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Bugging inflammation: role of the gut microbiota

Sj Shen and Connie HY Wong

The advent of vaccination and improved hygiene have eliminated many of the deadly infectious pathogens in developed nations.
However, the incidences of inflammatory diseases, such as inflammatory bowel disease, asthma, obesity and diabetes are
increasing dramatically. Research in the recent decades revealed that it is indeed the lack of early childhood microbial exposure,
increase use of antibiotics, as well as increase consumption of processed foods high in carbohydrates and fats, and lacking fibre,

which wreak havoc on the proper development of immunity and predispose the host to elevated inflammatory conditions.
Although largely unexplored and under-appreciated until recent years, these factors impact significantly on the composition of
the gut microbiota (a collection of microorganisms that live within the host mucosal tissue) and inadvertently play intricate
and pivotal roles in modulating an appropriate host immune response. The suggestion that shifts in the composition of host
microbiota is a risk factor for inflammatory disease raises an exciting opportunity whereby the microbiota may also present

as a potential modifiable component or therapeutic target for inflammatory diseases. This review provides insights into the
interactions between the microbiota and the immune system, how these affect disease phenotypes, and explore current and
emerging therapies that target the gut microbiota as potential treatment for inflammatory diseases.
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The increasing incidence of inflammatory conditions, such as
inflammatory bowel disease (IBD, including ulcerative colitis (UC)
and Crohn’s disease (CD)),! diabetes? and asthma?, is creating a new
wave of diseases. For many of these diseases, such as IBD, the cause is
unknown, and the complex biological interactions that result in
disease pathology are only starting to be unravelled. Current disease
management strategies for some of these diseases, such as insulin
injections for diabetes patients and Salbutamol (Ventolin) for asthma
sufferers, are long-term and poses a significant financial burden on
individuals and on the health system. Other first-line treatment
strategies generally involve immunosuppressant drugs (that is,
corticosteroids) that may predispose patients to increased risk of
acquiring infections. Therefore, there is an urgent need for a better
understanding into disease progression, with the aim to develop
effective and targeted treatment for inflammatory diseases.

For the past half a century, the advent of vaccinations, antibiotics
such as penicillin and the increasingly improved hygiene have
dramatically decreased, even eliminated, the incidence of some
infectious diseases (Figure 1).* Within this period, there has also
been drastic changes to diet, with increases in consumption of
carbohydrates and fats in highly processed foods, and decreases in
the intake of dietary fibre.> This forms the signature ‘Western diet’,
and translates to the average person living in a developed country
ingesting about half of the 30 g of daily recommended intake of fibre.®
Both decreases in early-life microbe exposure owing to increased
hygiene, and decreases in dietary fibre parallel major increases in
the incidence of inflammatory diseases (Figure 1).%7 Owing to this

association, researchers have proposed two hypotheses to describe the
recent drastic increase in the incidence of inflammatory diseases.

The hygiene hypothesis was proposed as an explanation for the
increasing prevalence of inflammatory diseases in the Western world.
A study in 1989 found that individual’s hygiene and the number of
older siblings were factors associated with hay fever development.?
This notion was controversial at the time, but gained support in later
studies that differentiated between type 1 and type 2 helper T
(Tyl and Ty2, respectively) cells.” Importantly, Tyl cytokine inter-
feron (IFN)-y inhibits a T2 response, and Ty2 cytokine interleukin
(IL)-4 inhibits a Tl response,'? supporting the concept that the lack
of early-life infections (Tyl response) polarised the host immunity
towards a T2 response and elevated the risk of developing diseases
such as asthma. This forms the basis of the hygiene hypothesis.

The hygiene hypothesis is hinged on the proposition that early-life
exposure to diverse microbes help the immune system develop and
differentiate infectious from harmless agents. Previous studies have
shown that children raised in rural areas have more frequent microbial
exposures and lower incidences of asthma,!! leading to the belief that a
cleaner environment, such as with improved hygiene, results in a
dysregulated immune response and consequent development of
inflammatory diseases.!> As Parker pointed out, the definition of
‘hygiene’ has changed from being increases in better sanitisation
infrastructures (such as sewer systems) in the past to now being
associated with handwashing and cleaning.!? This suggests that
although the term ‘hygiene hypothesis’ has been retained, it encom-
passes an older perspective where increased sanitisation may indeed be
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microbiota-depleting. This opposes the current perspectives where
being clean may only be microbiota-skewing. Indeed, research on
general and personal hygiene may not be sufficient to link environ-
mental cleanliness to the development of inflammatory diseases.!?
Therefore, research may need to target factors that have more
prominent effects on the skewing or depletion of microbiota. One
such factor is the use of antibiotics. Antibiotics are not effective against
all bacteria, and will therefore skew the composition of the host
microbiota towards one that is antibiotic-resistant.'* In addition,
different antibiotics target different bacterial components, and may be
effective only on restricted groups of bacteria, such as anaerobes or
Gram-positive strains.!#!> This creates a lack of diversity in the
microbiota, and is thought to cause an underdeveloped immune
system, predisposing the host to a range of diseases. Therefore, the
contribution of both urban/rural setting and antibiotic use have been
shown to influence microbiota composition and diversity, induce a
dysregulated immune response and leads to the development of
inflammatory diseases.!>!0

Another proposed explanation for the increasing prevalence of
inflammatory diseases is the diet hypothesis. The inverse correlation
between the amount of fibre intake and the development of
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Figure 1 The inverse relationship between the incidences of infectious
diseases (blue) and inflammatory diseases (red) over 1950-2000. Modified
from publication.*
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Figure 2 Factors in both the ‘hygiene hypothesis’ and the ‘diet hypothesis’
converge on microbiota modulation. (1) The factors proposed by the hygiene
hypothesis (such as early childhood exposure to microorganisms and the use
of antibiotics) and (2) the diet hypothesis (components and bacterial
fermented products of food) both culminate in interactions with the
microbiota (3). The changes in microbiota composition due to these and
other factors may underlie their associations with inflammatory diseases.
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inflammatory diseases has sparked extensive research. Fibre intake is
protective for many inflammatory diseases,'”~2° and is also associated
with an increase in longevity.!® As fibre cannot be digested by the
human body, we rely on fermentation by the gut microbiota to result
in the generation of short-chain fatty acids (SCFAs) as metabolites,
which includes predominantly acetate, butyrate and propionate.?!
Not only can SCFAs be absorbed into the circulation and have
systemic anti-inflammatory effects, butyrate is also a local energy
source for colonic epithelial cells.”?> Some of the anti-inflammatory
actions of SCFAs and their associated receptors include promoting
the production of immunoglobulin (Ig)A and immunosuppressive
cytokines such as IL-10, the full extent of which has been reviewed
elsewhere.?! Indeed, there is accumulating evidence to strongly suggest
that dietary fibre positively shape the composition of the gut
microbiota and immunity, whereby its metabolites and associated
receptors are potential links between diet, gut microflora and the
host’s inflammatory response.

It is becoming increasingly clear that both of the aforementioned
hypotheses inadvertently influence the composition of the host gut
microbiota/microbiome (Figure 2). Direct sequencing of genetic
material of the human gut microbiota revealed that the gut consists
of a complex community of commensal archaeal and bacterial cells
from >1000 species.>’> The microbiota also harbour essential genes
required for the metabolism of food intake,?? indicating an additional
role of the microbiota in energy harvest and homeostasis. Many
factors in the two hypotheses, such as antibiotics use’* and dietary
components,? influence significantly on the composition of the host
gut microbiota. The resultant dysbiotic microbiota could prove to
merge both the hygiene hypothesis and the diet hypothesis into one,
and contribute to the risk of inflammatory disease development.6=>
However, this also raises an exciting opportunity whereby altering the
microbiota may also present as a potential modifiable component or
therapeutic target for inflammatory diseases.

This review will discuss the interactions between the microbiota and
the immune system and how this affects subsequent immune
responses and the development of inflammatory diseases. The latter
parts of the review will examine in depth both the local and the
systemic effect of the gut microbiota, and discuss the current and
potential microbiota-modulating therapies for IBD, and its emerging
uses in treating other inflammatory diseases.

INTERACTIONS BETWEEN MICROBIOTA AND THE IMMUNE
SYSTEM

Recent research suggests that there is a symbiotic relationship between
the ‘non-self microbiota and ‘self immune system, and both should
be considered as one in the superorganism theory.>® The microbiota
has been shown to have profound effects in the development of
gut-associated lymphoid tissue, the differentiation of gut immune
cells, and production of immune mediators such as Igs (IgA) and
antimicrobial peptides (defensins), as reviewed by Sommers and Bi
ckhed.>! Importantly, the microbiota has modulatory effects on
important regulatory immune cells, including invariant natural killer
T (iNKT) cells and regulatory T cells (Tregs).>** The findings from
these studies highlighted the tight and proper control of the interac-
tion between the host immune system and microbiota provide mutual
benefit and regulation. Indeed, cells of the gut and the immune system
have continual interactions to sample and distinguish between non-
pathogenic commensal microflora, harmless foodstuff and pathogenic
microorganisms. An appropriate balance between inflammatory and
anti-inflammatory state is needed to achieve intestinal homeostasis.



A key tool in gaining insights into the importance of the microbiota
in regulating the immune response is through studies of germ-free
(GF) mice.®® Unlike specific pathogen-free (SPF) counterparts, GF
mice are born and reared without exposure to any live microbes, thus
they are devoid of microbiota. Although different to the skewing of
microbiota seen with a change in hygiene or diet, the use of GF mice
in an experimental research setting has many benefits. It can be used
to examine the extent to which a lack of microbiota influences the
immune system, among other systems of the organism. Inoculating
GF mice with single strains of bacteria also provides a valuable tool in
studying specific microbial species and its effect on the immune
response.

GF mice have an underdeveloped immune system, especially in the
mucosal compartments.>® There are inherent deficiencies of T cells in
the lamina propria of the intestine, with GF mice having fewer
numbers of CD3+ T cells.?” Such deficiency in T cells has been shown
to result in increased bacterial translocation, such as Escherichia coli.®
In addition, other studies have demonstrated that the T cell
deficiencies and a Tyl/Ty2 imbalance is rescued by the addition of
commensal bacteria Bacteroides fragilis, bacterial molecule poly-
saccharide A, or lipopolysaccharide produced by Gram-negative
bacteria.>#* These studies clearly indicate an important reciprocal
regulation between microbiota and T cell development. The inter-
actions between host microbiota and immune response extend beyond
T cells. The expression of angiogenin-4, a selective yet potent
antimicrobial peptide, is diminished in GF mice, and that inoculation
of a single strain of Bacteroides thetaiotaomicron can induce its
expression.40 Furthermore, bacterial colonisation of the commensal
Morganella morganii in the gut of GF mice also stimulates IgA
production that in turn prevents bacterial translocation.*! This may
represent further mechanisms whereby the microbiota promotes the
development of host immune responses, and also the capacity of the
host immune system to prevent excessive bacterial translocation and
inflammation. Together, these point towards an important role of the
microbiota in shaping different facets of the immune system.*?

In mice lacking microbiota, studies have shown a defective Treg
population with lowered numbers and reduced capacity to function.
Not only were there less CD4+CD25+ T cells, GF mice also had
reduced expression of Treg transcription factor forkhead box P3
(FoxP3), IL-10 and IL-13.%3 Interestingly, Tregs with increased
suppressive capacity can be generated in vitro by co-incubation with
bacterial antigens and antigen presenting cells (APC),** and in vivo
by administration of Clostridium-related segmented filamentous
bacterium.*> A separate study suggests that microbiota-induced
generation of Treg in the periphery have a unique set of T-cell
receptor repertoire, different to those of thymic origin.*® These results
demonstrate an important role of the microbiota in the control of
regulatory immune cells. In GF non-obese diabetic mice, the expres-
sion of FoxP3 was only reduced in the gut, suggesting a restricted
effect of the microbiota on Treg biology.*’ Interestingly, the addition
of SCFAs acetate, butyrate or propionate reversed the deficiencies of
colonic Treg numbers and function in GF mice.*® This supports a
pathway whereby the generation of SCFAs through fermentation of
fibre by the gut microbiota have direct effects on Tregs, and highlights
the anti-inflammatory functions of fibre and its metabolites. Despite
this, there is also evidence suggesting that DNA of commensal
microbiota limits Treg and promotes T cell differentiation through
TLR9.#° These studies clearly further indicate the interaction between
microbiota and the host immune system can result in a multitude of
consequences. In addition, it advances the idea that the interplay and
balance between gut microbiota and the immune system is crucial for
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intestinal homeostasis, and that dysbiosis may cause excessive inflam-
mation that contributes to disease pathology.

The second part of the review will highlight recent findings on the
influence of microbiota changes in the development of inflammatory
diseases, and the potential of harnessing the gut microbiota to provide
opportunities for translation from research to clinical management.
Intriguingly, recent studies into the GF mice demonstrated an
upregulation of genes involved in cell growth and signalling, signal
transduction and metabolism with oncogenic implications, whereas a
downregulation of immune-related genes, reflecting an under-
developed immune system.>® This finding indicates that the impact
of the microbiota is not limited to the local immune function and
inflammation, but also influence the host metabolic homeostatic state.
Therefore, in addition to our primary focus on the localised effects of
dysbiotic microbiota on the development of IBD, we will explore
recent findings from clinical and animal studies that demonstrate the
systemic effects of the dysbiotic microbiota on asthma, obesity and
diabetes, and some of the emerging uses of microbiota modification as
a target for therapeutic intervention.

THE LOCAL EFFECTS OF GUT MICROBIOTA ON IBD
Expectedly, changes in the gut microbiota has associations with
inflammation and inflammatory diseases in the gut. IBD patients
have increased Enterobacteriaceae (such as E. coli) and Bacteroidetes
(such as B. fragilis) and reduced Firmicutes (Clostridia-related
clusters), and also consistently elevated bacterial load in the
colon.>">2 This suggests that the increase in bacteria directly promotes
gut inflammation. Patients with UC also have reduced Faecali-
bacterium prausnitzii, a bacterium that has anti-inflammatory
properties.”® Similar trends can be observed in patients with CD.>*
In an experimental setting, F. prausnitzii has been shown to protect
against murine model of colitis, through induction of regulatory
cytokine IL-10, and not Tyl cytokines IL-12 or IFN—«{.55 In addition,
purified polysaccharide A, a product from B. fragilis, can prevent gut
pathology through the modulation of IL-10-producing T cells in
mice.”® Despite the fact that a change in microbiota composition
is associated with IBD development, changes in specific bacterial
species have not been identified across patients.”' It is likely that a
combination of elevated bacterial load and a shift away from bacteria
with anti-inflammatory properties that have an accumulative effect in
initiating or aggravating the pathology of disease. However, the current
research does not elucidate a causal effect. In a mouse model, despite
commensal Enterobacteriaceae (primarily E. coli) are enriched in mice
with colitis, transfer of these microorganisms did not induce disease in
antibiotic-pre-treated mice, whereas transfer of commensal Bacter-
oides did.”” This suggests a clear distinction between microorganisms
that induce disease and those that change as a result of disease. It will
be a difficult feat to identify any specific microorganisms that
promotes the pathogenesis of IBD given the retrospective nature of
human studies, and the fact that not all animal studies successfully
translate to humans. Nevertheless, associations in human studies,
and temporal studies in animals will allow greater insight into the
immunopathogenesis of IBD.

GF mice have been an invaluable tool used to study the function of
microbiota in animal models of inflammatory diseases. GF mice have
inherently elevated levels of colonic inflammation. There are increased
relative and absolute numbers of iNKT cells that forms a stable
population in the lamina propria, although their activation markers
remain unaltered.’® GF mice are more susceptible to iNKT-dependent
oxazolone-induced colitis, and have increased expression of IL-13 and
IL-1f, whereby this disease phenotype can be reversed with CD1d
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blockade.®® This clearly indicates that antigen presentation and
subsequent activation of iNKT cells is critical to maintain gut
homeostasis. In a 2% dextran sulphate sodium (DSS)-induced colitis
model, GF mice showed increase mortality compared with SPF mice.”®
However, disease severity was lessened in GF mice with the addition of
B. fragilis, with improved survival rates, disease activity scoring,
histopathological scoring, reduced TNF-a and increased IL-10
production.”® The results of this study revealed the immunomodula-
tory role of B. fragilis and the effects this bacterium could have on
disease progression. Therefore, the appropriate modulation of gut
microbiota may be a therapeutic target for localised inflammatory
conditions.

Microbiota as immunotherapy for IBD

One method of altering the gut microbiota is to restrict bacterial
growth in the patients’ gut microbiome by the use of antibiotics.
Studies have shown that in certain subgroups, and indeed during
certain stages of disease, treatment with antibiotics was successful in
inducing remission and preventing relapse.* In a multicentre trial,
oral administration of amoxicillin, tetracycline and metronidazole
reduced clinical score, increased clinical remission and also promoted
corticosteroid discontinuation in patients with UC who were depen-
dent on it.! Interestingly, it seems that as the more time progresses,
the less significance there was between treatment and control groups.
This could be, at least partially, explained by the resilient nature of the
gut microbiota in a study with ciprofloxacin for 5 days.®* The use of
antibiotics was shown to result in an altered, yet stable, microbiota and
the persistence of antibiotic-resistant genes.!* The propagation of
antibiotic resistance and the distribution of bacteria beneficial or
detrimental for IBD are potentially important determinants of the level
of response to antibiotic therapies. Since IBD has microbial complica-
tions, if not infectious origins, the use of antibiotics seem more than
appropriate.>* The effects of antibiotics are not restricted to killing
bacteria, with Rifaximin shown to have effects on epithelial cells and
immunological transcription factors such as nuclear factor-xB
(NF-xB).%® The findings of this study demonstrated the potential
actions of certain antibiotics to act beyond an antibacterial agent,
which could have synergistic roles in dampening inflammation,
though the mechanisms behind the beneficial effects of antibiotics
in IBD is still unclear. On the other hand, the tipping of microbiota
composition may not always favour commensals. The reduction in gut
microbiota diversity may promote the growth of bacteria that may not
benefit, if not worsen, the IBD phenotype. Therefore, there is great
potential for antibiotic therapy in IBD, with possible benefits beyond
that of modulating the microbiota,® but details of the mechanisms of
action need to be elucidated.

Animal models provides us with a controlled environment for the
study of specific aspects of disease. Studies suggest that antibiotics
therapy with the combined dose of ampicillin, metronidazole,
neomycin and vancomycin, or bacitracin and neomycin, increases
bacterial translocation, induces mild inflammation and the risk of
developing DSS-induced colitis.®>*® However, different studies using
CIN-102, a natural cinnamon oil composition-like mixture with
broad-spectrum antibacterial activity, and cathelicidin from Bungarus
fasciatus decreased intestinal bacterial load, and improved symptoms
of DSS-induced colitis.?”8 Ciprofloxacin and metronidazole have also
been shown to reduce ileitis in genetically modified mice through the
downregulation of pro-inflammatory cytokines IFN-y and TNF, and
T-cell activation.®® Although some antibiotics such as ampicillin and
ciprofloxacin have broad-spectrum activities, others have specific
activities, with vancomycin targeting Gram-positive bacteria, and
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metronidazole targeting anaerobes.!> These highlight the importance
in choosing the right antibacterial compounds and combinations of
antibiotics are crucial to the control of disease. Furthermore, with the
natural antibacterial therapy having shown no resistance in the study,
it may have advantages over conventional antibiotics in its spectrum of
control of the gut microbiota.®” Antibiotics can change the outcome of
colitis even when given antepartum. The use of antibiotics during
pregnancy also decreases bacterial richness and increases the risk of
colitis for the offspring,”® Therefore, much considerations are needed
in choosing a specific antibacterial compound, and its timing of use,
especially with the increases in antibiotic-resistant strains in humans.
Nonetheless, these animal studies have outlined important microbiota-
modulating roles of antibiotics in controlled and less genetically
diverse animal models, and successful therapies could lead to future
human research and development into clinical trials.

To investigate further into the association of specific bacteria and
the progression of IBD, addition of bacteria to the patients’ gut
microbiome can be achieved in the form of probiotics. Probiotics are
live microorganisms that are beneficial to gastrointestinal and general
health. In most cases, patients with IBD have increased Bacteroides,
Enterobacteriaceae (mainly E. coli) and decreased Lactobacillus and
Bifidobacterium.”! In a systematic review of clinical trials, lactic acid
bacteria and Bifidobacteria, and even Bifidobacteria-fermented milk,
had the potential to treat patients with IBD, with greater efficacy in
patients with UC than CD.”?> A mixture named VSL#3 containing
Lactobacillus, Bifidobacteria and Streptococcus was also successful in
inducing and maintaining remission of paediatric UC.”* In addition, a
non-pathogenic strain of E. coli was effective in maintaining remission
in patients with UC.”* The greater benefit observed in patients with
UC could be the restricted nature of UC pathology to the mucosal
layer of the colon, whereas CD can affect any layer of any part of the
gastrointestinal tract, and thus have more variance in its pathology.”
Nevertheless, these evidence suggest a therapeutic role of probiotic
Lactobacillus and Bifidobacteria in patients with IBD that should be
further pursued.

Similar results were achieved using mouse models. A study found
that a probiotic mixture can improve disease scoring of DSS-induced
colitis.”® Bifidobacterium longum can also reduce colitis severity by
preserving tight junction proteins and improving intestinal epithelial
integrity. However, this protective effect was observed in a specific
strain (CCM7952) and not in others, suggesting the different genetic
make up and specific bacteria-host interactions even between different
strains are important to confer protection.”” Another animal study
showed that the combined effects of Clostridium butyricum and
Bifidobacterium infantis protected against colitis, by restoring the gut
microbiota.”® Lactobacillus casei can also modulate the microbiota and
protect against colitis, but it requires the dairy delivery matrix of milk
for this effect.”® F. prausnitzii and the extracellular polymeric matrix
isolated from its biofilm both had anti-inflammatory effects through
TLR-2 signalling and modulation of IL-10 and IL-12, ameliorating
DSS-induced colitis.3® A recent study suggests that live Bifidobacteria
can also protect against DSS-induced colitis, although it only stably
colonises the gut in GF but not SPF mice.8! This is likely due to the
fact that there is no competing colonising strains in GF mice, and
raises an interesting question of how well bacteria given as a probiotic
can colonise the gut. Human studies have shown that although the
probiotics have minimal effects on the composition of the gut
microbiota, and is usually undetectable after 2 weeks post-ingestion,
they do promote bacterial gene expressions related to plant-
polysaccharide and other carbohydrate metabolism pathways.8>83
There could also be immunomodulatory effects during the period of



probiotic consumption that polarise DCs. In vitro studies suggest
probiotics promote a regulatory DC phenotype, either by direct
interactions or through epithelial expression of TGF-f and thymic
stromal lymphopoietin.3* Therefore, it is possible that given sufficient
dosage and length of probiotic therapy, there can be bias towards a less
inflammatory gut environment that benefit patients with IBD.

Another concept is to replace an ‘unhealthy’ gut microbiota with a
‘healthy’” one, in what is termed faecal microbiota transplant (FMT).
FMT has been successful in treatment of Clostridium difficile
infections,3” and given the dysbiotic nature of IBD, FMT seems
suitable as a treatment option. Indeed, in a recent systematic review of
FMT therapy in adults and children with IBD (along with other
gastrointestinal infection and inflammatory diseases),3 active UC? or
refractory CD,% the results were positive without adverse effects.
Notably, FMT was more successful for treating patients with UC
rather than CD,%° again likely due to the heterogeneity of CD.
However, FMT for IBD is much less effective than for C. difficile
infections,3® which may be because of a collection of different risk
factors in disease development, and in the differences of donor
microbiota.3*" The primary reason might be the difference between
one causative bacteria (C. difficile) compared with an unknown cause
and contributing microorganisms for IBD. Even the differences in
study design and methodology may affect the study outcomes.’!
For example, the amount of processing time may affect the
populations of anaerobic and aerobic bacteria, changing the
composition and affecting the outcome of transplantation. Moreover,
the donor—recipient match is very important for successful FMTs. The
microbiota following FMT varies significantly, and patients whose
microbiota shifted towards that of the donors’ had better
outcomes.?>3 The richness of donor microbiota, and the enrichment
of butyrate-producing bacteria also correlated with successes in
FMT. 4% Interestingly, the latter enrichment suggests that an
increased utilisation of butyrate may be a pathway benefiting patients
with IBD, possibly through restoration of epithelial cell function and
colonic integrity.”? Although FMT are generally well-tolerated by
patients, both children®® and the elderly,97 there are limited studies
that involve long-term follow-up. Given the increasing research
outlining roles of the microbiota in many aspects of host physiology,
long-term safety of FMT is an important aspect that should be
included in future studies.

One method of modelling FMT and studying the effects of
microbiota transfers experimentally is the use of co-housed animals.
A study found that a genetic knockout strain harboured altered
microbiota containing higher populations of Firmicutes and probiotic
bacteria.®® Interestingly, this altered microbiota was transferred to
wild-type mice when co-housed, and subsequently transferred
protection to DSS-induced colitis. This indicated that a transferred
microbiota, if well tolerated, can transfer protection, giving support to
the use of FMT. Similarly, when the genetic knockout mice were
inherently protected from DSS-induced colitis, co-housing with
wild-type mice increased their sensitivity to disease,”® while the vice
versa was also true; when the genetic knockout mice were susceptible
to colitis, co-housing conferred protection.!® In addition, when using
the same Helicobacter-induced model of colitis on mice in two
different facilities, researchers showed that differing compositions of
gut microbiota had significant and opposing effects on the outcomes
of disease.!%! This hints at the possibility that modulating the
microbiota may override genetic susceptibilities, adding further
support to the capacity of microbiota transfers as a therapeutic
strategy. However, the same environmental variations presents obsta-
cles in the translation of microbiota research to human studies, where
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there are vastly more variations to be considered. Taken together, it is
evident that microbiota transfers have the potential to modulate
disease outcomes, and supports the notion that FMT is beneficial to
patients with IBD. The important difference between animal models
and clinical IBD is the known cause of disease in animal models.
Indeed, the unknown cause of IBD in humans and how to increase the
compatibility of donor—recipient gut microbiota are immediate
hurdles for research into the clinical effectiveness of FMT in IBD.

Last but not least, prebiotics are types of fibre that promote the
growth of beneficial microorganisms which contribute to the health of
the host, and is therefore an option for therapeutic intervention.
Different prebiotics have different effects, with inulin and
fructo-oligosaccharides promoting the growths of Bifidobacteria and
Lactobacilli, respectively.!%? A few studies on the effects of prebiotics in
patients with IBD showed it lowered inflammation and clinical
activity score, and maintained remission in patients with UC.103-105
Interestingly, it was found that patients with active CD had a lower
intake of inulin-type fructans and oligofructose than patients with
inactive CD and healthy controls.!®® Therefore, the findings from
these clinical studies suggest that improvements in disease activity may
be due to the anti-inflammatory properties of fermented products of
prebiotics, such as SCFAs, they are produced by bacteria such as
F. prausnitzii, Bifidobacteria and Lactobacilli.'®> When assessed for the
capacity of the colonic mucosa to utilise butyrate, glucose and
glutamate, it was found that patients with UC were less effective at
metabolising butyrate, while there were increased utilisation of glucose
and glutamate, possibly as a compensatory mechanism.!?”

In animal studies, prebiotics alter the gut microbiota and have
anti-inflammatory effects. Soluble dextrin from different sources (corn
or tapioca) differentially alters the gut microbiota, thus it is safe to
assume the complexity of prebiotic fermentation and the effects of
prebiotics on the gut microbiota colonies.!”® When fed a high-fibre
diet or SCFA acetate, mice had a reduced risk of developing
colitis.!9!11% This could be due to the actions of butyrate on the
colonic epithelium, but also the capacity of SCFAs in promoting the
numbers and functions of colonic Tregs, thus enabling a state that is
more resistant to inflammation.*® However, when given during
DSS-induced colitis as a model of treatment, both fibre (with or
without the addition of B. longum) and acetate failed to alter disease
progression, indicating a role of prebiotics in prevention rather than
treatment of disease.'”® This further supports the association between
consumption of a Western diet and increase in risk for the later
development of inflammatory diseases. It also suggests the importance
in timing of prebiotic treatments, and that such therapies are more
effective during remission and inactive inflammatory responses.

THE SYSTEMIC EFFECTS OF ALTERING GUT MICROBIOTA

Dysbiotic microbiota also exerts systemic effects, and is implicated in
extra-gastrointestinal diseases such as asthma and diabetes. Microbiota
research in asthma has centred more on the hygiene hypothesis,
whereby early-life exposure to microorganisms has been a large part of
the focus. Studies suggest that babies born through vaginal delivery
when compared with those born via caesarean section, and also infants
fed with breast milk when compared with those fed formula, have
increased Bifidobacteria and decreased Bacteroides, among other
differences in gut microbiota.!!! In addition, having older siblings
also increased bacterial diversity and bacterial richness in 18-month-
old individuals.'> These findings indicate that interactions between
the offspring and parents or siblings are associated with beneficial
outcomes, possibly through having similar composition of the gut
microbiota. Children living in rural areas were exposed to an increased
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variety of microorganisms (in bacteria and fungi) and this microbial
diversity rendered them less likely to develop asthma, though the study
was unable to identify the specific species involved.!! These findings
support the hypothesis that there is a window of opportunity for
microbial modulation during early childhood, and when there are
reductions in gut microbial diversity and altered airway microbiota
during this time, it may present as a risk factor for chronic wheeze and
asthma,'"® though there have also been studies that failed to find any
associations.'!? Unlike the gut, increased bacterial load and diversity
in the lung were correlated with bronchial hyperresponsiveness
and disease activity in patients with asthma. This may be due to
inappropriate colonisations of potentially pathogenic bacteria, such as
by Sphingomonadaceae, which elicit an iNKT cell-driven production
of 1L-4 and TL-13, and induction of airway hyperresponsiveness.''*
These results from the animal study showed that even though an
increase in bacterial load increases recruitment of immune cells, there
needs to be in depth clarification of bacterial strains to understand
how bacterial diversity affects the host immune response and
subsequent development of inflammation.

Another aspect of microbiota research in asthma has been the use of
antibiotics. In a study using ovalbumin (OVA)-induced allergic
airways disease (AAD), a murine model of asthma, vancomycin
treatment in early-life stages exacerbated disease.’* Here, the
researchers showed that vancomycin during early-life stages, but not
streptomycin, reduced microbial diversity and percentages of Tregs in
the colon, but not in the lung. In addition, Actinobacteria and
Bacteroidetes were almost completely depleted, while there is an
overgrowth of Lactobacillus.>* Another study found that components
of Streptococcus pneumoniae increased the number of Tregs in the
lung, which were required for the suppression of iNKT cells and
AAD.!5 Taken together, these results advocate for the hygiene
hypothesis in the development of asthma. More specifically, reduced
antibiotic use and increased gut microbial diversity and richness
(especially during early life) can induce the number and function of
regulatory immune cells to protect against asthma.

The gut microbiota also has crucial functions in harvesting energy,
and its alterations have profound effects on host systemic physiology
and metabolic homeostasis.!'® Previous studies suggest that Firmicutes
have a greater capacity for energy harvest when compared with
Bacteroidetes.!'” In fact, the positive association between increased
ratio of Firmicutes:Bacteroidetes and obesity was found in ob/ob
mice.l'7 Similar result was observed in humans, and as such, this
Firmicutes-predominant microbiota composition has been colloquially
termed an ‘obese microbiota’.!'® However, this is not always true,'"”
and even the inverse relationship has been found in other studies.'?°
The confounding factor could be diet, with differential use of fat-
restricted or carbohydrate-restricted diet, or no dietary restrictions at
all in the different studies.!'3120 Another possibility may be the lack of
dependency of obesity on the ratio of bacterial phyla, but rather
specific species and their capacity to produce SCFAs. Acetate, the most
abundant SCFAs in the gut, was found to be increased in patients
on the carbohydrate-restricted diet and in lean individuals.'!%!20
Furthermore, there are studies that suggest an obese individual can
be distinguished from a lean individual by analysing the difference in
the number of microbiota genes.!?! A reduction of faecal Bifidobac-
teria in children may predict overweight, with Bifidobacteria being
associated with breast feeding and reduced risk of obesity.!?? A
potential pathway for the beneficial effects of Bifidobacteria is the
fermentation of breast milk and prebiotic fibre to produce SCFAs.'??

In studies using rats fed on a high-fat diet, those prone to obesity
had increased TLR4 expression, decreased epithelial integrity and
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increased serum lipopolysaccharide levels.!** Furthermore, when
compared with rats fed a low-fat diet, consumption of a high-fat diet
decreased total bacterial load, but increased the relative abundance of
Bacteroides, and, to a greater extent, Clostridia and Enterobacteriaceae
in the composition of the gut microbiota.'”* These animal studies
provided evidence that different phyla of bacteria have differential
effects on energy harvest and fibre fermentation, though there are still
discrepancies between studies. More importantly, it highlights varying
effects of different species of bacteria on host physiology. Indeed, it
may be these differences that contribute to the contrasting results from
phyla analysis. Together, the findings from these studies reveal a
change in microbiota composition and encoded genes that promotes
energy harvest and inflammation play a more prominent role in
obesity, and shed light on the potential of SCFAs and SCFA-producing
bacteria as a therapeutic.

The microbiota of diabetic patients and mouse models also hints at
how changes in microbiota affects metabolic diseases. In patients with
pre-type II diabetes (T2D), there were reduced butyrate-producing
bacteria (such as F. prausnitzii) and decreased Bacteroides.!?®
However, in a different study, an increase in Bacteroidetes and
decrease in Firmicutes were observed in patients with T2D.!2¢ As
with obesity, a confounding factor could be diet, as the studies were
conducted in China'?®> and Denmark,'?® with inherently different
diets and lifestyle factors. Sample handling may also contribute to
alterations of microbial compositions, with the Chinese study freezing
samples at —80 °C within 2 h of collection, a shorter time than the
24 h in the Danish study.

Animal studies have provided insights into the positive association
between lipopolysaccharide, a product of Gram-negative bacteria such
as Bacteroidetes, and the induction of T2D.'27 The mechanism for this
is likely to be mediated through toll-like receptor (TLR) sensing, as
TLR9-deficient mice in a type I diabetes (T1D) model had increased
Actinobacteria  (Bifidobacteria) and Firmicutes, and decreased
Bacteroidetes.'?® Although changes in the Firmicutes:Bacteroidetes
population in animal studies contrast that of the aforementioned
human studies, it may be due to differences between mice and
humans, or the different nature of disease. Mice deficient in TLR3 or
myeloid differentiation primary response gene 88 (MyD88) (depen-
dent signalling molecule of other TLRs) were protected from T1D,!?8
suggesting differential but important roles of TLRs, and consequently,
the microbiota, in the initiation and development of diabetes.
Interestingly, studies in GF and SPF non-obese diabetic mice found
no difference in the incidence of T1D,*129 though the addition of
Bacillus cereus resulted in a delayed and lowered incidence.!?
Although a very good model of human T1D, non-obese diabetic
mouse models are still not perfect in translating murine studies to
humans.'*

Furthermore, a study into GF mice that was fed a ‘Western-like diet
was shown to be protected from developing obesity, and this was
found to be mediated through increased expression of phosphorylated
AMP-activated protein kinase in muscle and liver, which promotes
fatty acid oxidation.!®! However, in GF mice deficient in fasting-
induced adipocyte factor, there were reductions in enzymes involved
in fatty acid oxidation and increased weight gain, even though muscle
and liver phosphorylated AMP-activated protein kinase remained
similar.'3! This study showed that the microbiota may directly impact
on fatty acid metabolism, or indirectly, through the regulation of genes
that modulate metabolism. Taken together, the use of various strains
of mice and types of disease models under normal SPF or GF
conditions reveal important roles of the microbiota in modulating
inflammatory conditions and metabolic diseases.



Emerging uses of microbiota as a therapy

There is a growing body of research on the use of probiotics for
the treatment of respiratory diseases, including asthma and other
airway hypersensitivity conditions. A randomised, double-blinded
and placebo-controlled trial of oral Lactobacillus gasseri capsule in
asthmatic children found the treatment group had lower bronchial
hyper-reactivity, better pulmonary function, and greater improve-
ments in day time asthmatic symptoms.'3> This treatment also
reduced in vitro production of TNF, IL-12, IL-13 and IFN-y in
peripheral blood mononuclear cells. This study provided strong
evidence for the systemic regulatory effects of orally administered
probiotics. Similar results were observed with oral inoculation of
Lactobacillus rhamnosus in mice being protective of the OVA model of
AAD.!3 The group of mice treated with probiotics had decreased
clinical score, airway hyperresponsiveness and OVA-specific T cells in
the spleen, and increased proportions of Tregs in the spleen.!3® This
could be in part mediated through the modulation of macrophages,
with L. rhamnosus strains previously shown to have an effect outside of
the gut in mice.!** Similarly, administration of a probiotics mixture
was found to exert effects on regulatory DCs and Tregs in the
respiratory tract and protect against asthma.!® Interestingly, although
intragastric administration of Lactobacillus ~ paracasei reduced
symptoms of OVA-induced AAD in mice, it was significantly more
effective when introduced intranasally (direct to the lungs).!*® This
finding indicates that different routes of entry for probiotics can elicit
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different extent of responses. However, it is noteworthy that with
current technology, it is implausible to perform routine intranasal
administrations on human patients. In addition, a randomised,
double-blinded and placebo-controlled trial concluded that
Lactobacillus GG is protective of upper respiratory tract infections in
children, with infections lasting a significantly shorter amount of
time.!3” These studies showed that orally taken probiotics have the
capacity to induce both local and systemic effects on regulatory
cells and cytokines, and consequently modulate respiratory tract
conditions.

The modulation of microbiota also has the capacity to affect
diseases such as diabetes that involve tissues other than the mucosa.
The effects of prebiotics, probiotics, symbiotics (the combination of
pre- and probiotics), antibiotics and FMT on obesity and T2D have
been comprehensively reviewed by Kootte and Vrieze.!*® This group
also showed the effectiveness of transferring lean donor microbiota
to obese subjects with metabolic syndrome in a double-blinded
randomised controlled study.’®® It is important to note that in
research on obesity, diabetes and other extra-gastrointestinal diseases,
there are currently limited human studies, and trials have been
small-scale.

Moreover, dysbiosis may not be restricted to the gut. Recent
research has shown that places previously thought to be sterile, such
as the urinary tract!4? and the placental environment,'4! are in fact
colonised by microbiota but not necessarily infectious.'4? In addition,
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Figure 3 Therapeutic modulation of the microbiota influences immune responses and inflammatory diseases, a perspective of the gut environment.
(1) Therapies such as antibiotics and FMTs shift the composition of the whole microbiota, altering the relative abundance of the main phyla Bacteroidetes
and Firmicutes. (2) Other therapies such as probiotics and prebiotics promote the growth and colonisation of selective genus of bacteria, such as Lactobacilli
and Bifidobacteria. (3) Prebiotic fibre can also be fermented to SCFAs by certain bacteria. SCFAs such as butyrate is a preferred energy source for colonic
epithelial cells, and SCFAs can also modulate immune cell functions. (4) It is now known that the microbiota is not only essential for the development of the
immune system, but may also modulate inflammatory responses. (5) Dysbiosis may lead to polarised induction of immune cells. (6) Increased pro-
inflammatory T cells may increase inflammatory effector cells, leading to an increased inflammatory state, and may pose as a risk factor for inflammatory
diseases, or fuel disease development and severity. On the other hand, induction of regulatory T cells dampens the inflammatory response, and alleviate
inflammatory disease phenotype. Finally, excessive inflammation decreases the gut epithelial integrity, which leads to increased bacterial translocation and

further induction of inflammation (not shown in figure).
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it is intriguing to examine whether or not the placenta microbiota may
mediate ‘inheritance’ of the maternal gut microbiota and risks of
diseases, or impact on the microflora of other sites, such as the
offspring’s skin and in the mouth, ultimately influencing their
immune responses. This may then be able to explain the benefits of
closer parent-offspring or sibling interactions. Although current
research are lacking in this area, recent evidence suggests an epigenetic
effects of the maternal gut microbiota in regulating the development of
asthma in the offspring.?’ Further research in this area will provide
significant insight on the important role of the gut microbiota in
the regulation of immune responses and the development of
inflammatory diseases in not only the host, but perhaps also their
offspring.

CONCLUDING REMARKS

The increasing incidences of inflammatory disease have had scientists
striving for an explanation. Proposals of how early childhood hygiene,
widespread antibiotic use and the increase in processed food and lack
of fibre consumption culminates in what was an under-appreciated
part of us: our microbiota. Extensive studies in GF mice have
elucidated important interactions between bacteria and immune cells
that enables proper development and function of our immune system.
This has profound impact as the relative abundance of Bacteroidetes
and Firmicutes, and the proportions of Bifidobacteria and Lactobacilli
are all important determinants in gut homeostasis and whole-body
health. A summary figure of the complex interplay of how therapeutics
affect the gut microbiota, immune response and inflammatory
conditions is shown in Figure 3. Although we still do not know the
exact cause of a number of inflammatory diseases such as IBD, and
whether or not the gut microbiota changes or dysbiosis are the cause
or effect, we are starting to understand the protective and pathological
effects of some of these changes. Furthermore, by modulating the total
population of the gut microbiota using antibiotics or FMT, or by
specifically targeting one or more bacterial species using prebiotics
and/or probiotics, we are gaining significant insights into the effects of
specific bacteria on disease pathology. The combined use of antibiotics
and FMT, of prebiotics and probiotics, or even all four of
these therapies may 1 day provide effective treatment for many
inflammatory diseases. There is emerging data to suggest that the
gut microbiota affects not only the inflammatory state of mucosal
surfaces, but also metabolic disorders such as diabetes. Therefore,
harnessing and manipulating the gut microbiota will provide
widespread therapeutic opportunities not restricted to simply a
single-organ system.
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