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Phosphorus (P) is a crucial nutrient for plant growth, but its availability to roots is limited in soil. Arbuscular mycorrhizal
(AM) symbiosis is a promising strategy for improving plant P acquisition. However, P fertilizer reduces fungal colonization
(P inhibition) and compromises mycorrhizal P uptake, warranting studies on the mechanistic basis of P inhibition. In this
study, early morphological changes in P inhibition were identified in rice (Oryza sativa) using fungal cell wall staining and
live-cell imaging of plant membranes that were associated with arbuscule life cycles. Arbuscule density decreased, and
aberrant hyphal branching was observed in roots at 5 h after P treatment. Although new arbuscule development was
severely inhibited, preformed arbuscules remained intact and longevity remained constant. P inhibition was accelerated in
the rice pt11-1 mutant, which lacks P uptake from arbuscule branches, suggesting that mature arbuscules are stabilized by the
symbiotic P transporter under high P condition. Moreover, P treatment led to increases in the number of vesicles, in which
lipid droplets accumulated and then decreased within a few days. The development of new arbuscules resumed within by 2 d.
Our data established that P strongly and temporarily inhibits new arbuscule development, but not intraradical accommodation

of AM fungi.

Phosphorus (P) is a crucial major nutrient for plant
growth but is also one of the most easily depleted nu-
trients around roots because of its low mobility in soil
(Bieleski, 1973; Vance, 2001). As a consequence, plants
have evolved various strategies to acquire soil P, and
arbuscular mycorrhizal (AM) symbiosis forms an inte-
gral part of P acquisition systems in land plants. Plants
supply AM fungi with organic compounds to build

! This work was supported partly by Grants-in-Aid from the NC-
CARP project, the Ministry of Education, Culture, Sports, Science,
and Technology of Japan, and by ACCEL from the Japan Science
and Technology Agency.

2 Present address: Center for Research and Development Strategy,
Japan Science and Technology Agency, 10F K’s Gobancho Building,
7, Gobancho Chiyoda-ku, Tokyo 102-0076 Japan.

* Address correspondence to kobae@affrc.go.jp.

The author responsible for distribution of materials integral to the
findings presented in this article in accordance with the policy de-
scribed in the Instructions for Authors (www.plantphysiol.org) is:
Yoshihiro Kobae (kobae@affrc.go.jp).

Y.K. conceived the research plans; Y.K,, Y.O., K.Y, and T.F. de-
signed the study; Y.K. performed most of the experiments; C.S. per-
formed the electron microscopy analysis; Y.K., R.O., and T.F.
supervised the research; Y.K., Y.O., K.Y., and T.F. interpreted the
results; Y.K. wrote the manuscript with input from the other authors;
all authors read and approved the final manuscript.

www.plantphysiol.org/cgi/doi/10.1104/pp.16.00127

mycelium, which ramifies through the soil up to several
centimeters from the root surface (Smith et al., 2011).
P is then translocated through syncytial mycelia to the
roots and is released to interfacial apoplasts from
arbuscules, which are the highly branched structures of
AM fungi in cortical cells. Increased spatial exploitation
by hyphae in soil (Marschner, 1995) and greater P ac-
quisition ability of mycorrhizal roots enable the host
plant to improve nutrient uptake and in many cases
leads to increased biomass accumulation in comparison
with nonmycorrhizal condition.

Calculations of the contribution of P uptake via AM
fungi (mycorrhizal pathway) to total plant P uptake
suggest that mycorrhizal pathways dominate total P
uptake under low P conditions (Smith et al., 2004; Yang
etal.,, 2012). Accordingly, mycorrhizal symbiosis down-
regulates plant P transporter genes that may contribute
to the direct pathway involving P uptake at the root
epidermis or root hairs (Javot et al., 2007; Walder et al.,
2015). Low P uptake through direct pathways and in-
creased P contents in mycorrhizal plants reflect supe-
rior P uptake via the mycorrhizal pathway. However,
the application of inorganic P fertilizer has been shown
to significantly reduce AM development in a number of
studies (Baylis, 1967; Mosse, 1973; Sanders and Tinker,
1973; Breuillin et al., 2010; Balzergue et al., 2011) and is
referred to as P inhibition (Graham et al., 1981). Given
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that mycorrhizal roots have higher P uptake under low
P conditions, the formation of mycorrhizal symbiosis
in the presence of high P conditions may also increase
P uptake. Although the mechanisms behind P inhibi-
tion have been investigated in numerous morphologi-
cal, physiological, and molecular studies, the primary
causes of P inhibition remain unknown (Balzergue
et al., 2013).

Early morphological studies showed that P inhibi-
tion at the very early stage entirely reflects the reduced
growth of “infection units” (Braunberger et al., 1991;
Bruce et al., 1994) that comprise internal mycelium
arising from entry points (Cox and Sanders, 1974;
Walker and Smith, 1984). Fungal colonization pro-
cesses that contribute to the growth of infection units
include (1) preinfection growth of hyphae through the
soil or the growth of runner hyphae from adjoining
infection units, (2) formation of entry points (hypho-
podia) on the root surface, (3) longitudinal extension
of intercellular or intracellular hyphae within roots
of Arum-type or Paris-type mycorrhiza, respectively,
and (4) formation of arbuscules in cortical cells (Cox
and Sanders, 1974; Bonfante-Fasolo, 1984). Arbuscule
maturation takes less than 1 d to occupy most of the
cell space, and the arbuscules are functional for only 2
to 3 d (Kobae and Hata, 2010; Kobae and Fujiwara,
2014). Bruce et al. (1994) showed that neither the du-
ration of the preinfection phase nor the rate of new
entry point formation is affected by P concentration. In
agreement, Medicago truncatula roots maintained their
cell responses to perceive fungal partners even under
high P conditions, as indicated by nuclear calcium
spiking of subhyphopodia root epidermal cells, which
is a hallmark of AM symbiotic signaling (Singh and
Parniske, 2012; Balzergue et al., 2013). Balzergue et al.
(2011) showed that the number of hyphopodia is sig-
nificantly reduced upon 4 to 7 weeks of high P treat-
ment; however, a long-term P treatment can reduce the
formation of secondary entry points through reduced
growth of external mycelium from an established in-
fection (Schwab et al., 1983; Braunberger et al., 1991).
Therefore, P inhibition may primarily occur inside
roots, although the precise stages of P inhibition
during the growth of infection units remains poorly
understood.

To investigate the stages of P inhibition, we per-
formed detailed morphological analyses of intra-
radical development during short periods after
P treatment. In these experiments, rice (Oryza sativa)
seedlings expressing the arbuscule life cycle marker
GFP-AM42 (Kobae and Fujiwara, 2014) and the sym-
biotic phosphate transporter PT11-GFP (Kobae and
Hata, 2010) were used with a live imaging system
(Kobae and Fujiwara, 2014). Subsequent observations
revealed both fragile and robust colonization under
conditions of P inhibition. Specifically, P selectively
inhibited the development of new arbuscules without
compromising the life cycle of finely branched arbus-
cules or eliminating the intraradical accommodation
of AM fungi. Importantly, the reduction of arbuscule
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density with P was accelerated in the rice pt11-1 mu-
tant, which is defective in P uptake after release from
arbuscule branches (Yang et al., 2012). These obser-
vations suggest a novel regulatory mode of intra-
radical colonization that is mycelium-type specific during
P inhibition.

RESULTS

P Rapidly Reduces Arbuscule Density in
Hyphal-Colonized Regions

To investigate the effects of P treatment on coloni-
zation of AM fungi, we initially inoculated rice seed-
lings with Rhizophagus irreqularis and examined the
morphological changes shortly after exposure to high
P conditions. At 14 d post-planting (dpp), plants were
treated with 20 mL of a 0.5 mM P solution. At this stage,
the roots were well colonized with AM fungi, and the
morphological changes of intraradical mycelium were
analyzed using wheat germ agglutinin-conjugated
fluorescein isothiocyanate (WGA-FITC), which selec-
tively stains fungal cell walls (Bonfante-Fasolo et al.,
1990). The number of arbuscules in the colonized region
tended to decrease at 5 h after P treatment (Fig. 1, A and
B). The term “colonized region” was used in reference
to hyphal-colonized root regions and single colonized
regions were bound by two infection fronts comprising
intercellular hyphae (Supplemental Fig. S1; Buwalda
et al., 1984). Numerous infection units can coalesce to
form a colonized region, where the border of each in-
fection unit is not identified at least within a few days
from the beginning of colonization (Sanders and
Sheikh, 1983). The lengths of colonized regions and
numbers of arbuscules with fine branches were deter-
mined for each. Arbuscule densities in the colonized
regions significantly decreased at 5 h after P treatment
compared with those after water treatment (Fig. 1C). In
the infection fronts of water-treated roots, the growing
tips of intercellular hyphae tended to be followed im-
mediately by arbuscule formations (Fig. 2A). However,
in the infection fronts of P-treated roots, the lengths of
hyphal-colonized regions without finely branched
arbuscules increased (Fig. 2C; Supplemental Fig. S1B).
In contrast, arbuscule trunks/undeveloped arbuscules
characterized by coarse and lower order branching
compared with mature arbuscules were formed at
regular intervals on intercellular hyphae (Fig. 2B;
Supplemental Fig. S2). The numbers of arbuscule
trunks/undeveloped arbuscules in the infection fronts
of P-treated roots were significantly higher than those
in the control roots (Fig. 2D). Despite decreases in
arbuscule density in the infection fronts of P-treated
roots, the lengths of colonized regions and densities of
hyphopodia over the lengths of colonized regions
were not affected by P treatment at 20 h (Supplemental
Fig. S3). Moreover, the size of finely branched arbus-
cules in the colonized regions was not affected by
P treatment (Fig. 2E).
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Figure 1. P treatment rapidly reduces arbuscule density in colonized regions. The roots of rice colonized with R. irregularis were
treated with water (A) or 0.5 mM Pi (B) at 14 dpp for 5 h in pot culture. The roots were stained with WGA-FITC to detect the
intraradical mycelium. Bars = 200 um. C, The numbers of arbuscules per length of colonized region (arbuscule density). Col-
onized regions (n = 20-26) were randomly chosen and dissected from three plants, and the longitudinal lengths and numbers of
arbuscules with fine branches in each colonized region were measured. Young arbuscules with only trunk or senescent arbuscules
that were sparsely stained with WGA-FITC were not included. Middle lines of box plots represent median values, and bars
represent ranges (minimum to maximum). **P < 0.01, Welch’s ttest (water versus Pat 5 h). Arrowheads indicate finely branched

arbuscules. V, Vesicle.

P Treatment Temporarily Inhibits New Arbuscule
Development at Infection Fronts

Differential effects of P inhibition at different devel-
opmental stages of arbuscules were investigated. In
these experiments, young, developing, mature, and
collapsed arbuscules were distinguished according
to intracellular localization patterns of GFP-AM42/
secretory carrier membrane protein (Kobae and
Fujiwara, 2014). Accordingly, the effects of P inhibition
were determined by evaluating localization patterns
of GFP-AM42 throughout the arbuscule life cycle. In
these experiments, (1) GFP-AM42 accumulated at fun-
gal entry points of infected cells; (2) outlines of trunks in
developing arbuscules were clearly stained with GFP-
AM42, and those of fully branched arbuscules were
hardly stained; and (3) transvacuolar strands were
colocalized with GFP-AM42 in cells containing col-
lapsing arbuscules (Fig. 3A). Taken with data from a
previous study (Kobae and Fujiwara, 2014), these ob-
servations indicated that the life cycle of arbuscules can
be precisely examined in the following five stages (Fig.
3A): Stage I, preinfection or penetration; Stage II, only
arbuscule trunk with no visible branches; Stage III,
young arbuscule with branches occupying < 70% of the
cell area; Stage IV, mature arbuscule with branches
occupying >70% of cell area; and Stage V, collapsed
arbuscules (Gutjahr and Parniske, 2013). According to
this criterion, we investigated the changes in arbuscule
life cycles after P treatment concerning the develop-
mental stages of the youngest 10 intracellular coloni-
zations in each infection front. Gradual development of
arbuscules can be observed in this region (Buwalda
et al., 1984) allowing the precise observation of P inhi-
bition during colonization stages. The numbers of
young arbuscules in infection fronts of P-treated roots
tended to be decreased compared to those of water-
treated roots. Approximately 70% of colonization was
in stages I, II, and IIl at 8 to 8.5 h after the water
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treatment of rice roots, and approximately 30% was in
stages I and II (Fig. 3, B and D). In contrast, a small
number of arbuscules in young stages was observed in
the infection fronts of P-treated roots (Fig. 3C), with
~40% of arbuscules being in stages I, I, and Il at 8.5 to
9.5 h after P treatment and 2% being in stages I and 1II
(Fig. 3D). The arbuscules of stage I and II recovered at
24.5 to 25.5 h after P treatment. These observations
suggest that P treatment rapidly and temporarily
inhibited the formation of new arbuscules but has
little impact on the formation of mature arbuscules. In
agreement, no changes in localization patterns of GFP-
AMA42 were observed in cells with branched arbuscules
(Supplemental Fig. S4).

Branched Arbuscules Are Metabolically Active

To confirm the intactness of branched arbuscules
during P inhibition, metabolic activity of branched
arbuscules was investigated. First, rice roots colonized
with R. irreqularis were treated with water or 0.5 mM
P solution at 14 dpp, and the roots were subjected to
fungal vital staining (MacDonald and Lewis, 1978) or
WGA-FITC staining at 4 or 20 h after the treatments.
The number of colonized regions was similar between
vital staining and WGA-FITC staining irrespective of
time or treatment (Supplemental Fig. S5A). Next, the
number of branched arbuscules per colonized region
was analyzed. Branched arbuscules stained with vital
staining were determined according to a criterion de-
scribed previously (Kobae et al., 2014). The number of
branched arbuscules was decreased by P treatment,
whereas the values were not significantly different
between vital staining and WGA-FITC staining
(Supplemental Fig. S5B). The total number of branched
arbuscules per plant was then determined by multi-
plying the number of the colonized regions per plant
and the average value of the numbers of branched

Plant Physiol. Vol. 171, 2016


http://www.plantphysiol.org/cgi/content/full/pp.16.00127/DC1
http://www.plantphysiol.org/cgi/content/full/pp.16.00127/DC1
http://www.plantphysiol.org/cgi/content/full/pp.16.00127/DC1

¢ 0.8 ok D.a 25
< 4 2%
. O N ]
§§§0.6- %E
Q5= i -]

L -] c 15 4

T8 5 22

8357 £33

225 i 52810

5520.2- o3

ﬂ’g 3 0

-l i 0 ga 0
water P -
5h 5h 0h

E 50 ~
;9:40- %
>
‘230_ I
Q
2 207
Q
¢ :

10
0 |

’y »

water P

1

P Inhibition of AM Roots

Figure 2. Aberrant hyphal branches were
observed at infection fronts of P-treated
roots. Rice roots colonized with R. irregu-
laris (14 dpp) were treated with water or
0.5 mM P for 5 h in pot culture and stained
with WGA-FITC. A, Image of infection
fronts of hyphal-colonized regions treated
with water. B, Aberrant hyphal branches
were observed in P-treated rice roots (ar-
rowheads). Bars =20 um in A and B. C, The
lengths of hyphal-colonized regions with-
out finely branched arbuscules at infection
fronts. The lengths of intercellular hyphae
from the tip of growing hyphal fronts to the
outermost branched arbuscule were mea-
sured. Data were obtained from 43 (water
treatment) or 45 (P treatment) colonized
regions that were randomly chosen from
three plants. Middle lines of box plots
represent median values, and bars repre-
sent ranges (minimum to maximum).
D, The numbers of arbuscule trunks/
undeveloped arbuscules in 10 infection
fronts. Ten infection fronts were randomly
chosen from three plants of each treatment,
and the numbers of arbuscule trunks/
undeveloped arbuscules were counted over
200 um from the tip of the infection front.
*#*P < 0.01, Welch'’s t test (P versus water).
E, The size distribution of branched arbus-
cules. Fifteen colonized regions were ran-
domly chosen from three plants, and the areas
of longitudinal optical sections of all visible
branched arbuscules (29-84 arbuscules from
each colonized region) were measured. Data

phosphate

p—y

ab

RS

5h 5h

- 0h

5 h water
%+ 5h P

0-200 200-400 400-600 600-800 800-1000 >1000

arbuscule area (um?)

arbuscules per colonized region. The numbers of met-
abolically active branched arbuscules were not signifi-
cantly different between water and P treatment at 4 and
20 h (Fig. 4). The data suggest that branched arbuscules
were metabolically active during P inhibition at least
up to 20 h after P treatment. Transmission electron
microscopy analysis also indicated that AM fungi
maintained their cytoplasm in arbuscule branches
(Supplemental Fig. S6).

The Life Span of Branched Arbuscules Is Not Affected by
P Treatment

To further confirm the stability of branched arbus-
cules during P inhibition, arbuscule sizes were ana-
lyzed using the GFP-fused rice phosphate transporter
PT11, which is specifically located on periarbuscular
membranes surrounding arbuscule branches (Kobae
and Hata, 2010; Kobae and Fujiwara, 2014) and is re-
sponsible for phosphate uptake in the rice mycorrhizal
pathway (Yang et al., 2012). The size of arbuscules in-
dicated by PT11-GFP was not affected by P treatment at
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are presented as means * sp (D and E). ab,
Arbuscule.

5 h after the treatment (Fig. 5A). In further experiments,
the in vivo inhibition of new arbuscule formation and
life span of arbuscule were examined using live imag-
ing of rice expressing PT11-GFP after treatment with
water or P. The appearance and disappearance of new
infection units over 72 h in the water control were ob-
served, and new infection units emerged in 13 of 24 and
10 of 24 colonized regions during 0- to 20- and 20- to 50-
h periods after water treatments, respectively (Fig. 5B).
In contrast, the emergence of new infection units in
P-treated roots was hardly observed (Supplemental Fig.
S7) and appeared in only 1 of 23 colonized regions
during the 0- to 20-h period after P treatment (Fig. 5B).
However, the emergence of new infection units recov-
ered in 10 of 23 colonized regions during the 20- to 50-h
period after P treatment, which was comparable to the
numbers of infection units in the water control during
this period (Fig. 5B), indicating the temporary nature of
P inhibition. Subsequently, we used PT11-GFP labeling
to track the life span of arbuscules. In these experi-
ments, a total of 73 and 71 branched arbuscules were
randomly chosen from water- and P-treated roots,
respectively, and their presence at 7 and 22 h after
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Figure 3. P treatment temporarily inhibits new arbuscule development at infection fronts. A, Diagram of arbuscule life cycle
based on the intracellular localization patterns of the GFP-conjugated arbuscule life cycle marker (GFP-AM42) in arbusculated
cells. proAM42-GFP-AM42 rice plants were inoculated with R. irregularis (14-16 dpp). Representative images of GFP-AM42 in
host cells at respective arbuscule developmental stages (bottom panel) are shown as schematic diagrams (upper panel). Stage |,
primary entry points are marked by the accumulation of GFP-AM42; Stage I, outlines of young arbuscules, mostly with trunks,
were visualized using GFP-AM42; Stage lll, developing arbuscules with thick or fine branches; Stage IV, mature arbuscules were
rich in fine arbuscule branches (ab) that occupy most of the cell space; Stage V, collapsed arbuscule. Transvacuolar strands (ts)
were observed in cells containing senescent arbuscules (sa). Cells with arbuscule clumps (ac) often contained mobile granular
structures (mg) that were strongly stained with GFP-AM42 (Kobae and Fujiwara, 2014). In the diagram, green indicates the lo-
cations of GFP-AM42 protein, red indicates hyphae of AM fungi, and arrowheads indicate positions of trunks. Representative
image of infection fronts of proAM42-GFP-AM42 roots at 5 h after treatment with water (B) or 0.5 mM P (C). D, Ratios of de-
velopmental stages of the youngest 10 arbuscules at infection fronts. proAM42-GFP-AM42 roots were treated with water or
0.5 mM P at 15 dpp. Infection fronts (n = 14-31) were randomly chosen from three plants in each treatment and were photo-
graphedat4.5t05, 6t0 6.5, 8t0 8.5, and 24 to 24.5 h after water treatmentand at 5t0 5.5, 6.5t0 7.5, 8.5t0 9.5, and 24.5t025.5 h
after P treatment, and the ratios of arbuscular developmental stages were analyzed according to the localization patterns of
GFP-AM42. Bars = 20 wm in A and 50 um in B and C.
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Figure 4. Branched arbuscules are metabolically active after P treat-
ment. Rice roots colonized with R. irregularis were treated with water or
0.5 mM Pi at 14 dpp. Roots were subjected to fungal vital staining or
WGA-FITC staining at 4 or 20 h after the treatments. To calculate the
total number of branched arbuscules per plant, numbers of colonized
regions per plant (n = 5, biologically independent) were first deter-
mined. Then, numbers of branched arbuscules in each colonized region
(n =5, in each plant) were counted (Supplemental Fig. S5). The total
numbers of branched arbuscules per plant were determined by multi-
plying the number of colonized regions and the average value of the
numbers of branched arbuscules in colonized region. Data are pre-
sented as means = spb. Two-way ANOVAs were performed on the data,
with treatments (water/P) and staining method (WGA/vital staining) as
factors for each time point separately. Staining methods had no signif-
icant effect on the number of branched arbuscules per plant, while
P treatments had significant effects (P < 0.01).

treatment did not differ between water- and P-treated
roots (Fig. 5C), suggesting the stability of the life span of
branched arbuscules during P inhibition.

PT11 Is Required for Stabilization of Branched Arbuscules
during P Inhibition

Proper localization of symbiosis-specific P trans-
porter on periarbuscular membrane is crucial for the
normal development of arbuscule branches (Pumplin
et al, 2012). As immature arbuscule-containing cells
lack symbiosis-specific P transporter (Kobae and Hata,
2010; Pumplin et al., 2012) and PT11-GFP-positive
arbuscules are resistant to P inhibition (Fig. 5), we
considered the possibility that the presence of PT11 is
related to the stability of branched arbuscules. To
evaluate this hypothesis, we analyzed the arbuscule
density of the rice pt11-1 mutant after P treatment.
Under low P condition, arbuscule density of pt11-1
mutant was comparable to that of the wild type at 14
dpp (Fig. 6), and no obvious difference was observed.
When pt11-1 or wild-type plants colonized with
R. irregularis (14 dpp) were transplanted into pots to-
gether with germinated acceptor wild-type seeds, the
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numbers of colonized regions formed in the acceptor
roots were not significantly different at 14 d post
transplant (Supplemental Fig. S8A), but the length of
colonized regions in the acceptor roots inoculated with
pt11-1 was reduced compared to those inoculated with
the wild type (Supplemental Fig. S8B). The data suggest
that fungal colonization is maintained, but the fungal
growth is not sustained in pt11-1 mutant. Despite nor-
mal arbuscule density of pt11-1 roots under low P con-
dition, the arbuscule density was significantly reduced
after P treatments compared with that of the wild type
(Fig. 6), indicating that PT11 is required for arbuscule
stability during P inhibition.

Vesicle Formation Is Increased by P Treatment

WGA-FITC staining of mycorrhizal roots at 24 h after
P treatment revealed 7-fold increases in the numbers of
vesicles, whereas the numbers of vesicles were similar
at 72 h after P or water treatments (Fig. 7A). Subse-
quently, lipid droplets were detected in vesicles using
the fluorescent probe Nile red (NR) in live imaging
analyses of PT11-GFP rice. NR is a hydrophobic probe
for neutral lipids, = emits yellow-red fluorescence
(Greenspan et al., 1985), and can penetrate the cortex of
rice roots within 30 min (Kobae et al., 2014). Accumu-
lation of lipid droplets was observed in vesicles at
30 min after NR treatment and changed every minute of
the 2-h observation period, suggesting the mobility of
lipid droplets in vesicles (Fig. 7B). Whether the lipid
droplets increased more rapidly after high P treatment
compared with water treatment was unclear. However,
some vesicles lost their lipid droplets during observa-
tion (Fig. 7C). To determine whether quenching or
dilution of NR in roots or mycelium compromised
detection in lipid droplets, live imaging was performed
with additional NR, and lipid accumulation was
monitored. In these experiments, no increases in lipid
droplet accumulation were observed at 30 min after NR
treatment, whereas numerous lipid droplets accumu-
lated after 1 d (Supplemental Fig. S9). Taken together,
these observations confirm that lipid droplets accu-
mulated and then decreased in vesicles within a few
days.

DISCUSSION

The stage of P inhibition during the growth of in-
fection units was previously uncharacterized. In this
study, P inhibition primarily occurred during the de-
velopment of new arbuscules that lack branches, and
other intraradical colonization processes were not
inhibited. Specifically, older arbuscules with PT11-
GFP-labeled branches were tolerant to P inhibition
and showed robust life cycles and intraradical accom-
modation of AM fungal infections under these condi-
tions. Although P reportedly reduced numbers of
vesicles, our data indicate that vesicle formation was
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Figure 5. PT11-GFP-stained branched arbuscules are resistant to P inhibition. A, Size distribution of arbuscules indicated by the
P transporter PT11-GFP. proPT11-PT11-GFProots were colonized with R. irregularis (14 dpp) and were then treated with water or
0.5 mM P for 5 h in pot culture. Five colonized regions were randomly chosen from each of three plants, and the areas of lon-
gitudinal optical sections of all visible arbuscules (40-126 arbuscules from each colonized region) were measured. B, The fre-
quency of new infection unit developments after water or P treatment. Colonized regions (24, water treatment; 23, P treatment)
were tracked for 50 h using live imaging, and the emergence of new infection units after 0 to 20 h and 20 to 50 h were analyzed.
Values above columns indicate the ratios of the numbers of colonized regions with new infection units and numbers of colonized
regions observed. C, The comparison of arbuscule life spans between water and P treatment. A total of 73 and 71 arbuscules were
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plants, respectively, and were tracked using live imaging. The numbers of intact arbuscules in each colonized region before
treatment with water or P were defined as 100%, and the percentages of intact arbuscules after 7 and 22 h are shown. Data are

presented as means = sp. Bars = 100 um in A and B.

induced under conditions of P inhibition, suggesting a
novel regulatory mode of intraradical colonization that
is mycelium-type specific in short-term effects of P in-
hibition.

P Treatment Selectively Inhibits the Development of
New Arbuscules

Under conditions of low P, continuous intraradical
colonization is achieved through the repetitive devel-
opments of new infection units (Fig. 8A). In agreement,
infection units and arbuscules reportedly senesce after
the cessation of the intercellular longitudinal extension
of hyphae (Cox and Sanders, 1974; Kobae and Hata,
2010). Moreover, recent live imaging of mycorrhizal
roots of rice showed that colonized cells tend to not be
recolonized as readily as previously uncolonized cells.
Therefore, well-colonized cortical cells may support
continuous cycles of infection unit formation (Kobae
and Fujiwara, 2014). In this study, P treatment rapidly
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reduced the arbuscule density of colonized regions and
increased the number of immature arbuscules at infec-
tion fronts after 5 h of P treatment (Fig. 8B). Because the
longitudinal length of colonized regions and the den-
sity of hyphopodia were not changed at 20 h after
P treatment, the reduced density of arbuscules during
the early stages of P inhibition may reflect the inhibition
of new arbuscule development. Accordingly, the lack of
endomembrane localization of GFP-AM42 presentation
at infection fronts indicated the inhibition of normal
membrane trafficking, whereas preformed arbuscules
were tolerant to P treatments. After P treatment, (1) size
of branched arbuscules indicated by fungal cell wall
staining and PT11-GFP imaging was not changed, (2)
intracellular localization patterns of PT11-GFP and
GFP-AM42 were not changed in cells containing
branched arbuscules, (3) metabolic activities of
branched arbuscules were maintained, and (4) live
imaging of PT11-GFP indicated no changes in the life
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Figure 6. Arbuscule density in the roots of pt17-1 is significantly re-
duced by P supply compared with the wild type. The roots of the wild
type or pt11-1 mutant colonized with R. irregularis were treated with
water or 0.5 mM Pi at 14 dpp for 5 h in pot culture. The roots were
stained with WGA-FITC to detect the intraradical mycelium. Colonized
regions (n = 60) were randomly chosen from six plants, and the longi-
tudinal lengths and numbers of arbuscules with fine branches in each
colonized region were measured. Young arbuscules with only trunk or
senescent arbuscules that were sparsely stained with WGA-FITC were
not included. Middle lines of box plots represent median values, and
bars represent ranges (minimum to maximum). Two-way ANOVAs were
performed on the data, with genotype (wild type/pt11-1) and treatment
(water/phosphate) as factors. Both genotype (P < 0.01) and treatment
(P < 0.05) had significant effects. There was no significant interaction
between genotype and treatment. **P < 0.01, Welch’s t test (water
versus P); ns, no significant difference.

spans of branched arbuscules. Thus, reduced arbuscule
density does not reflect the early degeneration of
branched arbuscules. The stability of older arbuscules
against P inhibition was also suggested by other re-
ports: P uptakes via AM fungi in the mycorrhizal roots
of wheat (Triticum aestivum) and tomato (Solanum
lycopersicum) treated with P were maintained, whereas
colonization rates decreased (Li et al., 2006; Nagy et al.,
2009). Breuillin et al. (2010) reported that P did not re-
duce the colonization level of petunia mycorrhizal roots
before 2 weeks after P supply, but the transcript levels
of symbiotic P transporter genes were decreased within
2 d. It is possible that symbiotic P transporter proteins
localize periarbuscular membranes to maintain arbus-
cules during P inhibition, but the transcription is imme-
diately suppressed.

Vesicle Formation Is Induced during P Inhibition

Our observations also revealed that P treatment in-
creased the formation of vesicles in roots (Fig. 8B). The
precise biological roles of vesicles remain unclear
(Smith and Read, 2008). Early cytological studies of
vesicles suggested that the protoplasm of young vesi-
cles contains many nuclei, glycogen granules, and small
vacuoles, while mature vesicles contain many lipid
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droplets (Bonfante-Fasolo, 1984). Given that the num-
ber of vesicles often increase in old or dead roots
(Bonfante-Fasolo, 1984), vesicles are thought to be
resting organs, playing a significant role as propagules
within roots (Smith and Read, 2008). However, to our
knowledge, rapid changes in the number or the content
of vesicle lumen in response to environmental factor
have not been described. We demonstrated that lipid
droplets labeled with NR in vesicles decreased within a
few days, and colonization resumed between 20 and
50 h after P treatment. The mobility of lipid droplets in
vesicles is consistent with previous reports that indi-
cate the inconsistent timing of vesicle formation and
accumulation of neutral lipids (Graham et al., 1995;
van Aarle and Olsson, 2003; Olsson et al., 2010).
McLennan (1926) observed that swelling vesicles are
highly protoplasmic and contain many lipids in the
mycorrhizal roots of Lolium temulentum (ryegrass). At a
later stage of colonization, lipids are removed from
them and rapidly carried to the hyphae of subsequent
colonization. The vesicles consequently become empty;
thus, vesicles can be regarded as temporary reserve
organs (McLennan, 1926). Our observation is consistent
with the opinion of McLennan (1926), and the variable
vesicle contents may mirror the pleiotropic roles of
vesicles in the colonization cycle of mycorrhizal roots.
Although further studies will be needed, it is tempting
to speculate that vesicles serve as, during P inhibition, a
“retention basin” that sequestrates the fungal cyto-
plasm during P inhibition. Arbuscules collapse within a
few days even under low P conditions, likely leading to
the withdrawal of cytoplasmic and structural constit-
uents (Kobae et al., 2014). Accordingly, in a previous
study on rice mycorrhizal roots, the collapse of 30
arbuscules leads to withdrawals of fungal cytoplasm
volumes that are equivalent to the volume of six to
seven plant cells (Kobae et al., 2014). Because secondary
infection units are reportedly fueled from previously
formed infection units (Sanders and Sheikh, 1983) and,
in this study, the development of new infection units
were inhibited after P treatment, withdrawn fungal
cytoplasm from collapsed arbuscules may lose their
destinations. Therefore, cytoplasm and lipid droplets
from collapsed arbuscules (Kobae et al., 2014) may be
sequestered into vesicles during P inhibition.

Short-Term P Inhibition versus Long-Term P Inhibition

In contrast with our observations, early studies
showed that P inhibition decreases the numbers of
vesicles (Abbott and Robson, 1979; Stribley et al., 1980;
Abbott et al., 1984; Amijee et al., 1989: Bruce et al., 1994)
and lengths of colonized regions (Sanders and Tinker,
1973; Jasper et al., 1979; Buwalda et al., 1982; Graham
and Leonard, 1982; Smith, 1982; Amijee et al., 1989;
Miranda et al., 1989; Smith and Gianinazzi-Pearson,
1990; Braunberger et al., 1991; Thomson et al., 1991;
Baon et al.,, 1992; Bruce et al.,, 1994, Tawaraya
et al., 1994). However, reduced intraradical fungal
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Figure 7. Vesicle formation is increased in P-treated plants. A, Vesicle numbers. Rice plants were colonized with R. irregularis,
treated with water or 0.5 mM Pat 14 dpp, and stained with WGA-FITC. The numbers of vesicles in 10 randomly chosen colonized
regions from three plants were measured after 24 and 72 h. Data are presented as means * sp of three biological replicates. **P <
0.01; Welch’s ttest (water versus P). B, Live imaging of a vesicle with accumulated lipid droplets. proPT11-PT11-GFP roots were
colonized with R. irregularis in a live imaging system, treated with P at 13 dpp, and supplemented with NR at 15 dpp, and live
imaging was performed 60 min after the addition of NR. Four time points (0.5, 1, 1.5, and 2 h from the start of time lapse) are
shown. C, Live imaging of a vesicle that lost lipid droplets. Two time points (0.5 and 24 h from the start of time lapse) are shown.
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colonization was observed at 8 to 108 d after the ap-
plication of large quantities of P (average 231 mg/kg
soil in maximum treatment; 4.8 mg/kg soil in this
study) or frequent P treatments in these studies. Hence,
P treatment is likely to decrease the growth of intra-
radical mycelium and decrease the length of extra-
radical hyphae (Abbott et al., 1984), which potentially
contribute to subsequent infections that support repet-
itive colonization and further mycorrhizal develop-
ment (Sanders and Sheikh, 1983; Schwab et al., 1983).
Therefore, long-term P treatment likely decreases col-
onization by attenuating the cycle sequences of intra-
radical colonization as an indirect effect of primary
P inhibition (Abbott et al., 1984; Bruce et al., 1994). In
contrast, the numbers of vesicles and lengths of colo-
nized regions were assessed at 1 d after P treatment in
this study, representing the earliest measurements of
P inhibition effects to date. We showed that cellular
responses that inhibit the development of new arbus-
cules occurred within hours of P treatment. Differential
expression of thousands of rice genes was observed in
shoots and roots within 1 h after P treatment (Secco
et al.,, 2013), further indicating molecular and cellular
responses that inhibit new arbuscule development
within a few hours. Intriguingly, colonization can re-
cover within a couple of days. The soil used in this
study is volcanic lapillus that strongly captures P; thus,
treated P might immediately become unavailable for
roots, leading to the recovery of colonization.

There is no direct evidence linking temporary P in-
hibition with the significant reduction of colonization
levels during intensive P fertilization in the field. Long
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term, sequential analyses of P inhibition would help to
address this question and we monitored the fate of
temporary P inhibition by means of a time-course
analysis of arbuscule development after P treatment.
However, in this culture system, colonization is sup-
pressed a week after the beginning of infection proba-
bly due to the spatial limitation of the culture system or
malnutrition, making it difficult to characterize the
colonization sequences during long-term P inhibition;
therefore, it will be necessary to pursue these studies in
another way.

The Potential Mechanism of P Inhibition

The molecular basis of P inhibition remains unclear
(Carbonnel and Gutjahr, 2014). Transcriptome analyses
of mycorrhizal petunia roots under varying P condi-
tions demonstrated the absence of defense responses
and significant down-regulation of genes encoding
enzymes of carotenoid and strigolactone biosynthesis
(Breuillin et al., 2010). Biosynthesis, transport, and sig-
naling events of strigolactone-related molecules are
required for normal colonization (Floss et al., 2008;
Vogel et al.,, 2010; Kretzschmar et al., 2012; Yoshida
et al., 2012; Foo et al., 2013; Gutjahr et al., 2015). Stri-
golactones also induce hyphal branching (Akiyama
et al., 2005) and increase the production of symbiotic
fungal signals (Genre et al., 2013). However, normal
arbuscules are formed in plant mutants that are defec-
tive in strigolactone biosynthesis genes (Gutjahr et al.,
2012), suggesting that reduced strigolactone levels are
not involved in the early stages of P inhibition.
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Figure 8. Diagram of P inhibition in mycorrhizal rice roots. A, Diagram of the development of intraradical colonization under
conditions of low P. (1) Young infection units grow and develop new arbuscules at infection fronts. (2) Colonized regions develop
through the repetitive formation of infection units, and new infection units develop immediately adjacent to established infection
units. (3) Arbuscules collapse from near the hyphopodia because of their short and constant life span. (4) Colonized regions with
senescent arbuscules often form vesicles, but the precise timing and localization cannot be predicted (represented by the dotted
line). B, Diagram of the development of intraradical colonization under conditions of high P. (5) P treatment induces aberrant
hyphal branching at infection fronts. New infection units hardly develop within colonized regions for at least 1 d after P treatment.
The inhibition of new arbuscule formation eventually reduces the density of arbuscules. (6) P does not affect the morphology or
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Moreover, our observations suggest that P treatment
interrupts the development of arbuscules at the coarse
hyphal branch stage. These data are in accordance with
the “birdsfoot” arbuscules described by Gutjahr and
Parniske (2013), which are observed in cells with mu-
tant or RNA interference against STR1 (Zhang et al.,
2010; Gutjahr et al., 2012; Kojima et al., 2014), PAM1
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(Feddermann et al., 2010), RAM2 (Wang et al., 2012),
VAMP72s (Ivanov et al., 2012), SYP132A (Pan et al.,
2016), EXO70I (Zhang et al., 2015), VTI12 (Lota
et al., 2013), ERF1 (Devers et al., 2013), RED (Groth
et al., 2013; Gutjahr and Parniske, 2013), RAM1/ATA
(Rich et al., 2015), RAD1 (Park et al., 2015; Xue et al.,
2015), and FatM (Bravo et al., 2016). Hence, P inhibition
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may be related to the functions of these genes. Recently,
it has been shown that RAM1, a GRAS-type transcrip-
tion factor, regulates the expressions of at least STR and
EXO701, which are required for the support of arbus-
cule branching (Park et al., 2015). RAMI expression is
also regulated by DELLA/gibberellin signaling mod-
ule, and DELLA level is regulated by P status (Floss
et al., 2013; Takeda et al., 2015; Park et al., 2015). We
showed that the numbers of GFP-AM42-positive young
arbuscules in infection fronts of P-treated roots tended
to be decreased compared to those of water-treated
roots, suggesting that the development of arbuscules
was arrested at their young stages. Potentially, tran-
scriptional regulation of genes responsible for the de-
velopment of arbuscules may be suppressed during
P inhibition.

In this study, we show that P treatment selectively
inhibits the development of immature arbuscules, and
branched arbuscules are tolerant to P inhibition. Po-
tentially, the selectivity of P inhibition indicates the
presence of a localized stabilization mechanism of
branched arbuscules. Considering that (1) the loss of
periarbuscular membrane localization of the M. trun-
catula PT11 ortholog MtPT4%F led to the premature
degeneration of arbuscules (Pumplin et al., 2012), (2)
PT11/PT4 is not localized to the plasma membrane or
membranes surrounding young arbuscules that have
no fine branches (Harrison et al., 2002; Pumplin and
Harrison, 2009; Kobae and Hata, 2010), and (3) plants
can recognize locally increased P supply, which stim-
ulate increased carbon allocation to a localized regions
around the P supply (Drew, 1975; Fitter, 2006), it was
hypothesized that unbranched immature arbuscules
may not contribute to P uptake and that the appropriate
P uptake at branched arbuscules may be related to the
stabilization of arbuscules. Consistent with this, pt11-1
was more sensitive to P inhibition than that of the wild
type, suggesting that P uptake through PT11 in colo-
nized cells stabilizes arbuscules during P inhibition.
Alternatively, PT11 in arbuscule-containing cells may
act as a component of P-sensing machinery as proposed
in the root tips of M. truncatula and Lotus japonicas
(Volpe et al., 2016).

It has been shown that long-term P inhibition is
partially suppressed under low nitrogen (N) conditions
(Blanke et al., 2005; Nouri et al., 2014). Furthermore,
premature arbuscule degeneration in M. truncatula pt4
mutant is also suppressed under low N conditions
(Javot et al., 2011), and an ammonium transporter
of periarbuscular membrane is implicated in this
regulation (Breuillin-Sessoms et al., 2015). Thus, it
can be assumed that plant N status may control
the conditions for the maintenance of arbuscules
through the transport/signaling function of symbi-
otic N transporters in mature arbuscule-containing cells
(Breuillin-Sessoms et al., 2015). In this study, arbuscule
development of pt11-1 mutant was normal at least up to
14 dpp under low P condition, suggesting that pt11-1 in
this growth condition was basically low N status and
was stabilized by the mechanism of “N-mediated
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maintenance.” In fact, pt11-1 plants were grown un-
der semiarid condition and were supplied with no nu-
trition (except for P) throughout the experiments.
Alternatively, the pt11/pt4 phenotype (i.e. accelerated
arbuscule turnover) may not be detected at early time
points (Javot et al.,, 2007). Nevertheless, P inhibition
was accelerated in the pt11-1 mutant, indicating that
“P-mediated maintenance” is crucial for the stabiliza-
tion of arbuscules during P inhibition. In addition,
nurse pt11-1 plant was not able to support the growth
of fungus even if the arbuscule formation is maintained,
suggesting that PT11 is implicated in the maintenance
of life cycle of AM fungus. Taken together, the data
highlight a novel role of symbiotic P transporter in
supporting arbuscule maintenance at high P conditions
that interfere with arbuscule development.

In conclusion, our data strongly indicate that
P treatment inhibited the development of new arbus-
cules within 5 h and that this inhibition was tempo-
rary. In contrast to assumptions derived from long-
term P treatments, vesicle formation was enhanced by
P treatment in the short term, suggesting that mycor-
rhizal roots assume a resting state but continue to
accommodate AM fungi under these conditions. The
robust nature of arbuscule formation would guarantee
continuous P uptake during growth in conditions of
varying P fertility, such as those observed in the natural
ecosystems. Moreover, we demonstrated that the sta-
bility of mature arbuscules under high P condition is
PT11 dependent, revealing a novel function of the
P transporter for the stable colonization of AM fungi.

MATERIALS AND METHODS
Plant Growth and P Treatment in Pot Culture

Rice seeds (Oryza sativa cv Nipponbare) were surface sterilized with bleach
(2.5% available chloride) for 5 min, rinsed with excess deionized water five
times, and immersed in deionized water for 2 d at 28°C. The germinated seeds
were grown singly in 100-mL pots (D-100; Teraoka). The soil consists of 20 g
(bottom layer) of Akadama soil (tuff loam; Setogahara Kaen) and 45 g (upper
layer) of Kanuma soil (weathered volcanic lapillus)/Ezo sand (small pumice)/
Nippi soil (granular potting soil; Nihon Hiryo) mixture (6:2:1, by weight).
Plants were inoculated with Rhizophagus irregularis (Premier Tech) by mixing
500 spores throughout the upper soil mixture before planting the germinated
seeds. Plant pots were placed in a flat-bottom tray and arranged randomly in a
greenhouse under 15-h-light/9-h-dark photoperiods (26-30°C/23-25°C). No
other nutrients were added except Nippi soil, and water was supplied from the
bottom by maintaining a water level up to 5 mm in depth. Twenty milliliters of
P solution (0.5 mm NaH,PO,/Na,HPO,, pH 5.4) was added from the bottom of
each plant (4.8 mg P/kg soil). Control pots received the same volume of water.

Plant Growth and P Treatment in Live Imaging System

Germinated seeds of proPT11-PT11-GFP (PT11-GFP rice; Kobae and Hata,
2010) were planted to 90 mm (diameter) X 15 mm (height) petri dishes of a live
imaging system (Kobae and Fujiwara, 2014). The soil of the live imaging system
consists of 31 g of Kanuma soil/Ezo sand /Nippi potting soil mixture (20:8:3, by
weight). Water was supplied from the bottom by capillary action of a 20-mm-
wide unwoven cloth. The base of the dish incorporated a 50- X 20-mm rect-
angular window covered with a 55- X 25-mm coverslip. Five hundred spores of
R. irregularis with 2 g of Kanuma soil were laid on the coverslip. Petri dishes
were placed on the inverted platform of a Zeiss epifluorescence microscope
(Axio observer Al). Three milliliters of 5 mm P solution (15 mg P/kg soil) was
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applied to the soil surface through two holes (5 mm in diameter) on the lid of the
petri dish. Considering the possibility that P applied from the top is caught at
soil surface (volcanic lapillus), the amount of P applied was 3 times higher than
that of pot experiments. Control dishes received the same volume of water.

Fungal Cell Wall Staining

Plants were extracted carefully from the pot. Roots were washed free of soil
using water and detached from the shoots. Roots were fixed in 50% ethanol for
2 h, cleared in 20% (w/v) KOH for 2 d at room temperature, washed five times
with PBS (135 mm NaCl, 25 mm KCl, and 10 mm Na,HPO,, pH 7.5), and then
soaked in PBS containing 0.2 ug mL~' WGA-FITC (Vector Laboratories). The
roots were kept in the same solution at least for 16 h in dark, washed with PBS
once, and then observed.

Microscopy

Colonized sites were located and dissected using a fluorescence stereomi-
croscope (Leica M165FC) and then analyzed using an epifluorescence micro-
scope (Zeiss Axio observer Al) or a confocal laser scanning microscope
(Olympus FV1000). GFP-AM42 or PT11-GFP fluorescence images were ana-
lyzed within 10 min of root excision. In live imaging, PT11-GFP rice seed-
lings grown in 90-mm petri dishes were placed on the inverted platform of a
Zeiss Axio observer Al. Images were processed using ZEN2011 (Zeiss). Rice
seedling leaves were kept illuminated at 25°C under continuous light with a
portable fluorescent lamp during live imaging. The lengths of colonized region,
the sizes of arbuscules were measured using Image].

Electron Microscopy

Twenty milliliters of 0.5 mM P solution was added to the pots of PT11-GFP
rice from the bottom at 14 dpp. Control pots received the same volume of water.
Colonized root regions that express PT11-GFP were dissected (<5 mm) using a
fluorescence stereomicroscope (Leica M165FC). The root segments were im-
mediately fixed in 2% glutaraldehyde in 20 mm sodium cacodylate buffer, pH
7.4, for 2 h on ice and then washed four times for 20 min each in 20 mm sodium
cacodylate buffer, pH 7.4, and postfixed in 2% OsO, for 2 h. The root segments
were dehydrated through an ethanol series and then through propylene oxide
series. The root segments were then infiltrated with modified Spurr’s resin,
combination with Quetol 653 (Nisshin EM; Kushida, 1980), gradually increased
concentration 50, 75, and 100% for 1 d each, and polymerized at 70°C for 2 d.
Ultrathin sections (50-90-nm thick) were cut, stained with uranyl acetate
and lead citrate, and observed by a transmission electron microscope
(JEM1010; JEOL).

Fungal Vital Staining

Fungal viability was assessed by vital staining, which detects in situ succi-
nate dehydrogenase activity with nitroblue tetrazolium (NBT; MacDonald and
Lewis, 1978). The whole root system was stained as described previously
(Kobae et al., 2014). GFP-AM42 (Kobae and Fujiwara, 2014) positive roots were
dissected using a fluorescent stereomicroscope, and the root segments were
incubated at room temperature for 30 min in the dark in NBT solution con-
taining 50 mwm Tris-HCl buffer (pH 7.4), 1 mg mL ™! NBT, 0.5 mm MgCl,, and
250 mm sodium succinate.

Lipid Droplet Staining

NR (AnaSpec) was diluted in deionized water or 0.5 mM P solution
(8 mg mL ") and immediately applied to the soil of live imaging system as
described previously (Kobae et al., 2014).

Supplemental Data

The following supplemental materials are available.

Supplemental Figure S1. The measurement of the lengths of hyphal-
colonized root regions.

Supplemental Figure S2. Confocal laser scanning microscope image of
arbuscule trunks/undeveloped arbuscules.
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Supplemental Figure S3. P treatment does not change colonization levels
at 20 h.

Supplemental Figure S4. No changes in localization patterns of GFP-
AM42 are observed in cells with finely branched arbuscules.

Supplemental Figure S5. Comparison of the colonization levels evaluated
by vital staining or WGA-FITC staining.

Supplemental Figure S6. AM fungi maintained their cytoplasm in arbus-
cule branches in P-treated roots.

Supplemental Figure S7. New infection units are hardly developed in
colonized region during P inhibition.

Supplemental Figure S8. pt11-1 nurse plant inoculation assay.

Supplemental Figure S9. Lipid droplets accumulate and decrease in
vesicles.
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