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Spin-Cherenkov effect in a 
magnetic nanostrip with interfacial 
Dzyaloshinskii-Moriya interaction
Jing Xia1,2, Xichao Zhang1,2, Ming Yan3,4, Weisheng Zhao5,6 & Yan Zhou1,2,7

Spin-Cherenkov effect enables strong excitations of spin waves (SWs) with nonlinear wave dispersions. 
The Dzyaloshinskii-Moriya interaction (DMI) results in anisotropy and nonreciprocity of SWs 
propagation. In this work, we study the effect of the interfacial DMI on SW Cherenkov excitations in 
permalloy thin-film strips within the framework of micromagnetism. By performing micromagnetic 
simulations, it is shown that coherent SWs are excited when the velocity of a moving magnetic source 
exceeds the propagation velocity of the SWs. Moreover, the threshold velocity of the moving magnetic 
source with finite DMI can be reduced compared to the case of zero DMI. It thereby provides a promising 
route towards efficient spin wave generation and propagation, with potential applications in spintronic 
and magnonic devices.

The Cherenkov radiation of light1 occurs when a charged particle moves faster than the light speed within a 
medium. This effect is named after Pavel Alekseyevich Cherenkov, who studied this phenomenon exper-
imentally. Cherenkov radiation is used frequently in particle identification detectors in particle physics2. The 
Cherenkov effect is analogous to the sonic boom produced by shock waves propagating away from an aircraft, 
if its speed exceeds the sound velocity. Similar to the Doppler effect observed in different physical system3–7, the 
Cherenkov effect belongs to one of the fundamental phenomena induced by the radiation of moving sources. The 
Cherenkov-like effect of SWs has been theoretically studied in ferromagnets, which can be used to excite coherent 
SWs without the necessity of external alternating magnetic field or current8,9. Recently, the study of the influence 
of the antisymmetric exchange interaction, namely the Dzyaloshinskii-Moriya interaction (DMI), on magnetic 
excitations such as domain walls and vortex is one of the hottest topics in nanomagnetism and spintronics10–20. 
DMI is an antisymmetric interaction induced by spin-orbital coupling due to broken inversion symmetry in lat-
tices or at the interface of magnetic films12, which has been measured for both magnetic interfaces21,22 and bulk 
materials23,24. DMI facilitates the creation of topologically protected spin textures in chiral magnetic materials, i.e. 
magnetic skyrmions, which are favorable information carriers in the next-generation data storage and spin logic 
devices. On the other hand, theoretical13,14,16 and experimental10,15,25 studies have demonstrated that DMI leads 
to an asymmetrical spin-wave dispersion. DMI has also been measured in a wide range of materials including 
permalloy22,26,27. Specifically, the asymmetry in the formation of a vortex state in a permalloy nanodisk has been 
studied by micromagnetic simulations with interfacial DMI22.

In this paper, the influence of interfacial DMI on the Spin-Cherenkov effect (SCE) in permalloy strip are 
studied by micromagnetic simulations. Pictorial illustrations of the setup is shown in Fig. 1, where a rectangular 
moving magnetic field pulse is applied to the permalloy strip with a magnitude of 10 mT along the + z-direction. 
Our numerical results show that the interfacial DMI leads to a reduction of the threshold velocity of moving 
source, i.e. the minimum SW phase velocity, for coherent SW excitation in the absence of external ac magnetic 
field. Therefore it provides a promising route to reducing SCE threshold to facilitate experimental realization of 
such effect in magnetic medium.
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Results
SW excitation via SCE in permalloy strips.  The response of the magnetization distribution to the pulse 
velocity vh is shown in Fig. 2. A localized magnetic field of constant magnitude traveling along the wire axial 
direction with velocity of vh, is applied to mimic the interacting force with the magnetization. The magnetization 
dynamics is strongly dependent on the pulse velocity vh. For D =  0 mJ m−2 and vh =  500 m s−1 and 900 m s−1 (see 
Fig. 2(a1,a2)), the moving magnetic field pulse only causes a distortion of the magnetization distribution traveling 
with the pulse. There is no spin wave (SW) excitation by the moving pulse. As the velocity of the magnetic pulse 
increases, SW excitations are observed for vh =  1050 m s−1, 1100 m s−1 and 1200 m s−1, as shown in Fig. 2(a3–a5). 
At vh =  1050 m s−1, the SWs proceeding the source and lagging the source are well-distinguished with different 
wave lengths. Upon the application of a moving dc magnetic field pulse, the system reaches a dynamic equilib-
rium and the excited spin waves comprise of two branches, giving rise to the SCE as reported in Ref. 9.

For the permalloy nanostrip with interfacial DMI, similar magnetization dynamics occur as the moving field 
pulse is applied. For the case of D =  1 mJ m−2, there is no SW excitation by the moving magnetic field with the 
speed of vh =  500 m s−1 and 900 m s−1. The Cherenkov emission of SWs emerge at vh =  1050 m s−1, 1100 m s−1 
and 1200 m s−1 in the permalloy strip as shown in Fig. 2(b3–b5). The SWs excited in permalloy nanostrip are 
distorted due to the presence of DMI. The interfacial DMI term for any in-plane direction u can be expressed as 
Dz ×  u28, which may be treated as an effective field transverse to the magnetic track, resulting in the distorted spin 
waves. As D =  2 mJ m−2, spin wave is excited when vh =  900 m s−1, indicating that the presence of interfacial DMI 
leads to the decreasing of the threshold velocity of the moving field source for spin wave excitation. It should be 
noticed that the SWs with more significant distortions are observed at vh =  1050 m s−1, 1100 m s−1 and 1200 m s−1 
as shown in Fig. 2(c3–c5). Moreover, the difference between the SW branches proceeding and lagging the source 
becomes even more obvious with increasing DMI strength for a given pulse velocity.

Figure 3 shows the numerically determined SW phase velocity vp(k) and group velocity vg(k) for D =  0 mJ m−2. 
The inset of Fig. 3 shows the SW dispersion in the permalloy strip, which agrees well with the analytical results for 
zero DMI (proportional to k2). In Fig. 3, the phase velocity vp and vg of the SWs are extracted from the dispersion 
relation of vp(k) =  ω/k and vg(k) =  dω/dk. The minimum of the phase velocity occurs around 1000 m s−1, meaning 
that no SW is excited by the moving field pulse in the permalloy strip for the pulse velocities below the minimum 
v0. In other words, the velocity v0 is the threshold velocity of SCE, below which there is no coherent SWs excita-
tion. As the field pulse moves at a velocity larger than v0, there are two SW modes excited with different group 
velocity vg but equal phase velocity vp. The SW packet with larger 



k (vg >  vp) moves in the front of the source and 
leaves the one with smaller 



k (vg <  vp) behind. The field pulses with different velocity vh are applied and the corre-
sponding responses of the magnetization distribution are shown in Fig. 2(a1–a5). The calculated k are shown with 
color stars in Fig. 3. As vh is below the critical velocity, there is no SW excitation by the moving field pulse. When 
vh =  1050 m s−1, there are two SW modes observed in the permalloy strip. The spin waves formed in front of and 
behind the pulse exhibit different characteristics in Fig. 2(a3), and the corresponding k values are shown in Fig. 3. 
The Cherenkov emission of SWs can also be observed for the case of vh =  1100 m s−1 and 1200 m s−1. The disper-
sions are in an excellent agreement with the curves of vp(k) and vg(k). The curves of vp(k) and vg(k) extracted from 
the numerical SW dispersion relation ω(k), which is obtained by applying a localized ac field and extracting the 
wavelength of the excited spin waves, can predict the Cherenkov excitation of SWs precisely.

Influence of DMI on SCE in permalloy.  Figure 4 shows the numerically determined phase velocity vp(k) 
and group velocity vg(k) with D =  2 mJ m−2, where vp(k) and vg(k) are calculated from the SW dispersion relation 
ω(k) shown in the inset. Similar to the case of D =  0 mJ m−2, there exists a critical velocity v0 for the Cherenkov 
excitation of SWs. The Cherenkov excitation of SWs can be observed for vh >  v0 (887 m s−1). We also investigate 
the evolution of the SW branches by varying vh for D =  2 mJ m−2. At vh =  1050 m s−1, the Cherenkov excitation 
of SWs is observed with two SW modes formed in the permalloy strip. The calculated k marked with color stars 
agrees very well with the numerically determined curve of vp(k). The curves of vp(k) and vg(k) extracted from the 

Figure 1.  Schematics of the micromagnetically modeled system. An external rectangular shape field pulse 
(H), 12 nm wide in the x-direction and 100 nm long in the y-direction, is applied to a 12-μm-long, 100-nm-
wide, and 10-nm-thick magnetic strip with a magnitude of 10 mT in the z-direction and constant speed of 
vh. The color scale represents the out-of-plane component of the magnetization mz, which has been used 
throughout this paper.
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SW dispersion relation ω(k) can predict the Cherenkov excitation of SWs precisely with the presence of finite 
DMI.

Figure 5 shows the minimum velocity v0 of the Spin-Cherenkov excitation for D =  0 mJ m−2, 1 mJ m−2, 
2 mJ m−2 and 3 mJ m−2, as well as the corresponding dispersion relation. Only the branches of positive k are 
shown. The critical velocity for the SCE decreases linearly with increasing DMI in the investigated DMI range. As 
shown in the inset of Fig. 5, the dispersion relation for D =  1 mJ m−2 deviates from the case of D =  0 mJ m−2, 
resulting in a smaller critical velocity v0. v0 =  1000 m s−1 for D =  0 mJ m−2 whereas v0 =  944 m s−1 for D =  1 mJ m−2. 
The critical velocity further drops to 887 m s−1 as D increases to 2 mJ m−2, indicating that the Cherenkov emission 
of SWs in permalloy strip with finite DMI can be excited more easily than the case of zero DMI. The SW disper-
sion relations without DMI (D =  0 mJ m−2) is a parabolic function of SW vector k when k is large9,13,29,30. In 
Refs. 14 and 25, the SW dispersion relation is given analytically when DMI is included, indicating that the inter-
facial DMI results in the asymmetric dispersion. Such asymmetric dependence due to the interfacial DMI 
depends on the spin wave vector k and equilibrium magnetization distributions. Different with the typical 
Damon-Eshbach spin waves studied in Refs. 14 and 25, the SWs in our case propagate along the ± x-directions 
while the equilibrium magnetization is along the + x-direction, corresponding to the back-volume mode. The SW 
dispersion is given by ω γ ω= − ⁎kD m( )z0 0

2
0

2  when the DMI is considered. Here =
µ

⁎D D
M

2

0 S
 and ω0 is the 

Figure 2.  Snapshots of the z-component of the magnetization in a magnetic strip in the vicinity of the field 
pulse traveling at a constant speed. (a1) D =  0 mJ m−2 and vh =  500 m s−1, (a2) D =  0 mJ m−2 and vh =  900 m s−1,  
(a3) D =  0 mJ m−2 and vh =  1050 m s−1, (a4) D =  0 mJ m−2 and vh =  1100 m s−1, (a5) D =  0 mJ m−2 and vh =  1200 m s−1, 
(b1) D =  1 mJ m−2 and vh =  500 m s−1, (b2) D =  1 mJ m−2 and vh =  900 m s−1, (b3) D =  1 mJ m−2 and vh =  1050 m s−1, 
(b4) D =  1 mJ m−2 and vh =  1100 m s−1, (b5) D =  1 mJ m−2 and vh =  1200 m s−1, (c1) D =  2 mJ m−2 and vh =  500 m s−1, 
(c2) D =  2 mJ m−2 and vh =  900 m s−1, (c3) D =  2 mJ m−2 and vh =  1050 m s−1, (c4) D =  2 mJ m−2 and vh =  1100 m s−1, 
(c5) D =  2 mJ m−2 and vh =  1200 m s−1.
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angular frequency in the absence of DMI. mz0 is the z-component of the magnetization. The SW dispersion rela-
tion remains symmetric, when the interfacial DMI is included. The SCE threshold can be calculated by =ω ωd

dk k
, 

which decreases with DMI9.

Discussions
The Cherenkov emission of spin waves has been numerically studied by considering the effect of DMI in per-
malloy strip. The resonant Spin-Cherenkov effect can be excited as the velocity of moving magnetic field pulse 
exceeds a certain threshold velocity. The Spin-Cherenkov effect threshold can be reduced in the presence of finite 
DMI. By further tuning the material parameters and geometries, resonant spin waves can be excited through 
Spin-Cherenkov effect at much lower threshold velocity of the moving dc field source. On the other hand, it is also 
feasible to increase the interaction region of the moving dc field source on the magnetic strip in real experiments. 
Indeed, we have investigated the Spin-Cherenkov effect with different sizes of the moving dc field source (see 

Figure 3.  Numerically determined phase velocity vp(k) and group velocity vg(k) of SWs in the magnetic 
strip which is 12 μm long, 100 nm wide, and 10 nm thick as D = 0 mJ m−2. The value of vp(k) and vg(k) are 
extracted from the SW dispersion relation ω(k) shown in the inset. vp(k) has a minimum v0 at k0, where the two 
curves vp(k) and vg(k) cross. The colored stars represent the wave vectors of the SW tails excited by the moving 
field pulse applied to the strip at the corresponding speed. The colored horizontal line, indicating the speed of 
the field pulse, connect the two SW branches.

Figure 4.  Numerically determined phase velocity vp(k) and group velocity vg(k) of SWs in the magnetic 
strip, with a length of 12 μm, a width of 100 nm, and a thickness of 10 nm when D = 2 mJ m−2. The value of 
vp(k) and vg(k) are extracted from the SW dispersion relation ω(k) shown in the inset. vp(k) has a minimum v0 at 
k0, where the curve vp(k) crosses the curve vg(k). The colored stars show the wave vectors of the SW tails excited 
by the moving field pulse applied to the strip at the corresponding speed. The colored horizontal line, indicating 
the speed of the field pulse, connects the two SW branches.
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Supplementary Fig. 1), as well as with different thicknesses of the magnetic strip (see Supplementary Fig. 2). The 
Spin-Cherenkov effect in finite-DMI system might be interesting for fundamental physics and also promising for 
potential applications in spintronic and magnonic devices, easing the experimental complexity and difficulty of 
applying an external ac magnetic field or current for resonant SW excitations.

Methods
Modeling and simulation.  The micromagnetic simulations are performed using the Object Oriented 
MicroMagnetic Framework (OOMMF) software including the interface-induced Dzyaloshinskii-Moriya inter-
action (DMI) extension module19–21,31–33. The three-dimensional time-dependent magnetization dynamics is con-
trolled by the Landau-Lifshitz-Gilbert (LLG) ordinary differential equation34–36

γ α
= − × +




×





d
dt M

d
dt

M M H M M ,
(1)0 eff

S

where M is the magnetization, Heff is the effective field, γ0 is the Gilbert gyromagnetic ration, and α is the Gilbert 
damping coefficient. The effective field reads as follows
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where A and K are the exchange and anisotropy energy constants, respectively. H and Hd(M) are the applied and 
magnetostatic self-interaction fields while MS =  |M(r)| is the spontaneous magnetization. The EDM is the energy 
density of the interfacial DMI of the form21,31,36,37
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where the Mx, My, Mz are the components of the magnetization M and D is the interfacial DMI constant. The five 
terms at the right side of equation (3) correspond to the exchange energy, the anisotropy energy, the applied field 
(Zeeman) energy, the magnetostatic (demagnetization) energy and the interfacial DMI energy, respectively. The 
typical material parameters of permalloy, μ0MS =  1 T, exchange constant A =  1.3 ×  10−11 J m−1, and zero anisot-
ropy are adopted8,9,22,26. Considering that the value of the effective interfacial DMI constant in the Py/Pt bilayers 
has been estimated to be within the range of 1.0~2.2 mJ m−2 in Refs. 27 and 38, the interfacial DMI constant D is 
varied from 0 to 3 mJ m−2 in this paper. A rectangular shape field pulse is applied to 12-μm-long, 100-nm-wide, 
and 10-nm-thick magnetic strip with a magnitude of 10 mT in the + z-direction and a 12 nm width in the 
x-direction, as shown in Fig. 1. The moving field pulse can be realized, for example, with a laser beam scanning 
over the surface of magnetic thin films39. The results with different widths of the moving field pulse are shown in 

Figure 5.  The minimum velocity v0 for the Spin-Cherenkov excitation as D = 0 mJ m−2, 1 mJ m−2, 2 mJ m−2 
and 3 mJ m−2. The insets shows the corresponding dispersion relations, which are obtained by applying a 
localized ac magnetic field and extracting the wavelength of the excited spin waves.
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Supplementary Fig. 1. The results with different thicknesses of the magnetic strip are shown in Supplementary 
Fig. 2. For simplicity, the uniform field along the film thickness is assumed. All samples are discretized into cells 
of 3 nm ×  5 nm ×  5 nm in the simulation. Gilbert damping coefficient α is set to be 0.02 and the value for Gilbert 
gyromagnetic ratio γ0 equals 2.211 ×  105 m A−1 s−1. Initially, the magnetization orients along the + x-direction 
due to the shape anisotropy. The absorbing boundary condition has been implemented at both ends of the nano-
strip, which effectively avoids the spurious spin wave reflections40.
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