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Abstract

Bone mineral density, muscle mass and physical function reach their peak between the second and 

fourth decade of life and then decline steadily with aging. The crucial question is: what factors 

contribute to or modulate this decline? The aim of this mini-review is to propose a theoretical 

framework for the potential role of emerging biomarkers such as klotho, fibroblast growth factors 

(FGF)21 and FGF23 on musculoskeletal health, with a particular focus on decline in muscle mass 

and function, and calls for future research to examine this proposed link. The identification of new 

physiological mechanisms underlying these declines may open a potentially important avenue for 

the development of novel intervention strategies aimed at preventing or reducing their potentially 

detrimental consequences.
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Musculoskeletal Changes with Aging and their Implications

Bone loss and the decline in muscle mass, strength and physical function that occur with 

aging are major risk factors for the development of adverse outcomes, including falls (1, 2), 

mobility limitation (3) and recurrent hospitalization (4), and often represent the early stage 

of a continuum leading to disability and dependency (3, 5, 6). Considering the projected 

demographic transition, with an estimate of 19% of Americans being 65 or older in 2030 (7), 

these aging-related conditions will dramatically increase in the next years, as well as their 

medical and health care costs (8, 9). Therefore, the identification of factors contributing to 

the exacerbation and progression of bone/muscle loss and functional decline represent an 

important public health concern, and a crucial step for the development of primary and 

secondary prevention strategies.

Bone mineral density, muscle mass and physical function reach their peak between the 

second and fourth decade of life and then decline steadily with aging (10–12). The crucial 

question is: what factors contribute to or modulate this decline? It is well-known that the 
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level of physical activity is reduced with advanced age and that muscle disuse plays an 

important role in bone loss and the decline in muscle mass and physical function (13, 14). 

However, it has been shown that even highly active older persons, including master 

swimmers and athletes, still have significantly lower muscle mass and strength than their 

younger counterparts (15), suggesting that other factors contribute to this aging-related 

process.

The aim of this mini-review is to propose a theoretical framework for the potential role of 

emerging biomarkers such as klotho, fibroblast growth factors (FGF)21 and FGF23, on 

musculoskeletal health, with a particular focus on decline in muscle mass and function, and 

calls for future research to examine this proposed link. The identification of new 

physiological mechanisms underlying these declines may open a potentially important 

avenue for the development of novel intervention strategies aimed at preventing or reducing 

their potentially detrimental consequences.

Klotho, FGF21 and FGF23: Metabolism and Clinical Phenotypes

Klotho is a recently discovered protein (16) that was named after the Greek goddess, Klotho, 

who spins the thread of life. It is mainly expressed in the distal renal tubule and the 

choroidplexus in the brain (16) and is composed of a very short (10 amino acids) 

intracellular domain, a transmembrane, and a large extracellular domain which can act as a 

circulating hormone (17). It is released into the extracellular space and can be detected in 

sera (18). There are two forms of klotho protein: membrane klotho and secreted klotho.

Membrane klotho functions as a receptor for FGF21 and FGF23 and is required for their 

metabolic activity (19, 20). Because of the lack of a heparin-binding domain, these FGFs 

can leave the tissues of origin and serve as circulating hormones (21).

Secreted klotho functions as a humoral factor with a number of activities, including lowering 

intracellular oxidative stress and regulation of ion channel and transport (22, 23). 

Experimental studies have shown that klotho extends lifespan by 19–31% when 

overexpressed (24) and causes a phenotype of premature aging, including muscle atrophy 

and muscle weakness (16, 25), when its expression is disrupted. Furthermore, klotho 

deficient mice are osteopenic (16, 26) with low bone turnover, resulting in a decreased 

cortical bone thickness of femur, tibia and vertebrae by 20–40% when compared with wild-

type mice (27). Although the underlying factors contributing to this premature aging 

phenomenon are unclear, putative mechanisms are its role in repressing insulin/IGF1 

signaling through FGF21 (24), lowering intracellular oxidative stress (22) and regulating 

phosphate and calcium homeostasis through FGF23 (24, 28).

FGF21 is a recently discovered endocrine factor that is emerging as a regulator of glucose 

and lipid metabolism. It is mostly expressed in the liver but also in the pancreas, white 

adipose tissue and muscle (29, 30). FGF21 expression in the liver is primarily induced by 

prolonged fasting through peroxisome proliferator-activated receptor (PPAR)-α activation 

and in white adipose tissue by feeding through activation of PPAR-y, a master transcriptional 

regulator of adipogenesis (31). The preferred receptor for FGF21 (FGFR1c) is abundantly 
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expressed in adipose tissue (19, 20, 32) where FGF21-regulated genes are involved in 

lipogenesis, lipolysis, and fatty acid oxidation (33, 34). When administered to rodents and 

monkeys with obesity and diabetes, recombinant FGF21 causes weight loss, and reduces 

plasma glucose, triglycerides, insulin resistance, and hepatic steatosis (33, 35, 36). 

Experimental studies suggest that FGF21 also regulates skeletal homeostasis, by potentiating 

PPAR-y activity and inhibiting osteoblastogenesis (37). However, little is known on the 

functional role of FGF21 in humans, where its role in glucose metabolism is controversial 

(38–43).

FGF23 was first identified in the ventrolateral thalamic nucleus of the brain in mice (44) and 

its importance was discovered when its mutation lead to the development of autosomal 

dominant hypophosphatemic rickets (ADHR) (45). FGF23 is a bone-derived hormone that 

acts on the kidney to modulate bone mineralization by regulating phosphate excretion, and 

the synthesis of 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] and parathyroid hormone (PTH)

(46). In particular, when phosphate is in excess, FGF23 acts on kidney to promote phosphate 

excretion into urine. FGF23 also reduces serum 1,25-(OH)2D3 levels to suppress phosphate 

absorption from intestine. Thus, FGF23 functions as a hormone that induces negative 

phosphate balance (47, 48) and it has been shown to play a causative role in the development 

of several hypophosphatemic rickets/osteomalacia. Furthermore, FGF23 functions as an 

inhibiting factor of PTH synthesis (49, 50) and has been associated with PTH levels in 

humans as well (51). Mice knock-out for FGF23 show a clinical phenotype resembling 

aging, including growth retardation, skin atrophy, decreased bone density and decreased 

longevity (46). Patients with hypophosphatemic rickets/osteomalacia often report muscle 

weakness and bone pain that severely affects their daily life activities (52).

Novel Pathways to Musculoskeletal Health?

FGF21 and FGF23 share common structural and biological features (53) and both require 

klotho to bind their cognate FGF receptors and exert their biological activities (19, 54). 

Therefore, they likely act systemically and synergistically and may affect musculoskeletal 

health through different pathways. For example, klotho contributes to phosphate and calcium 

homeostasis (28) by affecting FGF23 (54), which is considered a putative cornerstone for 

bone mineralization, and also FGF21 might contribute to skeletal homeostasis not only in 

mice (37) but also in humans.

The main functions of FGF23 signaling in the kidney are the reduction of 1,25(OH)2D3 

synthesis and of renal tubular phosphate reabsorption (55). Consequently, FGF23 is directly 

involved in the regulation of the active form of vitamin D and of serum phosphate levels. 

Extracellular phosphate is necessary to allow mineralization of bone matrix, while 

intracellular phosphate plays an important role in energy stores and production (e.g. in the 

form of phosphocreatine and ATP) (77), which are needed for muscles to function. 

Consequently, klotho and FGF23 may play an important role not only in bone mineralization 

but also in the maintenance of muscle mass and function given their interplay with vitamin 

D and the critical role of phosphate in energy (ATP) and protein production. In line with this 

hypothesis, a number of studies have shown that low levels of vitamin D are associated with 

decline in muscle mass (56), muscle strength (57) and physical function (58, 59). 
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Furthermore, skeletal muscle is a major user of ATP (60) to power the movement of the 

myosin heads and to allow muscle contractions. Interestingly, experimental studies have 

shown that injections of FGF23 antibodies increased serum phosphate and 1,25-(OH)2D3 

levels as well as grip strength and spontaneous movements in hypophosphatemic mice (61).

FGF21 may play a role in muscle mass and function with its involvement in energy 

metabolism as well. Indeed, during starvation and intense physical activity the levels of 

FGF21 increase through the PPAR-α pathway in order to enhance energy production 

(ketogenesis) and utilization (oxidation) of free fatty acids. Chau et al. (62) demonstrated 

that FGF21 regulates energy homeostasis in adipocytes through activation of adenosine 

monophosphate (AMP)-activated protein kinase, sirtuin 1, and PPAR g co-activator-1a 

leading to enhanced mitochondrial function and oxidative capacity. FGF21 also causes 

growth hormone resistance, and therefore, plays a key role in orchestrating the adaptive 

starvation response (21). Finally, circulating levels of FGF21 are positively associated with 

insulin resistance (43, 63) and with type II diabetes (64), conditions associated with 

musculoskeletal-related outcomes (65, 66).

Additional potential pathways that may link these novel biomarkers with musculoskeletal 

health are their involvement in the regulation of systemic inflammation and oxidative stress, 

as these conditions are associated with decline in muscle mass and strength (67–70). Indeed, 

Lee et al. recently showed that FGF21 plays a role in inhibiting the activation of the 

transcription factor nuclear factor-kappa B (NF-kB) (71), the master regulator of 

inflammation that can be activated in skeletal muscle cells under inflammatory conditions 

(72). Finally, NF-kB activation is tightly linked to increased oxidative stress, which alters the 

balance between protein synthesis and degradation and, consequently, may affect the rate of 

protein degradation in skeletal muscle (73, 74). Interestingly, klotho has been shown to be a 

cytoprotective protein that defends against oxidative stress (75) and, in turn, may contribute 

to reduce protein degradation and muscle loss. Therefore, as simplified in the conceptual 

framework (figure), these novel biomarkers may play a role in musculoskeletal health 

through different mechanisms, and are likely to function in an interaction network rather 

than in an additive fashion. However, despite this strong theoretical basis, there is a gap in 

the current scientific knowledge on the effect of klotho, FGF21 and FGF23 on muscle mass 

and function in humans. Indeed, there are only two studies in humans published to date on 

this topic, and they show that one standard deviation increase in plasma klotho was 

significantly associated with muscle strength (β=1.20, standard error=0.35, p=0.0009)(76) 

and with reduced risk of developing Activities of Daily Living disability (odds ratio=0.57, 

95% confidence interval=0.35–0.93)(77) in Italian older persons. In conclusion, this mini-

review provides a theoretical basis for the potential role of these emerging biomarkers on 

musculoskeletal health, with a particular focus on muscle mass and function. This could 

represent an interesting opportunity for the development of novel intervention strategies 

aimed at reducing muscle and functional decline with aging and their detrimental 

consequences.
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Figure 1. 
Simplified conceptual framework
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