGFP gave a plasma mem-
brane signal as reported by Fabre et al. (2007) and Hu
et al. (2010, 2015), but bCA4.2-eGFP was localized to
the cytoplasm (Fig. 3). To confirm these results, proto-
plasts were generated from the stable Arabidopsis
eGFP lines. bCA2-eGFP and bCA4.2-eGFP protoplasts
gave a cytoplasmic GFP signal, whereas bCA4.1-eGFP
protoplasts gave a thin fluorescent signal in a ring
surrounding the protoplast, confirming its presence in
the plasma membrane (Fig. 4).

bca2 and bca4 T-DNA Mutants Lack CA Expression

From the localization data, it appears that bCA2 and
bCA4.2 are found in the cytoplasm. A third CA, bCA3,
also is found in the cytoplasm (Fabre et al., 2007), al-
though its expression is only 1% of the expression of
bCA2 and 5% of bCA4 (Table I; Schmid et al., 2005;
Winter et al., 2007; Ferreira et al., 2008) and was not
considered for this study. To determine the effect of
bCA2 and bCA4 on plant growth, T-DNA alleles of
each gene, SALK_145785 for the bca2 line andCS859392
for the bca4 line, were obtained from TAIR. The
SALK_145785 insert is located within the fifth intron of
the bca2 gene, and the CS859392 insert is located in the
fourth intron of the bca4 gene (Fig. 5A). Genomic PCR
using bCA2 and bCA4 gene-specific primers was gen-
erated to show specific T-DNA gene disruptions (Fig. 5,

Figure 2. bCA2 and bCA4 are both expressed in
Arabidopsis leaves. A, Gene fragment of the plus
strand of chromosome 5 containing the bCA2
gene (At5g14740) and the upstream gene
(At5g14730). The black line labeled pbCA2 indi-
cates the genomic region used to control GUS
expression. Blue boxes represent exons, red boxes
and arrows represent untranslated regions, and
blue and purple lines represent introns and inter-
genic regions, respectively. Light-colored boxes
and lines denote alternative versions of the spec-
ified gene. B, Fragment of the antisense strand
of chromosome 1 containing the bCA4 gene
(At1g70410) and the upstream gene (At1g70420).
Black lines labeled pbCA4.1 and pbCA4.2 repre-
sent the genomic regions used to control GUS
expression in the various bCA4::GUS lines. C,
Three-week-old Arabidopsis GUS lines grown in
ambient CO2 and constant light showed GUS
staining primarily in the leaves of pbCA2::GUS
plants, leaves and roots of pbCA4.1::GUS plants,
and primarily roots of pbCA4.2::GUS plants.
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A and B). An insert primer was paired with a gene-
specific primer to confirm the location of each T-DNA
in its respective gene (Fig. 5, A and B). Some mutant
lines containing T-DNA insertions within introns are
known to show leaky expression of the mutated gene.
To confirm that these mutants are T-DNA knockout
lines, reverse transcription-PCR was performed using
the same genomic primers that span the location of the
insert in each gene. The bCA2 and bCA4 transcripts are
present in the wild type but are absent in their respec-
tive mutant lines (Fig. 5C). Transcripts for both genes
are absent in the bca2bca4 line (Fig. 5C).

An antibody raised against spinach (Spinacia oleracea)
CA (Fawcett et al., 1990) detects protein bands for both
bCA1 and bCA2. The bCA1 preprotein consists of 336

amino acids and is directed to the chloroplast (Fabre
et al., 2007) by a predicted chloroplast transit peptide of
about 103 amino acids (Fawcett et al., 1990; Fett and
Coleman, 1994). After cleavage of the chloroplast
transit peptide, the mature bCA1 protein has a pre-
dicted size of 233 amino acids, yielding a predicted
molecular mass of 25.3 kD. bCA2 consists of 259 amino
acids with no predicted cleavage site, giving the protein
an estimated molecular mass of 28.4 kD. The mature
bCA1 and bCA2 proteins are nearly 90% identical, and
the antibody detects both proteins (Supplemental Fig.
S1). Analysis of wild-type (Columbia [COL]), bca2,
bca4, and bca2bca4 lines with the spinach CA antibody
yielded a 25-kD protein band, indicating the presence of
bCA1 in all four samples (Fig. 5D). A second band with

Figure 3. bCA2 andbCA4.2 are located
in the cytoplasm, and bCA4.1 is located
in the plasma membrane. Sections of
intact leaf cells of various eGFP Arabi-
dopsis plants visualized with the con-
focal microscope show bCA2-eGFPand
bCA4.2-eGFP fluorescence in the cyto-
plasm and bCA4.1-eGFP fluorescence
limited to the plasma membrane. Wild-
type (COL) leaves were used as a neg-
ative control.
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a size of 28 kD, which is near the predicted molecular
mass of bCA2, can be found in the wild-type (COL) and
bca4 lines but not the bca2 line or the double mutant,
indicating that the bCA2 protein is absent (Fig. 5D).

Growth of the bca2bca4 Line Is Reduced at Low CO2 But
Not High CO2

bca2bca4 plants grown for 10 weeks at 200 mL L21

CO2 and an 8-h daylength were smaller than wild-type
(COL), bca2, and bca4 plants (Fig. 6A). Chlorosis also
was apparent in the youngest leaves of the bca2bca4
plants when grown at 200 mL L21 CO2. In contrast,
when grown at 1,000 mL L21 CO2, rosette areas of
bca2bca4 plants were similar to the rosette areas of

wild-type (COL) and the single mutant lines (Fig. 6B).
In addition, bca2bca4 plants were not chlorotic at
1,000 mL L21 CO2 (Fig. 6B). The weekly average above-
ground dryweights andweekly projected rosette areas of
the wild-type (COL), bca2, and bca4 lines were similar,
but these values were reduced significantly in the
bca2bca4 plants at 200 mL L21 CO2 (Fig. 7). Dry weight
and rosette area of the bca2bca4 plants grown at low
CO2 were significantly lower than in the other lines by
week 2 or 3 of growth (Fig. 7, insets).

Photosynthetic Properties

Photosynthetic properties of individual leaves of 10-
week-old wild-type (COL), bca2, bca4, and bca2bca4

Figure 4. Protoplasts show that bCA2
and bCA4.2 are located in the cyto-
plasm and bCA4.1 is located in the
plasma membrane. Confocal images of
leaf cell protoplasts generated from
COL, bCA2-eGFP, bCA4.1-eGFP, and
bCA4.2-eGFP leaves confirm the pres-
ence of bCA2 and bCA4.2 in the cytosol
and bCA4.1 in the plasma membrane.
Wild-type (COL) leaves were used as a
negative control.
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plants grown at 200 mL L21 CO2 and in an 8-h pho-
toperiod were measured to determine if a reduction
in carbon fixation was the cause of the reduced
growth in bca2bca4 under low CO2. The average CO2
compensation point of the bca2bca4 plants was sim-
ilar to that of the single mutants and wild-type plants
(Table II). The rate of CO2 assimilation in the bca2bca4
plants was similar to that of the single mutants and
wild-type plants when measured at 200, 400, and
1,000 mL L21 CO2 (Table II).

Free Amino Acid Pools in the bca2bca4 Mutant

PEPC in the cytoplasm uses HCO3
2 to generate 50%

of the Asp in leaf cells of tobacco (Melzer and O’Leary,
1987). Leaf samples from wild-type, bca2, bca4, and
bca2bca4 plants grown in 200 mL L21 CO2 were ana-
lyzed for amino acid content to determine if Asp levels
as well as other amino acid levels are altered in the
double mutant. The amino acid levels of wild-type
plants are comparable to levels in the single mutants
bca2 and bca4 (Fig. 8; Supplemental Table S1). In leaf
samples of the double mutant, the Asp concentra-
tion is only 87 6 28 mg g21 leaf tissue, well below the
levels of wild-type and single mutant plants (Fig. 8;
Supplemental Table S1). Interestingly, Glu and Gln
levels also are lower in the double mutant, whereas
Gly and Ser levels are higher in the double mutant
(Fig. 8; Supplemental Table S1).

Complementation Restores Growth of the
bca2bca4 Mutant

To confirm that T-DNA insertions in the bCA2 and
bCA4 genes are responsible for the reduced growth of
the bca2bca4 line, complementation lines expressing the
wild-type bCA2 coding region powered by a 23 35S
promoter were generated. Reestablishing the wild-type

Figure 6. Growth is reduced in the bca2bca4 line when grown in low
CO2, whereas a high-CO2 environment restores normal growth in the
bca2bca4 line. Images show 10-week-old plants grown in low (200 mL
L21) CO2 (A) and high (1,000 mL L21) CO2 (B) at a light intensity of
120 mmol photons m22 s21. All plants were grown under an 8-h-light
(22˚C)/16-h-dark (18˚C) regime. WT, Wild type.

Figure 5. T-DNA insertions in the bCA2
and bCA4 genes disrupt RNA synthesis.
A, Gene models of bCA2 and bCA4.
Blue boxes represent exons, blue lines
represent introns, and red boxes rep-
resent untranslated regions. Triangles
represent locations of each T-DNA in-
sert within its gene. F, Forward primer; I,
insert primer; R, reverse primer. Arrows
represent the locations and orientations
of primers. B, Genomic PCR showing
the disruption of the bCA2 and bCA4
genes caused by the T-DNA insertions.
Actin (At2g37620) was used as a posi-
tive control. C, Reverse transcription-
PCR showing the absence of the bCA2
and bCA4mRNAs in the various T-DNA
lines. Actin (At2g37620) was used as a
positive control. D,Western blot showing
that the bCA2 protein is missing in the
bca2 and bca2bca4 plants. Each lane
contains 5 mg mL21 of total protein from
leaf tissue.

286 Plant Physiol. Vol. 171, 2016

DiMario et al.

http://www.plantphysiol.org/cgi/content/full/pp.15.01990/DC1
http://www.plantphysiol.org/cgi/content/full/pp.15.01990/DC1
http://www.plantphysiol.org/cgi/content/full/pp.15.01990/DC1


bCA2 coding region in the double mutant restored
wild-type growth at low CO2 (Fig. 9, A and B). Also, the
amino acid profile of bca2bca4 p35S::bCA2 plants re-
sembled the amino acid profile of wild-type plants
(data not shown). Genomic PCR showed that T-DNA
insertions still disrupted the bCA2 and bCA4 genes in
the bca2bca4 p35S::bCA2 plants (Supplemental Fig. S2).
Upon further examination, the bCA2 protein was pre-
sent in the bca2bca4 p35S::bCA2 plant when using the
spinach CA antibody (Fig. 9C). Adding bCA2 back to
bca2bca4 plants restores normal growth and normal
amino acid profiles in low-CO2 conditions, indicating
that this is a CA-facilitated problem.

DISCUSSION

In this work, we present evidence that the two most
abundant leaf CAs in the cytoplasm are bCA2 and
bCA4. Eliminating either bCA2 or bCA4 produces

plants with growth rates that are indistinguishable
from the growth rates of wild-type plants (Fig. 6).
However, disrupting both bCA2 and bCA4 together
resulted in a plant that exhibited slow growth and
chlorosis at 200 mL L21 CO2 and an 8-h photoperiod.
The growth of this double mutant was comparable to
that of wild-type plants grown at 1,000 mL L21 CO2.
Surprisingly, photosynthesis did not seem to be im-
paired in the double mutant. However, when the free
amino acid content in leaves was measured, the double
mutant had significantly lower Asp levels compared
with wild-type leaves (Fig. 8). Since 50% of the Asp in
the plant is made as a result of PEPC activity (Melzer
and O’Leary, 1987), we hypothesize that the loss of
bCA2 and bCA4 lowers PEPC activity in the double
mutant. Our results are consistent with the amino acid
concentrations seen in PEPC knockout plants (Shi et al.,
2015) and support the hypothesis that CA activity is
required for optimal PEPC activity in the cytoplasm.

Figure 7. At 200 mL L21 CO2,
bca2bca4 plants have reduced growth
compared with other plant lines. Weekly
average aboveground dry weight values
(A) and weekly average projected rosette
areas (B) show thatbca2bca4 plants grow
slower than the other plant lines. Each dry
weight symbol represents the mean 6 SD

of five independent plants. Each symbol
for projected rosette area represents the
mean 6 SD of nine independent plants.

Table II. The slow growth of bca2bca4 is not attributable to lower photosynthetic rates

The CO2 compensation points were generated by finding the slope of the initial linear portion of the
assimilation/inorganic carbon curve and solving for the x intercept. CO2 assimilation (A), stomatal con-
ductance (gs), and water use efficiency (WUE) values are listed for low (200 mL L21), ambient (400 mL L21),
and high (1,000 mL L21) CO2. Measurements were made with a LI-COR 6400XT gas analyzer using the LI-
COR 6400-40 leaf fluorescence cuvette. Values are taken from assimilation/inorganic carbon curves
performed on the 16th youngest leaf of four independent 10-week-old plants from each plant line grown in
200 mL L21 CO2.

Parameter Wild Type (COL) bca2 bca4 bca2bca4

CO2 compensation point 55.9 6 2.0 53.1 6 1.4 59.9 6 4.1 56.4 6 4.1
200 mL L21 CO2

A 4.9 6 0.32 5.3 6 0.71 6.3 6 0.38 5.3 6 0.90
gs 0.28 6 0.04 0.25 6 0.04 0.37 6 0.03 0.35 6 0.04
WUE 0.16 6 0.02 0.18 6 0.01 0.15 6 0.01 0.14 6 0.01

400 mL L21 CO2

A 11.2 6 1.1 12.1 6 0.85 13.6 6 0.6 11.4 6 1.7
gs 0.32 6 0.03 0.29 6 0.04 0.38 6 0.03 0.35 6 0.04
WUE 0.33 6 0.04 0.35 6 0.02 0.33 6 0.01 0.30 6 0.02

1,000 mL L21 CO2

A 18.0 6 2.1 19.7 6 1.4 20.8 6 1.1 18.7 6 2.2
gs 0.29 6 0.04 0.21 6 0.04 0.38 6 0.03 0.35 6 0.04
WUE 0.57 6 0.12 0.77 6 0.09 0.51 6 0.03 0.49 6 0.02
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The poor growth of the double mutant but not the
single mutants indicates that bCA2 and bCA4 have
overlapping functions. One hypothesis examined in
this study was that the double mutant grew slowly on
low CO2 because cytoplasmic CA activity is required to
facilitate the diffusion of inorganic carbon to the chlo-
roplast for photosynthesis. In this scenario, photosyn-
thesis in the double mutant would be reduced because
the CO2 concentration at Rubisco would be reduced.
However, CO2 assimilation rates in all the mutant lines
were similar to values in 10-week-old wild-type plants
(Table II). From these measurements, it was concluded
that the cytoplasmic CAs do not play an important role
in photosynthesis. These observations are in agreement
with the models of Badger and Price (1994), Terashima
et al., (2011), and Tholen et al. (2012, 2014). They argued
that the cytoplasm offers only minimal resistance to
CO2 diffusion because the chloroplasts are often close to
the plasma membrane in mesophyll cells.

Another possible role of the cytoplasmic CAs would
be to provide HCO3

2 for cytoplasmic PEPC. While
PEPC is normally thought to have a very high affinity
for inorganic carbon compared with Rubisco, the PEPC
Km (HCO3

2) has been reported to be between 25 and 100
mM for C4 plants (O’Leary, 1982; Bauwe, 1986; Hatch and
Burnell, 1990) and between 100 and 200 mM for C3 plants
(Mukerji and Yang, 1974; Sato et al., 1988). Since the
dissolved CO2 concentration in the cytoplasm of C3
plants is expected to be about 12 mM at 400 mL L21 CO2
and 25°C, the HCO3

2 concentration at equilibrium
would be close to 60 mM assuming a cytoplasmic pH of 7

and a CO2-to-HCO3
2 pKa of 6.4. This estimated HCO3

2

concentration in the cytosol is less than the 100 to 200 mM

PEPC Km (HCO3
2) for C3 plants. Therefore, a drop in

CO2 concentration to 200 mL L21 in air would drop the
HCO3

2 to about 25 to 30 mM, again well under the

Figure 8. Amino acid concentrations of the wild type (COL), single
mutants, and the double mutant. Asp and Gln are reduced significantly
in the double mutant, whereas Gly and Ser are elevated in the double
mutant. Samples were sent to the TAMU Protein Chemistry Laboratory
at Texas A&M University for amino acid analysis. Each bar represents
the mean 6 SD of three independent plants.

Figure 9. Expressing thebCA2 coding region inbca2bca4 plants restores
wild-type growth in low CO2. A, Normal growth was restored in
bca2bca4 p35S::bCA2plants growing at 200mL L21 CO2. All plantswere
grown under an 8-h-light (22˚C)/16-h-dark (18˚C) regime with a light
intensity of 120 mmol photons m22 s21. B, Weekly average projected
rosette areas for each line show that normal growth was restored in the
double mutant by adding p35S::bCA2. Each symbol represents the
mean 6 SD of nine individual plants per line. C, Western blotting shows
the presence of the bCA2 protein restored in the bca2bca4 p35S::bCA2
plants. Each lane contains 5 mg mL21 total protein extract from leaves of
wild-type (COL), bca2bca4, and bca2bca4 p35S::bCA2 plants.
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reported Km (HCO3
2) for PEPC. It is estimated that 50%

of carbon at position 4 in Asp can be attributed to PEPC
activity (Melzer and O’Leary, 1987); therefore, we mea-
sured Asp levels in wild-type plants, the single mutants,
and the double mutant (Fig. 8; Supplemental Table S1).
The wild-type and single mutant plants had similar
amino acidprofiles,withAsp levels between 173 and 185
mg g21 leaf tissue. In contrast, the Asp level in the double
mutant was only 87 mg g21 leaf tissue, while the mean
Gly and Ser levels in the doublemutant were severalfold
higher than the mean levels in wild-type and single
mutant plants (Fig. 8). In a previous study of a knockout
of two PEPCs, a similar profile of low levels of Asp and
high levels of Gly and Ser was found (Shi et al., 2015).
Like the bca2bca4 double mutant (Fig. 6), the PEPC
double mutant showed reduced growth and chlorosis
(Shi et al., 2015).
The results reported here also clarify the gene models

for bCA2 and bCA4. Previously, only bCA2 (Fett and
Coleman, 1994; Fabre et al., 2007) and bCA3 (Fabre
et al., 2007) were reported to be in the cytoplasm. The
only reports for bCA4 localization indicated that the
protein was associated with the plasma membrane
(Fabre et al., 2007; Hu et al., 2010, 2015). In addition, we
found the gene models presented in TAIR to be in-
complete for bCA4 and inaccurate for bCA2. For bCA2,
the gene models all show an exon/intron pattern very
similar to that for bCA1 and predict that bCA2 should
localize in the chloroplast. However, RNAseq data (Fig.
1) and deposited ESTs show that more than 95% of the
bCA2 transcripts begin in themiddle of the second exon
in the TAIR model. This is consistent with a bCA2
mRNA that encodes a cytoplasmic protein, because the
chloroplast transit peptide would be omitted (Fett and
Coleman, 1994; Fabre et al., 2007). The mature bCA1
protein without its chloroplast transit peptide is smaller
than the mature bCA2 protein (Supplemental Fig. S1),
further supporting a cytoplasmic localization for bCA2.
Abundant GUS staining is seen in the leaf when GUS is
linked to a promoter made immediately upstream of
the ATG start site for the predicted cytoplasmic bCA2
(Fig. 2). This GUS expression pattern for bCA2 coin-
cides with the leaf CA activity levels reported in pea
(Pisum sativum; Majeau and Coleman, 1994) and bean
(Phaseolus vulgaris; Porter and Grodzinski, 1984) and
also fits with the observed EST abundance in TAIR
microarray data (Schmid et al., 2005; Winter et al., 2007;
Ferreira et al., 2008) as well as RNAseq data (Table I).
Our results are in contrast to those ofWang et al. (2014),
who observed little or no GUS staining in the leaf with
their bCA2 promoter. However, they used a sequence
upstream of the first exon of the TAIR gene model, and
our data and the EST data indicate that the first exon in
the TAIR model is transcribed at a very low level, if at
all.
The gene model for bCA4 is somewhat complex.

There are two different and abundant transcripts made
from the bCA4 gene in the leaf, bCA4.1 and bCA4.2
(Table I; Fig. 1). The longer leaf transcript, bCA4.1,
encodes a protein that is targeted to the plasma

membrane, as shown by our localization studies and
the published work of Fabre et al. (2007) and Hu et al.,
(2010, 2015). Here, we also determined that bCA4.2, the
shorter transcript, encodes a cytoplasmic CA (Figs. 3
and 4). The RNAseq data also show that bCA4.2 tran-
scripts are found in the roots while both bCA4.1 and
bCA4.2 transcripts are found in leaf tissue. GUS ex-
pression studies (Fig. 2) are consistent with the RNAseq
data (Figs. 1 and 2). When a bCA4.2 promoter (Fig. 2B)
was linked to GUS, only root expression was observed
(Fig. 2C). A more complete promoter linked to GUS
showed both root and leaf expression (Fig. 2, B and C).
However, we were unable to find a bCA4.1 promoter
sequence that showed expression only in leaves (data
not shown). Other studies have found multiple tran-
scripts of bCA4 (Aubry et al., 2014; Wang et al., 2014),
but, to our knowledge, this is the first report showing
that the different bCA4 transcripts encode proteins with
different destinations in the cell.

RNAseq data and earlier microarray and expression
studies show that bCA2 and bCA4 are highly expressed
in leaves, whereas bCA3 is expressed at less than 5% of
the level of either bCA2 or bCA4 (Table I; Schmid et al.,
2005; Fabre et al., 2007;Winter et al., 2007; Ferreira et al.,
2008). In addition, Hu et al. (2010) presented evidence
showing high expression of bCA2 and bCA4 in meso-
phyll cells, whereas bCA3 had very low expression in
mesophyll cells, while Wang et al. (2014) reported very
low bCA3 expression in leaves with promoter::GUS
studies. Since the other CAs that show significant ex-
pression are either in the chloroplast (Fett andColeman,
1994; Villarejo et al., 2005; Fabre et al., 2007; Burén et al.,
2011; Hu et al., 2015) or mitochondria (Fabre et al., 2007;
Jiang et al., 2014), we conclude that bCA2 and bCA4 are
the most abundant CA isoforms in the cytoplasm. This
contention is supported by leaf RNAseq data (Table I),
GUS staining (Fig. 2), CA microarray analysis (Ferreira
et al., 2008), as well as publicly available EST and
microarray data (Schmid et al., 2005; Winter et al.,
2007).

Previously, researchers lowered the expression of the
chloroplastic CA, bCA1 (Majeau et al., 1994; Price et al.,
1994; Ferreira et al., 2008), and found normal growth
and carbon assimilation rates in plants with reduced
bCA1. More recently, Jiang et al. (2014) reported that
plants lacking the mitochondrial bCA6 grew slowly on
low CO2. There have been few studies of other CA
isoforms. A notable exception has been the construction
of double and triple mutant lines of the most abundant
CAs in leaf guard cells, including bCA1, bCA4, and
bCA6 (Hu et al., 2010, 2015; Xue et al., 2011). These CAs
are localized to different organelles in the guard cell,
with bCA1 located in the chloroplast, bCA4 in the
plasma membrane, and bCA6 in the mitochondria.
Eliminating the expression of these guard cell CAs
caused changes in stomatal density and temporal
changes in stomatal conductance in response to
changes in CO2 level or humidity (Hu et al., 2010; En-
gineer et al., 2014), leading to the hypothesis that CA
activity is an important factor in how plant guard cells
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sense CO2 concentration (Xue et al., 2011). In this study,
stomatal density was unaffected by knocking out cy-
tosolic bCA2 and/or bCA4 (Supplemental Fig. S3).

In conclusion, we show evidence that bCA2 and
bCA4 are the most abundant cytoplasmic CAs in
Arabidopsis leaves. The loss of both of these proteins
reduced growth at low CO2 concentration. We hy-
pothesize that bCA2 and bCA4 are necessary for the
proper function of cytosolic PEPC needed for the pro-
duction of amino acids. It is also likely that the large
number of CA genes and isoforms in plants indicates
that CA may be needed for a number of metabolic
pathways in different tissues.

MATERIALS AND METHODS

Plant Lines and Growth Conditions

Arabidopsis (Arabidopsis thaliana) plants of the COL ecotype were used in
this study. The T-DNA lines, bca2 (SALK_145785) and bca4 (CS859392), were
obtained from TAIR and backcrossed into wild-type (COL) three times before
allowing the selfing of heterozygous mutants to produce the homozygous
mutant lines used in this study. The doublemutant, bca2bca4, was generated by
crossing the backcrossed homozygous bca2 line with the backcrossed homo-
zygous bca4 line. These plants were grown in a Percival AR-66L growth
chamber either at low CO2 (200 mL L21) or high CO2 (1,000 mL L21) in a short-
day photoperiod of 8 h of light (22°C)/16 h of dark (18°C) at a light intensity of
120 mmol photons m22 s21. Plants were watered biweekly, alternating between
distilled water and a 1:3 dilution of Hoagland nutrient solution in distilled
water (Epstein and Bloom, 2005).

GUS, eGFP, and Complementation T-DNA
Vector Construction

Primers for amplifying the various regions of DNA or complementary
DNA (cDNA) that were inserted into the pENTR/D-TOPO cloning vector
were designed using the Integrated DNA Technologies primer design Web
page and were generated by Integrated DNA Technologies. Cloning primers
are listed in Supplemental Table S2. Coding regions of the bCA1 (At3g01500),
bCA2 (At5g14740), and bCA4 (At1g70410) genes were amplified from the
cDNA vectors obtained from TAIR, U17263, U09011, and U09528, respec-
tively. The CA coding regions used for eGFP fluorescence were amplified
from the ATG start codon to the codon directly 59 of the stop codon. CA
coding regions used for complementation studies also were amplified start-
ing from the ATG start codon, but these amplicons included the stop codon.
CA promoter regions to drive GUS expression were amplified using genomic
DNA isolated from COL plant leaves. In most cases, the promoter regions
amplified contained DNA fragments that included the entire 59 untranslated
region of the CA gene and continued into the gene directly upstream of the
CA gene. Amplicons used for cloning were obtained by PCR amplification.
PCR steps included an initial 98°C denaturation step for 3 min, 35 cycles of
98°C for 30 s, annealing temperature for 30 s, and 72°C set for 20 s per 1,000
bases, a final 72°C step for 5 min, and a holding temperature of 4°C. Phusion
DNA polymerase (New England Biolabs) and the Bio-Rad T100 Thermal
Cycler were used for DNA amplification. Amplicons were gel purified fol-
lowing the procedure of the Qiaquick Gel Purification kit (Qiagen). Purified
amplicons were cloned into the pENTR/D-TOPO vector following the kit
procedure (Invitrogen). The correct sequence and orientation of the ampli-
cons in the pENTR vector were confirmed by sequencing the pENTR clones.
eGFP amplicons were recombined into the pDEST vector pB7FWG2 (Karimi
et al., 2002), complementation amplicons were recombined into the pDEST
vector pMDC32 (Curtis and Grossniklaus, 2003), and GUS amplicons were
recombined into the pDEST vector pKGWFS7 (Karimi et al., 2002) following
the Gateway LRClonase kit procedure (Invitrogen). The correct orientation of
the amplicon in the pDEST vector was confirmed via restriction digestion.
Correctly generated pDEST vectors were transformed into the Agrobacterium
tumefaciens strain GV3101 using a freeze-thaw protocol as described (Weigel
and Glazebrook, 2002).

A. tumefaciens Transfection and Screening
of Transformants

Stable eGFP, GUS, and complementation lines were created following a
modified procedure (Weigel and Glazebrook, 2002). A total of 200 mL of
transformed A. tumefaciens was used to inoculate 200 mL of YEP medium
supplemented with antibiotics (30 mg mL21 gentamycin and 10 mg mL21 ri-
fampicin for A. tumefaciens helper plasmids and either 100 mg mL21 spectino-
mycin for the eGFP and GUS vectors or 50 mg mL21 kanamycin for the
complementation vector). The cultures were grown overnight at 28°C with
vigorous shaking, and cells were pelleted in the morning by centrifugation at
6,000 rpmusing a Beckman J2-HS centrifuge and JA-10 rotor. Pelleted cells were
resuspended in 400 mL of A. tumefaciens infiltration medium (one-half-strength
Murashige and Skoog medium with Gamborg’s vitamins from Caisson Labora-
tories, 5% [w/v] Suc, 0.044 mM benzylaminopurine suspended in dimethyl sulf-
oxide, and 50 mL L21 Silwet L-77 from Lehle Seeds). Stalks of Arabidopsis (COL)
plants were dipped in the A. tumefaciens infiltration medium for approximately
40 s and then laid sideways in a flat with a covered dome to recover overnight,
incubating in constant light at 21°C (Weigel and Glazebrook, 2002). eGFP trans-
formants were selected on soil by spraying seedlings with a 1:1,000 dilution of
BASTA (AgrEvo),whereasGUS or complementation transformantswere selected
on one-half-strength Murashige and Skoog plates (pH 6) with no Suc supple-
mented with 50 mg mL21 kanamycin or 20 mg mL21 hygromycin, respectively.

Histochemical GUS Staining

At least five independently transformed plants that showed stable GUS
expression through threegenerationswereused for this study.GUS stainingwas
performed following the protocol from Jefferson et al. (1987). Three-week-old
plants were vacuum infiltrated for 5 min with a GUS staining solution [0.1 M

NaPO4, pH 7, 10mMEDTA, 0.1% (v/v) Triton X-100, 1mMK3Fe(CN)6, and 2mM

5-bromo-4-chloro-3-indolyl-b-D-GlcA (from GoldBio) suspended in N,N-
dimethylformamide] and placed in the dark in a 37°C incubator overnight. The
GUS staining solution was removed the following morning, and plant tissues
were incubated in 100% (v/v) methanol at 60°C for 15 min repeatedly until all
chlorophyll was removed. Plants were photographed with a Canon EOS Rebel
T5i camera with the Canon EF 100mm f/2.8L macro IS USM lens.

Protoplast Preparation and eGFP Visualization

At least four independently transformed eGFP lines showing stable eGFP
expression over three generations were used for this study. Following the
protocol of Wu et al. (2009), 2 g of leaf tissue was incubated in 10 mL of enzyme
solution (1% [w/v] cellulase from Trichoderma viride [Sigma], 0.25% [w/v]
pectinase from Rhizopus spp. [Sigma], 0.4 M mannitol, 10 mM CaCl2, 20 mM KCl,
0.1% [w/v] bovine serum albumin, and 20 mM MES at pH 5.7) for 1 h in light
after placing Time Tape on the upper epidermis of the leaves and removing the
lower epidermis of the leaves viaMagic Tape. Protoplasts were then pelleted by
centrifugation at 800 rpm for 3 min using a Beckman J2-HS centrifuge and
JS-13.1 rotor. Protoplasts were resuspended in a solution containing 0.4 M

mannitol, 15 mM MgCl2, and 4 mM MES at pH 5.7. Stably expressing eGFP
leaves were prepared for confocal imaging by removing an approximately
0.75-cm2 leaf sample and incubating it in a welled-microscope slide filled with
100 mL of perfluorodecalin (Sigma) for 5 min (Littlejohn and Love, 2012). eGFP
fluorescence was visualized using protoplasts and prepared leaves from stable
eGFP plants with a Leica SP2 confocal microscope. A 403 oil-emersion lens was
used to visualize protoplasts and a 203 objective lens was used to visualize
intact cells from leaf samples. eGFP and chlorophyll were excited using a
krypton/argon laser tuned to 488 nm, and eGFP and chlorophyll fluorescence
were observed between the wavelengths of 500 to 520 nm and 660 to 700 nm,
respectively.

Genotyping T-DNA Lines Using Genomic PCR and
Reverse Transcription-PCR

DNA for genomic PCRwas isolated from Arabidopsis leaves ground with a
mortar and pestle and incubated in Edward’s extraction buffer (200 mM Tris-Cl,
pH 7.5, 250 mM NaCl, 25 mM EDTA, and 0.5% [w/v] SDS). DNA was precipi-
tated using 100% (v/v) isopropanol and 70% (v/v) ethanol washes. One hun-
dred nanograms of DNA was used in a genomic PCR using the standard
protocol for One Taq (New England Biolabs). Primers used for each reaction can
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be found in Supplemental Table S2. RNA for reverse transcription was isolated
from 80mg of leaf tissue from 6-week-old Arabidopsis plants grown in lowCO2
and short days using the Qiagen RNeasy Plant minikit. Three micrograms of
RNAwas used for the reverse transcription reaction, and cDNAwas generated
using the SuperScript First-Strand RT-PCR kit and protocol (Invitrogen). cDNA
at 0.5 mL was used for a 25-mL PCR using the standard protocol for One Taq
(New England Biolabs).

RNAseq Analysis

RNAseq reads were generated and processed to calculate expression counts
as described by Oh et al. (2014). An average count from three biological repli-
cates was used in this study.

Western Blotting of bCA2

Proteinwasextracted from50mgof freshArabidopsis leaf tissue.Ground leaf
samples were incubated in a protein extraction buffer (13 TE, 1.2% [w/v] SDS,
2.7% [w/v] Suc, and 7.5 mgmL21 Bromophenol Blue) on ice for 15min and then
centrifuged for 5min at 14,000 rpm to pellet the cell debris. The supernatant was
collected and used for protein quantification following the Bradford assay
protocol (Pierce). 2-Mercaptoethanolwas added to afinal concentration of 350mM

in the supernatant, and the protein samples were incubated at 100°C for 3 min.
Five micrograms of protein from each sample was loaded onto a 12% (w/v) ac-
rylamide gel and allowed to separate before transferring to a polyvinylidene
difluoride (PVDF)membrane (Bio-Rad). The PVDFmembranewas blocked in 5%
(w/v) dry milk for 1 h before it was washed with a TTBS solution (0.05% [v/v]
Tween 20, 19 mM Tris base, and 500 mM NaCl, pH 7.5) three times. The PVDF
membrane was incubated with a 1:20,000 dilution of a spinach (Spinacia oleracea)
CApolyclonal antibody (Fawcett et al., 1990) in a TBSB solution (1% [w/v] bovine
serum albumin, 19mM Tris base, and 500mMNaCl, pH 7.5) overnight at 4°C. The
following morning, the membrane was washed five times with TTBS to remove
the primary antibody and thenwas incubated in a 1:20,000 dilution of the Bio-Rad
goat anti-rabbit secondary antibody in TBSB for 1 h at room temperature. The
membrane was subjected to five more washes of TTBS to remove excess
secondary antibody before incubation in a 1:1 mixture of peroxide and luminol
(Bio-Rad). Protein bands were visualized on x-ray film via chemiluminescence.

Rosette Area and Dry Weight Measurements

To obtain rosette areas of the various lines grown at 200 mL L21 CO2, images
of each plant line were taken weekly using a Canon Rebel T5i camera with a
Canon 15-85mm f/3.5-5.6 IS USM lens. Rosette areas were attained by tracing
the outlines of the plants and obtaining the projected rosette area within each
outline in ImageJ (National Institutes of Health). Projected rosette areas were
measured on nine plants per line. Dry weights of aboveground plant mass were
measured every week for each plant line for 10 weeks. Five plants per line
were used for dry weight analysis. Plant rosettes were clipped at the crown of
the plant and incubated in an oven at 60°C. Dry weight measurements were
conducted once per day until plant dry weights stabilized.

Gas-Exchange Measurements

Photosynthesismeasurementswere conductedusing theLI-COR6400XTgas
analyzer. Plants used for gas-exchangemeasurementswere grownat 200mLL21

CO2 for 10 weeks and then shifted to 1,000 mL L21 CO2 for 2 weeks in order to
obtain leaves big enough from the bca2bca4 line to fill the LI-COR 6400-40 leaf
fluorescence cuvette. Before photosynthesis measurements were taken on
an Arabidopsis leaf, the leaf was allowed to acclimate to 400 mL L21 CO2 and
1,000mmol photonsm22 s21 (saturating irradiance for these leaves) for 1 h or until
steady-state photosynthesis rates were attained. CO2 assimilation/inorganic
carbon curves were measured on the 16th youngest leaf from four separate
plants of each plant line. Each curve started at 400 mL L21 CO2 and decreased to
50mL L21 CO2 before returning to 400mL L21 CO2 and subsequently increasing to
2,200 mL L21 CO2. For each CO2 point, individual leaves reached steady-state
photosynthesis within 3 min on average before measurements were recorded.

Complementation of the bca2bca4 Mutant

The coding region of bCA2 was recombined into the Gateway over-
expression vector pMDC32 (Curtis and Grossniklaus, 2003), creating the

construct p35S::bCA2. This vector was transformed into theA. tumefaciens strain
GV3101 using the freeze-thawmethod (Weigel and Glazebrook, 2002) and then
stably transformed into the bca2bca4 line via the floral dip technique (Weigel
and Glazebrook, 2002). Transformants were selected on one-half-strength
Murashige and Skoog plates supplemented with 30 mg mL21 hygromycin
and then transferred to soil after 3 weeks of growth on plates. These trans-
formants produced seeds that were used to compare the growth of wild-type
(COL), bca2bca4, and bca2bca4 p35S::bCA2 plants in low CO2 (200 mL L21 CO2).

Leaf Amino Acid Analysis

One hundredmilligrams of leaf tissuewas harvested from 6-week-old plants
grown in low CO2 (200 mL L21 CO2). The leaf tissue was immediately frozen in
liquidN2 and groundwith amortar and pestle. Five hundredmicroliters of 80%
(v/v) methanol was added to the ground leaf tissue, and each sample was in-
cubated at 75°C for 10 min. Samples were then centrifuged at 20,000g for 5 min
at 4°C using a Beckman centrifuge and JA-18.1 rotor. The supernatant was
collected, and 500mL of 20% (v/v)methanol was added to resuspend the pellet.
Samples were centrifuged again, and the two supernatants were combined and
pulled through a 0.2-mm filter (VWR International). Three biological replicates
of each plant line were quantified using the protocol from Lowry et al. (1951)
and shipped to the TAMU Protein Chemistry Laboratory at Texas A&M
University for amino acid analysis.

RNAseq data can be retrieved from the National Center for Biotechnology
Information Sequence Read Archive database as BioSample:SAMN03339724.

Supplemental Data

The following supplemental materials are available.

Supplemental Figure S1. Western blot confirming that the CA antibody
cross-reacts with both bCA1 and bCA2.

Supplemental Figure S2. Genomic PCR probing for the p35S::bCA2 con-
struct in the bca2bca4 mutant.

Supplemental Figure S3. Lacking cytosolic CAs does not alter the stomatal
density of the double mutant.

Supplemental Table S1. Total amino acid amounts obtained from the
amino acid analysis performed on wild-type, single mutant, and double
mutant leaves.

Supplemental Table S2. List of all primer sets used to genotype plant lines
and generate constructs for GUS analysis, GFP fluorescence, and com-
plementation studies.
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