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Abstract

We introduce a generative probabilistic model for segmentation of brain lesions in multi-

dimensional images that generalizes the EM segmenter, a common approach for modelling brain 

images using Gaussian mixtures and a probabilistic tissue atlas that employs expectation-

maximization (EM) to estimate the label map for a new image. Our model augments the 

probabilistic atlas of the healthy tissues with a latent atlas of the lesion. We derive an estimation 

algorithm with closed-form EM update equations. The method extracts a latent atlas prior 

distribution and the lesion posterior distributions jointly from the image data. It delineates lesion 

areas individually in each channel, allowing for differences in lesion appearance across modalities, 

an important feature of many brain tumor imaging sequences. We also propose discriminative 

model extensions to map the output of the generative model to arbitrary labels with semantic and 

biological meaning, such as “tumor core” or “fluid-filled structure”, but without a one-to-one 

correspondence to the hypo-or hyper-intense lesion areas identified by the generative model.

We test the approach in two image sets: the publicly available BRATS set of glioma patient scans, 

and multimodal brain images of patients with acute and subacute ischemic stroke. We find the 

generative model that has been designed for tumor lesions to generalize well to stroke images, and 

the generative-discriminative model to be one of the top ranking methods in the BRATS 

evaluation.

Personal use is permitted, but republication/redistribution requires IEEE permission.

To support the further use and analysis of our generative segmentation algorithm, we make an implementation available in Python 
from http://ibbm.in.tum.de, also illustrating its use on reference data from the BRATS challenge.
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I. Introduction

Gliomas are the most frequent primary brain tumors. They originate from glial cells and 

grow by infiltrating the surrounding tissue. The more aggressive form of this disease is 

referred to as “high-grade” glioma. The tumor grows fast and patients often have survival 

times of two years or less, calling for immediate treatment after diagnosis. The slower 

growing “low-grade” disease comes with a life expectancy of five years or more, allowing 

the aggressive treatment to be delayed. Extensive neuroimaging protocols are used before 

and after treatment, mapping different tissue contrasts to evaluate the progression of the 

disease or the success of a chosen treatment strategy. As evaluations are often repeated every 

few months, large longitudinal datasets with multiple modalities are generated for these 

patients even in routine clinical practice. In spite of the need for accurate information to 

guide decision making process for an treatment, these image series are primarily evaluated 

using qualitative criteria – indicating, for example, the presence of characteristic 

hyperintense intensity changes in contrast-enhanced T1 MRI – or relying on quantitative 

measures that are as basic as calculating the largest tumor diameter that can be recorded in a 

set of axial images.

While an automated and reproducible quantification of tumor structures in multimodal 3D 

and 4D volumes is highly desirable, it remains difficult. Glioma is an infiltratively growing 

tumor with diffuse boundaries and lesion areas are only defined through intensity changes 

relative to surrounding normal tissues. As a consequence, the outlines of tumor structures 

cannot be easily delineated – even manual segmentations by expert raters show a significant 

variability [1] – and common MR intensity normalization strategies fail in the presence of 

extended lesions. Tumor structures show a significant amount of variation in size, shape, and 

localization, precluding the use of related mathematical priors. Moreover, the mass effect 

induced by the growing lesion may lead to displacements of the normal brain tissues, as well 

as a resection cavity that is present after treatment, limits the reliability of prior knowledge 

available for the healthy parts of the brain. Finally, a large variety of imaging modalities can 

be used for mapping tumor-related tissue changes, providing different types of biological 

information, such as differences in tissue water (T2-MRI, FLARI-MRI), enhancement of 

contrast agents (post-Gadolinium T1-MRI), water diffusion (DTI), blood perfusion (ASL-, 

DSC-, DCE-MRI), or relative concentrations of selected metabolites (MRSI). A 

segmentation algorithm must adjust to any of these, without having to collect large training 

sets, a common limitation for many data-driven learning methods.

Related Prior Work

Brain tumor segmentation has been the focus of recent research, most of which is dealing 

with glioma [2], [3]. Few methods have been developed for less frequent and less aggressive 

tumors [4], [5], [6], [7]. Tumor segmentation methods often borrow ideas from other brain 

tissue and other brain lesion segmentation methods that have achieved a considerable 

accuracy [8]. Brain lesions resulting from traumatic brain injuries [9], [10] and stroke [11], 

[12] are similar to glioma lesions in terms of size and multimodal intensity patterns, but have 

attracted little attention so far. Most automated algorithms for brain lesion segmentation rely 
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on either generative or discriminative probabilistic models at the core of their processing 

pipeline. Many encode prior knowledge about spatial regularity and tumor structures, and 

some offer longitudinal extensions for 4D image volumes to exploit longitudinal image sets 

that are becoming increasingly available [13], [14].

Generative probabilistic models of spatial tissue distribution and appearance have enjoyed 

popularity for tissue classification as they exhibit good generalization performance [15], 

[16], [17]. Encoding spatial prior knowledge for a lesion, however, is challenging. Tumors 

may be modeled as outliers relative to the expected shape [18], [19] or to the image signal of 

healthy tissues [16], [20]. In [16], for example, a criterion for detecting outliers is used to 

generate a tumor prior in a subsequent EM segmentation that treats the tumor as an 

additional tissue class. Alternatively, the spatial prior for the tumor can be derived from the 

appearance of tumor-specific markers, such as Gadolinium enhancements [21], [22], or from 

using tumor growth models to infer the most likely localization of tumor structures for a 

given set of patient images [23]. All these segmentation methods rely on registration to align 

images and the spatial prior. As a result, joint registration and tumor segmentation [17], [24] 

and joint registration and estimations of tumor displacement [25] have been investigated, as 

well as the direct evaluation of the deformation field for the purpose of identifying the tumor 

region [7], [26].

Discriminative probabilistic models directly learn the differences between the appearance of 

the lesion and other tissues from the data. Although they require substantial amounts of 

training data to be robust to artifacts and variations in intensity and shape, they have been 

applied successfully to tumor segmentation tasks [27], [28], [29], [30], [31]. Discriminative 

approaches proposed for tumor segmentation typically employ dense, voxel-wise features 

from anatomical maps [32] or image intensities, such as local intensity differences [33], [34] 

or intensity profiles, that are used as input to inference algorithms such as support vector 

machines [35], decision trees ensembles [32], [36], [37], or deep learning approaches [38], 

[39]. All methods require the imaging protocol to be exactly the same in the training set and 

in the novel images to be segmented. Since local intensity variation that is characteristic of 

MRI is not estimated during the segmentation process, as in most generative mixture 

models, calibration of the image intensities becomes necessary which is already a difficult 

task in the absence of lesions [40], [41], [42].

Advantageous properties of generative and discriminative probabilistic models have been 

combined for a number of applications in medical imaging: generative approaches can be 

used for model-driven dimensional reduction to form a low-dimensional basis for a 

subsequent discriminative method, for example, in whole brain classification of Alzheimer’s 

patients [43]. Vice versa, a discriminative model may serve as a filter to constrain the search 

space for employing complex generative models in a subsequent step, for example, when 

fitting biophysical metabolic models to MRSI signals [44], or when fusing evidence across 

different anatomical regions in the analysis of contrast-enhancing structures [45]. Other 

approaches improve the output of a discriminative classification of brain scans by adding 

prior knowledge on the location of subcortical structures [46] or the skull shape [47] through 

generative models. The latter approach for skull stripping showed superior robustness in 

particular on images of glioma patients [48]. To the best of our knowledge no generative-
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discriminative model has been used for tumor analysis so far, although the advantages of 

employing a secondary discriminative classifier on the probabilistic output of a first level 

discriminative classifier, which considers prior knowledge on expected anatomical structures 

of the brain, has been demonstrated in [32].

Spatial regularity and spatial arrangement of the 3D tumor sub-structure is used in most 

generative and discriminative segmentation techniques, often in a postprocessing step and 

with extensions along the temporal dimension for longitudinal tasks: Local regularity of 

tissue labels can be encoded via boundary modeling within generative [16], [49] and 

discriminative methods [27], [28], [50], [49], or by using Markov random field priors [30], 

[31], [51]. Conditional random fields help to impose structures on the adjacency of specific 

labels and, hence, impose constraints on the wider spatial context of a pixel [29], [35]. 4D 

extensions enforce spatial contiguity along the time dimension either in an undirected 

fashion [52], or in a directed one when imposing monotonic growth constraints on the 

segmented tumor lesion acting as a non-parametric growth model [13], [53], [14]. While all 

these segmentation models act locally, more or less at the pixel level, other approaches 

consider prior knowledge about the global location of tumor structures. They learn, for 

example, the relative spatial arrangement of tumor structures such as tumor core, edema, or 

enhancing active components, through hierarchical models of super-voxel clusters [54], [34], 

or by relating image patterns with phenomenological tumor growth models that are adapted 

to the patient [25].

Contributions

In this paper we address three different aspects of multi-modal brain lesion segmentation, 

extending preliminary work we presented earlier in [55] [56], [57]:

• We propose a new generative probabilistic model for channel-specific tumor 

segmentation in multi-dimensional images. The model shares information about the 

spatial location of the lesion among channels while making full use of the highly 

specific multimodal, i.e., multivariate, signal of the healthy tissue classes for 

segmenting normal tissues in the brain. In addition to the tissue type, the model 

includes a latent variable for each voxel encoding the probability of observing a 

tumor at that voxel, similar to [49], [50]. The probabilistic model formalizes 

qualitative biological knowledge about hyper- and hypo-intensities of lesion 

structures in different channels. Our approach extends the general EM segmentation 
algorithm [58], [59] using probabilistic tissue atlases [60], [15], [61] for situations 

when specific spatial structures cannot be described sufficiently through population 

priors.

• We illustrate the excellent generalization performance of the generative 

segmentation algorithm by applying it to MR images of patient with ischemic 

stroke, which – to the best of our knowledge – is one of the first automated 

segmentation algorithms for this major neurological disease.

• We extend the generative model to a joint generative-discriminative method that 

compensates for some of the shortcomings of both the generative and the 

discriminative modeling approach. This strategy enables us to predict clinically 
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meaningful tumor tissue labels and not just the channel-specific hyper- and hypo-

intensities returned by the generative model. The discriminative classifier uses the 

output of the generative model, which improves its robustness against intensity 

variation and changes in imaging sequences. This generative-discriminative model 

defines the state-of-the-art on the public BRATS benchmark data set [1].

In the following we introduce the probabilistic model (Section II), derive the segmentation 

algorithm and additional biological constraints, and we describe the discriminative model 

extensions (Section III). We evaluate the properties and performance of the generative and 

the generative-discriminative methods on a public glioma dataset (Sections IV and V, 

respectively), including an experiment on the transfer of the generative model to images 

from stroke patients. We conclude with a discussion of the results and of future research 

directions (Section VI).

II. A Generative Brain Lesion Segmentation Model

Generative models consider prior information about the structure of the observed data and 

exploit such information to estimate latent structure from new data. The EM segmenter, for 

example, models the image of a healthy brain through three tissue classes [60], [15], [61]. It 

encodes their approximate spatial distribution through a population atlas generated by 

aligning a larger set of reference scans, segmenting them manually, and averaging the 

frequency of each tissue class in a given voxel within the chosen reference frame. Moreover, 

it assumes that all voxels of a tissue class have about the same image intensity which is 

modeled through a Gaussian distribution. This segmentation method, whose parameters can 

be estimated very efficiently through the expectation maximization (EM) procedure, treats 

image intensities as nuisance parameters which makes it robust in the presence of the 

characteristic variability of the intensity distributions of MR images. Moreover, since the 

method formalizes the image content explicitly through the probabilistic model, it can be 

combined with other parametric transformations, for example, for registration [62] or bias 

field correction [15], and account for the related changes in the observed data. Generative 

models with tissue atlases used as spatial priors are at the heart of most advanced image 

segmentation models in neuroimaging [63], [64].

Population atlases cannot be generated for tumors as their location and extensions vary 

significantly across patients. Still, the tumor location is similar in different MR images of the 

same patient and a patient-specific atlas of the lesion class could be generated. Segmentation 

and atlas building can be performed simultaneously, in a joint estimation procedure [50]. 

Here, the key idea is to model the lesions through a separate latent atlas class. Combined 

with the standard population atlas of the normal tissues and the standard EM segmentation 

framework, this extends the EM segmenter to multimodal or longitudinal images of patients 

with a brain lesion. The generative model is illustrated in Fig. 1.

A. The Probabilistic Generative Model

Normal healthy tissue classes—We model the normal healthy tissue label ki of voxel i 
in the healthy part of the brain using a spatially varying probabilistic atlas, or prior p(ki = k) 

that is constructed from prior examples. At each voxel i ∈ {1,…, I}, this atlas indicates the 
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probability of the tissue label ki to be equal to tissue class k ∈ {1,…, K} (Fig. 1, blue). The 

probability of observing tissue label k at voxel i is modeled through a categorical 

distribution

(1)

where  for all i and  for all i, k. The tissue label ki is shared among all C 
channels at voxel i. In our experiments we assume K = 3, representing gray matter (G), 

white matter (W) and cerebrospinal fluid (CSF), as illustrated in Fig. 2.

Tumor class—We model the tumor label using a spatially varying latent probabilistic atlas 

α [49], [50] that is specific to the given patient (Fig. 1, red). At each voxel i, this atlas 

contains a scalar parameter αi that defines the probability of observing a tumor at that voxel, 

forming the 3D parameter volume α. Parameter αi is unknown and is estimated as part of the 

segmentation process. We define a latent tumor label  that indicates the presence 

or absence of tumor-induced changes in channel c ∈ [1,…, C] at voxel i, and model it as a 

Bernoulli random variable with parameter αi. We form a binary tumor label vector 

 (where [·]T indicates the transpose of the vector) of the tumor labels in all 

C channels, that describes tumor presence in voxel i with probability

(2)

Here, we assume tumor occurrence to be independent from the type of the underlying 

healthy tissue. We will introduce conditional dependencies between the underlying tissue 

class and the likelihood of observing tumor-induced intensity modifications in Sec. II-C.

Observation model—The image observations  are generated by Gaussian intensity 

distributions for each of the K tissue classes and the C channels, with mean  and variance 

, respectively (Fig. 1, purple). In the tumor (i.e., if , the normal observations are 

replaced by intensities from another set of channel-specific Gaussian distributions with 

mean  and variance  representing the tumor class. Letting θ denote the set of mean and 

variance parameters for normal tissue and tumor classes, and  denote the 

vector of the intensity observations at voxel i, we form the data likelihood:

(3)

where  is the Gaussian distribution with mean μ and variance v.

Joint model—Finally, the joint probability of the atlas, the latent tumor class, and the 

observed variables is the product of the components defined in Eqs. (1–3):
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(4)

We let Y denote the set of the C image volumes, T denote the corresponding C volumes of 

binary tumor labels, K denote the tissue labels, and α denote the parameter volume. We 

obtain the joint probability over all voxels i ∈ I by forming 

, assuming that all voxels represent independent 

observations of the model.

B. Maximum Likelihood Parameter Estimation

We derive an expectation-maximization scheme that jointly estimates the model parameters 

{θ, α} and the posterior distribution of tissue labels ki and tumor labels ti. We start by 

seeking maximum likelihood estimates of the model parameters {θ, α}:

(5)

(6)

and

(7)

(8)

where label vector  indicates tumor  in all channels with , and 

normal tissue  for all other channels. As an example with three channels, illustrated in 

Fig. 2 (voxel 2), suppose ti = [0, 0, 1] and ki = W indicating tumor in channel 3 and image 

intensities relating to white matter in channels 1 and 2. This results in the tissue label vector 

si = [W, W, T].

E-step—In the E-Step of the algorithm, making use of given estimates of the model 

parameters , we compute the posterior probability of all K * 2C tissue label vectors si. 

Expanding Eq. (4), we use ti(si) and ki(si) that are corresponding to si to simplify notation:

(9)

and  for all i. Using the tissue label vectors, we can calculate the 

probability that tumor is visible in channel c of voxel i by summing over all the 

configurations ti for which  (or equivalently ):
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(10)

where δ is the Kronecker delta that is equal to 1 for  and 0 otherwise. In the same way 

we can estimate the probability for the healthy tissue classes k:

(11)

where  indicates that one or more of the C channels of label vector si contain 

k.

M-step—In the M-Step of the algorithm, we update the parameter estimates using closed-

form update expressions that guarantee increasingly better estimates of the model 

parameters [65]. The updates are intuitive: the latent tumor prior  is an average of the 

corresponding posterior probability estimates

(12)

and the intensity parameters  and  are set to the weighted statistics of the data for the 

healthy tissues (k = 1, …,K)

(13)

(14)

Similarly, for the parameters of the tumor class (T), we obtain

(15)

(16)

We alternate between updating the parameters {θ, α} and the computation of the posteriors 

p(si|yi; θ, α) until convergence, which is typically reached after 10–15 iterations.
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C. Enforcing Additional Biological Constraints

Expectation-maximization is a local optimizer. To overcome problems with initialization, we 

enforce desired properties of the solution by replacing the exact computation with an 

approximate solution that satisfied additional constraints. These constraints represent our 

prior knowledge about tumor structure, shape or growth behaviour1.

Conditional dependencies on tumor occurrence—A possible limitation in the 

generalization of our probabilistic model is the dimensionality of tissue label vector si that 

has K*2C possible combinations in Equation (9) and, hence, the computational demands and 

memory requirements that grow exponentially with the number of channels C in multimodal 

data sets. To this end, we may want to impose prior knowledge on p(ti|ki) and p(ti) by only 

considering label vectors si that are biologically plausible. First, instead of assuming 

independence between tissue class and tumor occurrence, we assume conditional 

dependencies, such as  for all c. We impose this dependency by 

removing, in this example, all tumor label vectors containing both CSF and tumor from the 

list of vectors si that are included in Equation (9). Second, we can impose constraints on the 

co-occurrence of tumor-specific changes in the different image modalities (rather than 

assuming independence here as well), and exclude additional tumor label vectors. We 

consider, for example, that the edema visible in T2 will always coincide with the edema 

visible in FLAIR, or that lesions visible in T1 and T1c are always contained within lesions 

that are visible in T2 and FLAIR.

Together, these constraints reduce the total number of label vectors si to be computed in 

Equation (9), for a standard glioma imaging sequences with T1c, T1, T2, and FLAIR, from 

K * 2C = 3 * 24 = 48 to as few as ten vectors: three healthy vectors with t = [0, 0, 0, 0] 

(corresponding to [G, G, G, G], [W, W, W, W], and [CSF, CSF, CSF, CSF ]); edema with 

tumor-induced chances visible in FLAIR in the forth channel t = [0, 0, 0, 1] (with [W, W, W, 
T] and [G, G, G, T]); edema with tumor-induced changes visible in both FLAIR and in T2 t 
= [0, 0, 1, 1] (with [W, W, T, T] and [G, G, T, T]); the non-enhancing tumor core with 

changes in T1, T2, FLAIR, but without hyper-intensities in T1c t = [0, 1, 1, 1] ([W, T, T, T ] 

and [G, T, T, T]); the enhancing tumor core with hyper-intensities in T1c and additional 

changes in all other channels t = [1, 1, 1, 1] ([T, T, T, T]).

Hyper- and hypo-intense tumor structures—During the iterations of the EM 

algorithm we enforce that tumor voxels are hyper- or hypo-intense with respect to the 

current average image intensity  of the white matter tissue (hypo-intense for T1, hyper-

intense for T1c, T2, FLAIR). Similar to [51], we modify the probability that tumor is visible 

in channel c of voxel i by comparing the observed image intensity  with the previously 

estimated  prior to calculating updates for parameters θ (Eq. 16). We set the probability to 

zero if the intensity does not align with our expectations:

1An implementation of the generative tumor segmentation algorithm in Python is available from http://ibbm.in.tum.de.
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(17)

For hypo-intensity constraints we modify the posterior probability updates in the same way, 

using  as a criterion.

Spatial regularity of the tumor prior—Little spatial context is used in the basic model, 

as we assume the tissue class si in each voxel to be independent from the class labels of 

other voxels. Atlas πk encourages spatially continuous classification for the healthy tissue 

classes by imposing similar priors in neighboring voxels. To encourage spatial regularity of 

the tumor labels, we extend the latent atlas α to include a Markov random field (MRF) prior:

(18)

Here, Ni denotes the set of the six nearest neighbors of voxel i, and β is a parameter 

governing how similar the tumor labels tend to be at the neighboring voxels. When β = 0, 

there is no interaction between voxels and the model reduces to the one described in Section 

II. By applying a mean-field approximation [66], we derive an efficient approximate 

algorithm. We let

(19)

denote the currently estimated “soft” count of neighbors that contain tumor in channel c. The 

mean-field approximation implies

(20)

where , replacing the previously defined Eq. (9), 

using a channel-specific  as a modification of αi that features the desired spatial regularity.

III. Discriminative Extensions

High-level context at the organ or lesion level, as well as regional information, is not 

considered in the segmentation process of the generative model. Although we use different 

constraints to incorporate local neighbourhood information, the generative model treats each 

voxel as an independent observation and estimates class labels only from very local 

information. To evaluate global patterns, such as the presence of characteristic artifacts or 

tumor sub-structures of specific diagnostic interest, we present two alternative discriminative 

probabilistic methods that make use of both local and non-local image information. The first 

one, acting at the regional level, is improving the output of the generative model and 

maintaining its hyper- and hypo-intense lesion maps, while the second one, acting at the 
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voxel level, is transforming the generative model output to any given set of biological tumor 

labels.

A. The Probabilistic Discriminative Model

We employ an algorithm that predicts the probability of label l ∈ L for a given observation j 

which is described by feature vector  derived from the segmentations of 

the generative model. We seek to address two slightly different problems. In the first task, 

class labels L indicate whether a segmented region j is a result of a characteristic artifact 

rather than of tumor-induced tissue changes, essentially indicating false positive regions in 

the segmentations of the generative algorithm that should be removed from the output. In the 

second task, class labels L represent dense, voxel-wise labels with a semantic interpretation, 

for example structural attributes of the tumor that do not coincide with the hyper-and hyper-

intense segmentations in the different channels, but labels such as “necrosis”, or “non-

enhancing core”. We test both cases in the experimental evaluation, using on channel-wise 

tumor probabilities  and on normalized intensities yi to derive input features for 

the discriminative algorithms.

To model relations between lj and xj for observation j ∈ N, we choose random forests, an 

ensemble of D randomized decision trees [67]. We use the random forest classifier as it is 

capable of handling irrelevant predictors and, to some degree, label noise. During training 

each tree uses a different set of samples . It consists of n randomly sampled observations 

Xn that only contain features from a random subspace of dimensionality m = log(P), where P 
is the number of features. We learn an ensemble of D different discriminative classifiers, 

indexed by d, that can be applied to new observations xj during testing, with each tree 

predicting the membership L(d)j. When averaging over all D predictions that we obtain for 

the individual observation, we obtain an estimate of p(lj|xj) = 1/DΣL(d)j. We choose logistic 

regression trees as discriminative base classifiers for our ensemble, as the resulting oblique 

random forests perform multivariate splits at each node and are, hence, better capable of 

dealing with the correlated predictors derived from a multi-modal image data set [68]. For 

both discriminative approaches we use an ensemble with D = 255 decision trees.

B. A Discriminative Approach Acting at the Regional Level

As many characteristic artifacts have, at the pixel level, a multimodal image intensity 

patterns that is similar to the one of a lesion, we design a discriminative probabilistic method 

that is postprocessing and “filtering” the basic output of the generative model. In addition to 

the pixel-wise intensity pattern, it evaluates regional statistics of each connected tumor area, 

such as volume, location, shape, signal intensities. It replaces commonly used 

postprocessing routines for quality control that evaluate hand-crafted rules on lesion size or 

shape and location by a discriminative probabilistic model, similar to [44].

Features and labels—The discriminative classifier acts at the regional level to remove 

those lesion areas from the output of the generative model that are not associated with tumor, 

but that stem from arbitrary biological or imaging variation of the voxel intensities. To this 

end we identify all R isolated regions in the binary tumor map of the FLAIR image 
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(containing voxels i with . We choose FLAIR since it is the most 

inclusive image modality. As artifacts may be connected to lesion areas, we over-segment 

larger structures using a watershed algorithm, subdividing regions with connections that are 

less than 5mm in diameter to reduce the number mixed regions containing both tumor pixels 

and artifact patterns. For each individual region r ∈ 1 … R we calculate a feature vector xr 

that includes volume, surface area, surface-to-volume ratio, as well as regional statistics that 

are minimum, maximum, mean and median of the normalized image intensities in the four 

channels. We scale the image intensities for each channels linearly to match the distribution 

of intensities in a reference data set. We also determine the absolute and the relative number 

of voxels i with  within region r, i.e., the volume of the active tumor. 

We calculate the linear dimensions of the region in axial, sagittal, and transversal direction, 

the maximal ratio between these three values indicating eccentricity, and the relative location 

of the region with respect to the center of the brain mask, as well as minimum, maximum, 

mean and median distances of the regions’s voxels from the skull, as a measure of centrality 

within the brain. We then determine the total number of FLAIR lesions for the given patient 

and assign this number as another feature to each lesion, together with its individual rank 

with respect to volume both in absolute numbers and as a normalized rank within [0, 1].

Overall, we construct P = 39 features for each region r (Fig. 6). To assign labels to each 

region, we inspect them visually and assign those overlapping well with a tumor area to the 

true positive “tumor” class Lr = 1, all other to the false positive “artifact” class Lr = 0. When 

labeling regions in the BRATS training data set (Sec. V), all regions labeled as true positives 

have at least 30% overlap with the “whole tumor” annotation of the experts.

C. A Discriminative Approach Acting at the Voxel Level

The generative model returns a set of probabilistic maps indicating the presence of hypo- or 

hyper-intense modifications of the tissue. In most applications and imaging protocols, 

however, it is necessary to localize arbitrary tumor structures – with biological 

interpretations and clinically relevant semantic labels, such as “edema”, “active tumor” or 

“necrotic core”. These structures do not correspond one-by-one to the hypo-and hyper-

intense lesions, but have to be inferred by evaluating spatial context and tumor structure as 

well. We use the probabilistic output of the generative model, together with few secondary 

features that are derived from the same probabilistic maps and image intensity features, as 

input to a classifier predicting the posterior probability of the desired semantic labels. The 

discriminative classifier evaluates local and non-local features to map the output of the 

generative model to semantic tumor structure and to infer the most likely label L for each 

given voxel, similar to [32].

Features and labels—To predict a dense set of semantic labels L we extract the 

following set of features xj for each voxel j: the tissue prior probabilities p(kj) for the K = 3 

tissue classes ; the tumor probability  for all C = 4 channels , and the C = 4 

image intensities after they have been scaled linearly to the intensities of a reference data set 

. From these data we derive two types of features. First, we construct the differences of 
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local image intensities or probabilities for all three types of input features . This 

feature captures the difference between the image intensity or probability xj of voxel j and 

the corresponding image intensity or probability of another voxel k. For every voxel j in our 

volume we calculate these differences  for 20 different directions, with spatial 

offsets in between 3mm to 3cm, i.e., distances that correspond to the extension of most 

relevant tumor structures. To reduce noise the subtracted values of xk are extracted after 

smoothing the image intensities locally around voxel k (using a Gaussian kernel with 3mm 

standard deviation). We calculate differences between tumor or tissue probability at a given 

voxel and the probability of the same location on the contralateral side. Second, we evaluate 

the geodesic distance between voxel j and specific image features that are of particular 

interest in the analysis. The path is constrained to areas that are most likely gray matter, 

white matter or tumor as predicted by the generative model. More specifically, we use the 

distance of  of voxel j to the boundary of the the brain tissue (the interface of white 

and gray matter with CSF), the distance  to the boundary of the T2 lesion representing 

the approximate location of the edema. This latter distance  is calculated independently 

for voxels outside  and inside  the edema. In the same way, we calculate 

 and  representing the inner and outer distance to the next T1c hyper-intensity. 

We calculate the number of voxels that are labeled as “edema” or “active tumor” among the 

direct neighbours of voxel , and determine the x-y-z location of the voxel in the 

co-registered NMI space 

Overall, we construct P = 651 image features  for 

each voxel j and, when adapted to the BRATS training data set (Sec. V), five labels Lj as 

provided by clinical experts.

IV. Experiment 1: Properties and Performance of the Generative Model

In a first experiment, we evaluate the relevance of different components and parameters of 

the probabilistic model, compare it with related generative approaches,and evaluate the 

performance on the public BRATS glioma dataset, and test the generalization in a transfer to 

a related application dealing with stroke lesion segmentation.

A. Data and Evaluation

Glioma data—We use the public BRATS 2012–2013 dataset that provides a total of 45 

annotated multimodal glioma image volumes [1]. Training datasets consist of 10/20 low/

high-grade cases with native T1, Gadolinium-enhanced T1 (T1c), T2 and FLAIR MR image 

volumes. The test dataset contains no labels, but can be evaluated by uploading image 

segmentations to a server; it includes 4/11 low-grade/high-grade cases. Experts have 

delineated tumor edema, Gadolinium-enhancing “active” core, non-enhancing solid core, 

cystic/necrotic core. We co-register the probabilistic MNI tissue atlas of SPM99 with the T1 

image of each dataset using the FSL software, and sampled to 1mm3 isotropic voxel 

resolution. We perform a bias field correction using a polynomial spline model (degree 3) 
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together with a multivariate tissue segmentation using an EM segmenter that is robust 

against lesions2 [51]. Image intensities of each channel in each volume are scaled linearly to 

match the histogram of a reference.

Stroke data—Images are acquired in patients with acute and subacute ischemic stroke. 

About half of the 18 datasets comprise T1, T2, T1c and FLAIR images in patients in the 

sub-acute phase, acquired about one or two days after the event; another half comprises T1, 

T1c, T2 base diffusion and mean diffusivity (MD) images acquired in acute stroke patients 

within the first few hours after the onset of symptoms. For both groups the imaging 

sequences return tissue contrasts of normal tissues and lesion areas that are similar to hyper- 

and hypo-intensities expected in glioma sequences; stroke lesions are characterised here by 

T1 hypo-, T1c hyper-, T2 hyper-and FLAIR /MD hyper-intense changes. For the quantitative 

evaluation of the algorithm, we delineate the lesion in every 10th axial, sagittal, and coronal 

slice, in each of the four modalities. In addition, we annotate about 10% of the 2D slices 

twice to estimate variability. We register the probabilistic atlas and perform a model based 

bias field correction as for the glioma data. Image intensities are scaled to the same reference 

as for the glioma cases.

Evaluation—To measure segmentation performance in the experiments with this dataset, 

we combine the set of four tumor labels (edema and the three tumor core subtypes) to one 

binary “complete lesion” label map. We compare this map with the hyper-intense lesion as 

segmented in T2 and FLAIR. Separately, we compare the “enhancing core” label map with 

the hyper-intense lesion as segmented in T1c MRI. Quantitatively, we calculate volume 

overlap between expert annotation A and predicted segmentation B using the Dice score 

. We compute Dice scores for whole brain when testing performances 

on the BRATS data set. We also calculate Dice score within a 3cm distance from the lesion 

to measure local differences in lesion segmentation rather than in global detection 

performances.

B. Model Properties and Evaluation on the BRATS data set

Comparison of generative modelling approaches—We compare the proposed 

generative model against related generative tissue segmentations models and evaluate the 

relevance of individual components of our approach on the BRATS training data set. We 

calculate Dice scores in the area containing the lesion and the 3cm margin.

Figure 3A illustrates the benefit of the proposed multivariate tumor and tissue segmentation 

over a univariate segmentations that treat tumor voxels as intensity outliers similar to Van 

Leemput’s EM segmentation approach for white matter lesion [51]. On the given data this 

baseline approach leads to a high number of false positives, either requiring stronger spatial 

regularization or a more adaptive tuning of the outlier threshold. Figure 3B reports the 

benefit of enforcing intensity constraints within the proposed generative model. While the 

benefit for the large hyper-intense regions visible in T2 and FLAIR is minor, the difference 

2available from http://www.medicalimagecomputing.com/downloads/ems.php
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for segmenting the enhancing tumor core visible in T1c in high-grade patients is striking: the 

constraint disambiguates tumor-related hypo-intensities – similar to those visible in native 

T1, for example, from edema – from hyper-intensities induced by the contrast agent in the 

active rim. Figure 3C reports a comparison between our approach and Prastawa’s classic 

tumor EM segmentation approach [22] that models lesions as an additional class with a 

“flat” global atlas prior. We test different values for the tumor prior α in Eq. 2, evaluating 

result for αflat ∈ [.005, .01, .02, .04, .1, .2, .4]. We find that every channel and every 

segmentation task has a different optimal αflat. However, each optimally tuned generative 

model with flat prior is still outperformed by the proposed generative model.

Enforcing spatial regularity—Our model has a single parameter that has to be set which 

is the regularization parameter β coupling segmentations of neighbouring voxels. Based on 

our previous study [55], we performed all experiments reported in Figure 3 with weak 

spatial regularization (β = .3). To confirm these preliminary results we test different 

regularization settings with β ∈ [0, 2−3, 2−2,…, 23], now also evaluating channel-specific 

performance in the lesion area (Figure 7 in the online Supplementary Materials). We find a 

strong regularization to be optimal for the large hyper-intense lesions in FLAIR β ≥ .5, 

suppressing small spurious structures, while little or no regularization is best for the hardly 

visible hypo-intense structures visible in T1 (β < .5). Both T2 and T1c are rather insensitive 

to regularization. We find the previous value of β = .3 to work well, but choose β = .5 for 

both low- and high-grade tumors in further experiments, somewhat better echoing the 

relevance of FLAIR.

Evaluation on the BRATS test set—We apply our segmentation algorithm to the 

BRATS test sets that have been used for the comparison of twenty glioma segmentation 

methods in the BRATS evaluation [1]. We identify the segmentations in FLAIR with the 

“whole tumor” region of the BRATS evaluation protocol, and the T1c enhancing regions 

with the “active tumor” region. We evaluate two sets of segmentations: segmentations that 

are obtained by thresholding the corresponding probabilities at 0.5, and the same 

segmentations after removing all regions that are smaller than 500mm2 in the FLAIR 

volume. This latter postprocessing approach was motivated by our observation that smaller 

regions correspond to false positives in almost all cases. We calculate Dice scores for the 

whole brain.

Table I reports Dice scores for the BRATS test sets with results of about .60 for the whole 

tumor and about .50 for the active tumor region (‘raw’). As visible from Figure 4, results are 

heavily affected by false positive regions that have intensity profiles similar to those of the 

tumor lesions. Applying the basic, size-based postprocessing rule improves results in most 

cases (‘postproc.’). Most false positives are spatially separated from the real lesion and when 

calculating Dice scores from a region that contains the FLAIR lesion and a 3cm margin only, 

results improve drastically to average values of .78 (±.09 std.) for the whole tumor to and .55 

(±.27 std) for the active region (not shown in the table) which aligns well with results 

obtained for T2 and T1c on the training set (Fig. 3).
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C. Generalization Performance and Transfer to the Stroke Data Set

We test the generalization performance of the generative model by using it for delineating 

ischemic stroke lesions that are similar in terms of lesion size and clinical image 

information. We apply the generative model as optimized for the BRATS dataset to the 

stroke images. As a single modification we allow T1c lesions to be both inside the FLAIR 

and T2 enhancing area and outside, as bleeding (which leads to the T1c hyper-intensities) 

may not coincide with the local edema. Stroke images contain cases with both active and 

chronic lesions with significantly different lesion patterns.

Although datasets, imaging protocol, and even major acquisition parameters differ, we 

obtain results that are comparable to the tumor data. We calculate segmentations accuracies 

in the lesion area and observe good agreement between manual delineation and automatic 

segmentation in all four modalities (Fig. 5). We also observe false positives at the white 

matter–gray matter interfaces, similar to those we observed for the glioma tests data (Fig. 4). 

Most false positive regions are disconnected from the lesion and could be removed with little 

user interaction or postprocessing. Inter-rater differences and performance of the algorithm 

are comparable to those from the glioma test set, with Dice scores close to .80 for 

segmenting the edema and around .50–.60 for T1c enhancing structures (Table I). Results on 

the stroke data underline the versatility of the generative lesion segmentation model and its 

good generalization performance not only across different imaging sequences, but also 

across applications. To the best of our knowledge this is one of the first attempts to 

automatically segment ischemic stroke lesion in multimodal images using a generative 

model.

V. Experiment 2: Properties and Performances of the Generative-

Discriminative Model Extensions

Results of the generative model show its robustness and accuracy for delineating lesion 

structures. Still, it also shows to be sensitive to artifacts that cannot be recognized by 

evaluating the multimodal intensity pattern at the voxel level, and hypo- and hyper-intense 

structures can only be matched with selected tumor labels. To this end, we evaluate the two 

discriminative modeling strategies that are considering non-local features as input and 

arbitrary labels as output. We first evaluate model properties on the BRATS training set and 

then compare performances to results of other state-of-the art tumor segmentation 

algorithms on the BRATS test set.

A. Relevant Features and Information used by the Discriminative Models

The random forest classifier handles learning tasks with small sample sizes in high 

dimensional spaces by only relying on few “strong” variables and ignoring irrelevant 

features [69]. Still, in order to understand the information used when modeling the class 

probabilities, we can visualize the importance of the input features used. To this end we 

evaluate the relevance of the individual features using Breiman’s feature permutation test 

[67] that compares the test error with the error obtained after the values of a given feature 

have been randomly permuted throughout all test samples. The resulting decrease in test 

accuracy, or increase in test error, indicates how relevant the chosen feature is for the overall 
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classification task. Repeated for each feature of all trees in the decision forest, this measure 

helps to rank the features and to compare the relevance as shown in Figure 6. In our test we 

augment the dataset with a random feature (random samples from a Gaussian distribution 

with mean 0 and standard deviation of 1) to establish a lower baseline of the relevance score. 

For each feature we compare the distribution of changes in classification error against the 

changes of this random feature in a paired Cox-Wilcoxon test. We analyze feature relevance 

in a cross-validation on the BRATS training set.

Results for the first discriminative model acting at the regional level are shown in Fig. 6. We 

find plausible features to be relevant: the relative location of the region with respect to the 

center of the brain (indicated as center_x, center_y, center_z in the figure), the surface-to-

volume ratio (border2area), the total number of lesions visible for the given patient 

(num_lesions), the ratio of segmented voxels in T1c (tumorT 1cN), and some descriptors of 

image intensities, such as the minimum in FLAIR (int4_min), the maximum, median and 

average of the T2 intensities (int3_*), as well as the maximum in T1c (int1_max) and the 

minimum in T1 (int2_min).

For the second discriminative model acting at the pixel level we find about 80% of the 

features to be relevant, with with some variation across the different classification tasks. The 

features that rank highest in all tests are those we derived from the probability maps of the 

generative model: the total number of local edema or active tumor voxels, the geodesic 

distance to the nearest edema or active tumor pixels, but also the relative anatomical location 

in the MNI space, and selected image intensities and intensity differences (such as the 

intensity values of T1 and FLAIR for edema and T1c for active core, and local differences in 

the T1 image intensities).

B. Performance on the BRATS Test Set

Figure 4 displays nine exemplary image volumes of the BRATS test set. Shown are the raw 

probability maps of the generative model (red and cyan; columns 1–4), those regions that are 

selected by the regional discriminative model (cyan) and the derived tumor segmentation 

(column 5), as well as the output of the voxel-level tumor classifier (column 6), together 

with an expert annotation (column 7).

Quantitative results are reported in Table I, and we find both discriminative models to 

improve results over those derived from the “raw” probability maps of the generative model. 

With few exceptions most “false positive” artifact regions are removed (Fig. 4). The voxel-

level model shows to be more accurate than the regional-level model, also correcting for 

“false negative” areas in the center of the tumor (rows 1, 3, 6, and 7). In addition to whole 

tumor and active tumor areas, the second discriminative model is also predicting the location 

of necrotic and fluid filled structures, as well as the “tumor core” label (with a Dice score 

of .58; segmentations not shown in the figure). Sensitivities and specificities for this latter 

model are balanced with sensitivities of .75/.58/.63 for the three tumor regions (whole 

tumor/tumor core/active tumor) and a specificities of .86/.71/.56.

The BRATS challenge also allows us to compare the two generative-discriminative modeling 

approaches with eighteen other state of the art methods including inter-active ones, and we 
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reproduce results of the challenge in Figure 8 in the online Supplementary Materials of this 

manuscript. The generative model with discriminative post-processing at the regional level 

(indicated by Menze (G)) performs comparable to most other approaches in terms of Dice 

score and robust Hausdorff distance for “whole tumor” and “active tumor”. However, it 

cannot model the “tumor core” segmentation task as this structure does not have a direct 

correspondence to any of the segmented hyper- and hypo-intensity regions and, hence, does 

does not provide competitive results for this tumor sub-structure. The voxel-level generative-

discriminative approach (indicated by Menze (D)) is able to predict “tumor core” labels. It 

ranks first among the twenty evaluated methods in terms of average Hausdorff distances for 

both “tumor core” and in “whole tumor” segmentation, and it is the second best automatic 

method for the “active tumor” segmentation. In the evaluation of the average Dice scores it 

is second best for “whole tumor”, it is ranking third among the automated methods for the 

“tumor core” task, and its result are statistically indistinguishable from the inter-rater 

variation for “active tumor”. Most notably, the voxel-level generative-discriminative 

approach is outperforming all discriminative models that are similar in terms of random 

forest classifier and feature design [37], [32], [2], [34], but that do not rely on the input 

features derived from the probability maps of the generative model.

VI. Summary and Conclusions

In this paper, we extend the atlas-based EM segmenter by a latent atlas class that represents 

the probability of transition from any of the “healthy” tissues to a “lesion” class. In practice, 

the latent atlas serves as an adaptive prior that couples the probability of observing tumor-

induced intensity changes across different imaging channels for the same voxel. Using the 

standard brain atlas for healthy tissues together with the highly specific multi-channel 

information provides us with segmentations of the healthy tissues surrounding the tumor, 

and enables us to automatically segment the images. The proposed generative algorithm 

produces outlines of the tumor-induced changes for each channel which makes it 

independent of the multimodal imaging protocol. We complement the basic probabilistic 

model with a discriminative model and test two different modeling strategies, both of them 

addressing shortcomings of the generative model, and find the resulting discriminative-

generative model to define the state of the art in tumor segmentation on the BRATS data set 

[1].

The proposed generative algorithm generalizes the probabilistic model of the standard EM 

segmenter. As such, it can be improved by combining registration and segmentation [62], or 

by integrating empirical or physical bias-field correction models [15], [70]. The generative 

segmentation algorithm that we optimized for glioma images exhibits a good level of 

generalization when applied to multimodal images from patients with ischemic stroke. The 

method is likely to also work well for traumatic brain injury with similar hypo- and hyper-

intensity patterns, and it can also be adapted to multimodal segmentation tasks beyond the 

brain. It may be interesting to evaluate relations to multi-channels approaches that do not 

rely on multiple physical channels, but high-dimensional sets of features extracted from one 

or few physical images [71]. Analyzing feature relevance indicated that the location of a 

voxel or region within the MNI space helped in removing false positives, as most of them 

appeared at white matter–gray matter interfaces or in areas that are often subject to B-field 
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inhomogeneities. Extensions of the generative model may use a location prior that lowers 

the expectation of tumor occurrences in these areas. Moreover, preliminary findings suggest 

that results may improve by using non-Gaussian intensity models for the lesion classes.

Some tumor structures – such as necrotic or cystic regions, or the solid tumor core – cannot 

easily be associated with local channel-specific intensity modifications, but are rather 

identified based on the wider spatial context and their relation with other tumor 

compartments. We addressed the segmentation of such secondary structures by combining 

our generative model with discriminative model extensions evaluating additional non-local 

features. As an alternative, relations between visible tumor structures can be enforced locally 

using MRF as proposed by [35], or in a non-local fashing following the hierarchical 

approach following [54]. Future work may also aim at integrating image segmentation with 

tumor growth models enforcing spatial or temporal relations as in [53], [14]. Tumor growth 

models – often described through partial differential equations [72] – offer a formal 

description of the lesion evolution, and could be used to describe the propagation of channel-

specific tumor outlines in longitudinal series [73], as well as a shape and location prior for 

various tumor structures [23]. This could also promote a deeper integration of underlying 

functional models of disease progression and formation of image patterns in the modalities 

that are used to monitor this process [74].
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Fig. 1. 
Graphical model for the proposed segmentation approach. Voxels are indexed with i, 
channels are indexed by c. The known prior πk determines the label k of the normal healthy 

tissue. The latent atlas α determines the channel-specific presence of tumor t. Normal tissue 

label k, tumor labels t, and intensity distribution parameters θ jointly determine the 

multimodal image observations y. Observed (known) quantities are shaded. The 

segmentation algorithms aims to estimate , along with the segmentation of healthy 

tissue p(ki|y).
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Fig. 2. 
Illustration of the probabilistic model. The left panel shows images of a low-grade glioma 

patient with lesion segmentations in the different channels (outlined in magenta); in the 

bottom row it shows the probabilistic tissue atlases used in the analysis, and the patient-

specific tumor prior inferred from the segmentations in the different channels. The right 

panel shows three voxels i with different labels in T1-, T1c- and FLAIR-MRI for a high-

grade glioma patient. In voxel 1 all three channels show the characteristic image intensity of 

gray matter (G). In voxel 2 white matter (W) is visible in the first two channels, but the third 

channel contains a tumor-induced change (T), here due to edema or infiltration. In voxel 3 

all channels exhibit gray values characteristic of tumor: a hypo-intense signal in T1, a hyper-

intense gadolinium uptake in T1c – indicating the most active regions of tumor growth – and 

a hyper-intense signal in the FLAIR image. The initial tissue class ki remains unknown. 

Both ki and ti are to be estimated. Inference is done by introducing a transition process – 

with latent prior αi (Fig. 1) – which is assumed to have induced the channel-specific tissue 

changes implied by  in the tumor label vector ti.
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Fig. 3. 
Evaluation of the generative model and comparison against alternative generative modeling 

approaches: high-grade (top) and low-grade cases (bottom). Reported are Dice scores for 

channel-specific segmentations for both low- and high-grade cases in the BRATS training 

set calculated in the lesion area. Boxplots indicate quartiles, circles indicate outliers. Results 

of the proposed model are shown in red, while results for related but different generative 

segmentation methods are shown in blue. Figure A reports performances of univariate tumor 

segmentations similar to [51]. Figure B: performances of our algorithm with and without 

constraints on the expected tumor intensities indicating their relevance. Figure C: 

performance of a generative model with “flat” global tumor prior αflat – i.e., the model of 

the standard EM segmenter – and evaluating seven different values αflat ∈ [.005, …, .4]. 

Blue lines and dots in C indicate average Dice scores. The proposed model outperforms all 

tested alternatives.
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Fig. 4. 
Exemplary BRATS test sets, with results for generative and generative discriminative 

models. Shown are axial views through the tumor center for T1, T1c, T2 and FLAIR image 

(columns from left to right) and the segmented hypo- or hyper-intense areas (red and cyan). 

Regions outlined in red have been identified as “true positive” regions by the regional 

discriminative classifier and the resulting tumor labels are shown in column 5 with edema 

(bright gray) and active tumor region (white). Column 6 shows results of the voxel-wise 

generative-discriminative classifier, and column 7 the expert’s annotation. Gray and white 
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matter segmentations displayed in the last three columns are obtained by the generative 

model.
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Fig. 5. 
Generalization to ischemic stroke cases (showing acute stroke: rows 1–3; subacute stroke: 

rows 4–6) with T1, T1c, FLAIR/MD, T2/MAD images of each patient (from left to right, 

three patients per row). Automatic segmentations are delineated in red, lesions in manually 

segmented volumes are shown in blue (typically beneath a red line); T1 and T1c lesions 

were only visible for some cases.
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Fig. 6. 
Measuring feature relevance of the discriminative model. Features relevant for 

discriminating between false positives and true positives regions. We evaluate the 

permutation importance [67] of each feature extracted for the FLAIR regions (see text for 

details). Boxplots show the decrease in accuracy for all 255 trees of the oblique random 

forest (boxes representing quartiles) with high values indicating high relevance. The gray bar 

indicates the performance of a random feature (“RND”) under this measure, features 

displayed in red perform significantly better (as indicated by a paired Cox-Wilcoxon test at 

5% level). Location and shape of the regions are most discriminative, as well as the general 

number of lesions visible in the given FLAIR image, and selected image intensities.
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Table I

Dice scores on the test sets used in this study, for the two tasks of segmenting the whole lesion (top) and the 

Gadolinium enhancing structures (bottom). BRATS results are calculated on the whole brain, stroke results in 

the lesion area. Inter-rater represents the overlap over multiple segmentations of the corresponding task and 

datasets done by human raters [1]. Reported are mean with standard deviation and median with median 

absolute deviance.

Task: complete lesion (FLAIR) mean (±std) median (±MAD)

BRATS glioma – generative (raw) .58 (±.22) .67 (±.11)

BRATS glioma – gener. (postproc.) .62 (±.21) .72 (±.11)

BRATS glioma – gener.-discr. (region) .69 (±.24) .79 (±.06)

BRATS glioma – gener.-discr. (pixel) .78 (±.13) .83 (±.05)

INTER-RATER (4 raters) .86 (±.06) .87 (±.06)

Zurich stroke .78 (±.11) .79 (±.07)

INTER-RATER (2 raters) .79 (±.11) .80 (±.12)

Task: enhancing core (T1c) mean (±std) median (±MAD)

BRATS glioma – generative (raw) .46 (±.26) .60 (±.15)

BRATS glioma – gener. (postproc.) .51 (±.27) .64 (±.15)

BRATS glioma – gener.-discr. (region) .53 (±.27) .66 (±.14)

BRATS glioma – gener.-discr. (pixel) .54 (±.29) .66 (±.15)

INTER-RATER (4 raters) .76 (±.10) .78 (±.08)

Zurich stroke .45 (±.33) .64 (±.18)

INTER-RATER (2 raters) .82 (±.08) .83 (±.05)
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