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25Laboratório de Limnologia/AquaRiparia, Departamento de Ecologia, ECL/IB, Universidade de Brasilia,
70910-900 Brasilia, Distrito Federal, Brazil
26Surface and Groundwater Ecology Research Group, Department of Biological Sciences, University of Toronto at
Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
27Department of Environmental Sciences, University of Yamanashi, Kofu, Yamanashi 400-8510, Japan

http://crossmark.crossref.org/dialog/?doi=10.1098/rspb.2015.2664&domain=pdf&date_stamp=2016-04-27
mailto:luz.boyero@ehu.eus
http://dx.doi.org/10.1098/rspb.2015.2664
http://dx.doi.org/10.1098/rspb.2015.2664
http://rspb.royalsocietypublishing.org
http://rspb.royalsocietypublishing.org


rspb.royalsocietypublishing.org
Proc.R.Soc.B

283:20152664

2

28School of Science, Monash University, Jalan Lagoon Selatan, Bandar Sunway,
Selangor 47500, Malaysia
29Department of Biological Sciences, Egerton University, PO Box 536, Egerton, Kenya
30Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional
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Plant litter breakdown is a key ecological process in terres-

trial and freshwater ecosystems. Streams and rivers, in

particular, contribute substantially to global carbon

fluxes. However, there is little information available on

the relative roles of different drivers of plant litter break-

down in fresh waters, particularly at large scales. We

present a global-scale study of litter breakdown in streams

to compare the roles of biotic, climatic and other environ-

mental factors on breakdown rates. We conducted an

experiment in 24 streams encompassing latitudes from

47.88N to 42.88 S, using litter mixtures of local species dif-

fering in quality and phylogenetic diversity (PD), and

alder (Alnus glutinosa) to control for variation in litter

traits. Our models revealed that breakdown of alder was

driven by climate, with some influence of pH, whereas

variation in breakdown of litter mixtures was explained

mainly by litter quality and PD. Effects of litter quality

and PD and stream pH were more positive at higher temp-

eratures, indicating that different mechanisms may operate

at different latitudes. These results reflect global variability

caused by multiple factors, but unexplained variance points

to the need for expanded global-scale comparisons.
1. Introduction
Plant litter breakdown is a key process in organic matter recy-

cling and supports food webs in terrestrial and aquatic

ecosystems. Terrestrial plants produce ca 120 billion tonnes

of organic carbon each year [1], 90% of which escapes herbiv-

ory and eventually enters the dead organic matter pool [2].

After death, the plant litter either can be decomposed, with

its components recycled back into their inorganic forms, or

the recalcitrant portion can be stored over long periods [3].

The rate at which plant litter is transformed to other forms

of organic and inorganic carbon determines the rate of

recycling of biologically essential nutrients, the capacity

for carbon storage in ecosystems and the rate at which

greenhouse gases such as carbon dioxide (CO2) are

outgassed—all processes that influence regulation of the

global climate [4].

Knowing which biotic and abiotic factors drive plant litter

breakdown is crucial for understanding how ecosystems

function and how vulnerable they are to environmental

perturbations such as climate warming, biodiversity loss

and biological invasions [5,6]. In terrestrial ecosystems, the
relative roles of climate and plant litter quality vary among

biomes [7,8]. A recent synthesis showed that climate had a

greater role in cold or dry ecosystems and deciduous forests,

whereas litter quality traits (i.e. the carbon : nitrogen (C : N)

ratio and specific leaf area (SLA)) were more important in

humid grasslands and agro-ecosystems, both factors being

equally important in tropical wet forests [9]. Another study

also highlighted the main role of climate on breakdown in

cold areas of the Northern Hemisphere [10], whereas several

terrestrial studies at the global scale found that effects of litter

quality on breakdown were greater than effects of climate

[11–13]. Detritivores can also be important contributors to

breakdown rates in terrestrial ecosystems [9], particularly in

temperate and wet tropical climates where biological activity

is not constrained by temperature or moisture [14].

In contrast to terrestrial ecosystems, information on the

relative roles of different drivers of plant litter breakdown in

fresh waters is scarce. In freshwater ecosystems in general

[15], and in streams and rivers in particular [16], large amounts

of organic carbon are processed, contributing significantly to

global carbon fluxes. For example, recent estimates show

that mean CO2 evasion from fresh waters is 2.1 Pg C yr21

(cf. � 9 Pg C yr21 from anthropogenic sources [15]), 86% of

which comes from streams and rivers [17]. Breakdown of ter-

restrially derived plant litter is a pivotal component of

stream ecosystem functioning but, despite numerous com-

monalities, the process is likely to differ in several respects

between aquatic and terrestrial ecosystems, in part because

of the contrast in water availability [18,19]. Specifically,

water is not a limiting factor to the breakdown process

within perennial streams, so climate is expected to affect

breakdown rates mostly through the influence of temperature,

and less so through precipitation (which can, however, cause

floods that remove litter from stream reaches [20,21]).

Several local-scale stream studies (encompassing one or

several streams within a single region) have demonstrated

that litter quality traits (e.g. lignin or nutrient concentration)

show tight relationships with litter breakdown rates

[22–26]. The few comparable continental-scale and global-

scale studies have shown that climate and detritivores can

be key determinants of breakdown rates [27–30]. However,

there have been few assessments of the relative roles of

climate, litter quality and detritivores on litter breakdown

in streams at continental or global scales, limiting our

capacity to predict the effects of global change on the

breakdown process. Furthermore, with one exception [28],

global-scale breakdown studies have not considered the

potential role of plant diversity on litter breakdown, although

species loss is a major global concern [31] and can alter eco-

system processes [3]. The link between plant diversity and

litter breakdown rate is still unclear and apparently weak

[18,32,33], but virtually all studies examining plant diversity

effects on litter breakdown have focused on species richness,

neglecting other diversity components such as phylogenetic

diversity (PD) [34].

Here, we present a global-scale study of litter breakdown

in streams to assess the relative roles of biotic, climatic and

other environmental factors on breakdown rates. We con-

ducted an experiment in 24 streams on five continents

encompassing a latitudinal range of 908 (47.88 N–42.88 S),

using local litter mixtures differing in quality and PD (but

not species richness), and an additional common litter type

(black alder, Alnus glutinosa (L.) Gaertn.) to control to some
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extent for variation in litter quality and diversity across sites.

Alder leaves were chosen because the genus is widely

distributed across the North Temperate Zone, and because

they are highly palatable to temperate and tropical stream

detritivores [35]. We manipulated detritivore presence

using coarse-mesh and fine-mesh bags, which allowed

colonization of litter-consuming detritivores or excluded

them, respectively.

We expected that the relative importance of litter quality

and PD, detritivore presence, climate and other environ-

mental factors would vary globally, based on the existing

evidence from terrestrial ecosystems [9,11,13,14]. We hypoth-

esized that (i) microbial breakdown would increase with

temperature (through its effect on metabolic rate [36,37]),

and hence decrease with latitude; (ii) detritivore-mediated

breakdown would be greater at higher latitudes, where

litter-consuming detritivores are more abundant and diverse

[38]; (iii) litter of high quality would break down rapidly

[24,26]; (iv) phylogenetically diverse plant litter would

break down faster because of the potential presence of a

wider range of species trait values, which increases the

chance for niche partitioning [39]; (v) more basic water

(higher pH) would enhance breakdown, as is typically the

case [40]; (vi) breakdown would be faster in narrower streams

where litter retentiveness is generally higher [41]; and (vii)

climate would modulate the effects of other environmental

factors and litter on breakdown rates; for example, higher

temperatures could enhance any effects of litter quality or

water chemistry [42].
2. Methods
(a) Field experiment
We conducted a litter breakdown experiment at 24 stream sites

around the world with absolute latitudes ranging from 0.378 to

47.808 (electronic supplementary material, table S1 and figure

S1); 14 sites were located within the tropics (less than or equal

to 23.58 latitude) and 10 in temperate regions (more than 23.58),
comprising a large range of climatic patterns (electronic sup-

plementary material, figure S2a,b). At each site, we chose a

single stream reach draining a forested catchment that experi-

enced little human influence. The experiment was run at a time

of high litter inputs and low flood susceptibility at each site.

We chose three native riparian tree species locally common in

the riparian vegetation and well represented in stream leaf

litter (electronic supplementary material, table S2). In total, we

collected freshly abscised leaves of 70 species, as two species

were shared between two sites each. Alder leaves were collected

to serve as an approximate control for variation in litter quality

across sites; however, the leaves were locally collected near the

study sites or, when not locally available (tropical sites, Southern

Hemisphere and some Northern Hemisphere temperate sites),

shipped from either Portugal or Spain or collected in botanical

gardens to avoid problems with import regulations. Although

some intraspecific variation in alder litter quality across

locations was likely to occur [25], we expected such variation

to be much smaller than that among the 70 other species used

in the experiment.

Leaves were air-dried, weighed, enclosed in coarse-mesh

(10 mm) and fine-mesh (0.5 mm) bags (ca 1 g per species per

bag in three-species mixtures, or ca 3 g for alder leaves) and

secured in streams. Three coarse-mesh and three fine-mesh

bags were retrieved on each of four dates: day 0 (to determine

any mass loss due to handling), and approximately days 14, 28
and 56. Bags were collected with a net (0.5 mm mesh) and

taken to the laboratory where leaves were cleaned, oven-dried

and weighed. Ash-free dry mass was not estimated for logistical

reasons; however, it is unlikely that the litter breakdown data

were biased by mineral particles associated with the leaves as

there was no indication of calcite precipitation in our streams

(most of them being soft-water systems) or association of mineral

particles with leaves (most streams having coarse substratum). In

addition, all leaves were thoroughly cleaned under water

before drying. At each site, we recorded pH as a measure of

water chemistry, and wetted stream width as an estimate of

stream size.

(b) Climatic and leaf quality data
Comprehensive water temperature data were not available for all

sites, so mean annual air temperature data were extracted from

the WorldClim database v. 1.3 [43] at the highest resolution

(2.5 min of arc) using DIVA-GIS software, 7.5.0.0. (http://

www.diva-gis.org). We assessed leaf quality by using the mean

SLA, which is the ratio of leaf area (cm2) to leaf dry mass (g).

SLA is a key ecological and physiological plant trait [44] that

often correlates with leaf toughness, nutrient concentration and

breakdown rate [45,46]. To measure SLA, we scanned 20 leaves

of each plant species, estimated their areas with IMAGEJ

10.2, dried them to constant mass and weighed them to the

nearest 0.1 mg. We then calculated the mean SLA at each site.

(c) Plant phylogenetic diversity
We used PD, defined as the total phylogenetic distance among

species, as a measure of plant litter diversity [47]. To estimate

PD among the three species selected at each site, we constructed

a molecular phylogeny of the 70 species and 8935 bps of DNA

(including five outgroups) using partial 18S ribosomal DNA,

rbcl, matK, atpB, trnl, rpl16, rpoB and rpoC1 sequences available

in GenBank (electronic supplementary material, table S3).

We used these markers as they provided the most comprehensive

sets of data for the target species. Data for several species were

not available in GenBank, so we chose closely related congeners

as replacements. We constructed alignments independently for

each gene using MUSCLE v. 3.8.31 [48]. Nucleotide substitution

models were selected for each gene using the Akaike information

criterion (AIC) as implemented in jMODELTEST v. 0.1.1 [49]. We

searched for the maximum-likelihood phylogeny using RAxML

v. 7.2.8 [50], partitioning the dataset by gene. Random starting

trees were used for each independent tree search, and topological

robustness was investigated using 100 bootstrap replicates. We

used a rate-smoothed Bayesian phylogeny, estimated using

BEAST v. 1.6.2 [51], assuming a relaxed uncorrelated lognormal

clock with all other parameters set as default. The relaxed-

clock analysis was used to estimate relative divergence times,

thereby converting branch-length values from the substitutions

per site to an estimate of time since divergence from a common

ancestor. The Bayesian Markov chain Monte Carlo ran for

10 million generations sampled every 1000 generations, whereas

stationarity and effective sample sizes (ESS . 200) were exam-

ined using TRACER v. 1.6 [52], discarding all trees under the

asymptote as burn-in. Finally, we constructed a consensus tree

(electronic supplementary material, figure S3) with mean node

heights from the posterior distribution using TREEANNOTATOR

v. 1.6.2 [51]. To calculate PD per community, we used the

comdist function in the R package ‘picante’ [53].

(d) Data analysis
We used linear regression to detect latitudinal trends in litter

variables, mean annual temperature and other environmental

variables. Breakdown rates of local litter mixtures and alder

http://www.diva-gis.org
http://www.diva-gis.org
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were estimated for each site using the breakdown coefficient (k)

resulting from the exponential decay model mf/mi ¼ e2kt,

where mf and mi are the final and initial litter mass (g), respect-

ively, t is time in days (d) and k is the breakdown rate coefficient.

We estimated the relative contributions of different factors to

litter breakdown rates using general linear models, with key pre-

dictors selected based on the AIC following a stepwise search in

backward and forward directions, using the stepAIC function in

the R package ‘MASS’ [54]. The initial models for litter mixtures

included litter variables (mean SLA and PD), mean annual temp-

erature (hereafter temperature), other environmental variables

(pH and stream width) and the interactions between tempera-

ture and the other variables. We included these interactions

to explore the directional effects of climate on other variables.

The models for alder included temperature and other environ-

mental variables (and their interactions) but no litter traits,

because SLA was expected to vary little within species (com-

pared with variation in SLA across the total of 70 species) and

PD ¼ 1. We examined multicollinearity of the variables to be

included in the models with the variance inflation factor (VIF)

using the VIF function in the R package ‘fmsb’ [55].

We tested separate models for overall breakdown in coarse-

mesh litter bags (kc), microbial breakdown in fine-mesh bags

(kf ) and detritivore-mediated breakdown (kd), which was calcu-

lated from the difference in the proportion of litter mass

remaining between coarse-mesh and fine-mesh bags at each

sampling date [29]. Normality of residuals was examined with

Shapiro–Wilk’s test; three variables (kc for alder and kf for litter

mixtures and alder) showed lognormal distributions, which

became normal after loge-transformation. Main and interaction

effects were visually explored using the visreg and visreg2d func-

tions in the R package ‘visreg’ [56]. We further examined the role

of detritivores on breakdown of local litter mixtures and alder by

comparing kc and kf for the global dataset and separately for

tropical (n ¼ 14) and temperate sites (n ¼ 10), using Wilcoxon

signed-rank tests.
3. Results
Mean annual temperature decreased with latitude (r ¼ 20.73,

p , 0.001), whereas the other environmental or litter variables

showed no latitudinal trend (r , 0.26, p . 0.22 in all cases).

VIFs were all less than 2, indicating the absence of multicolli-

nearity (electronic supplementary material, table S4). Our

final models included different factors and interactions

(table 1). The overall model for total breakdown of the local

litter mixtures was significant ( p ¼ 0.0499) and showed

significant effects of litter SLA and pH and a significant inter-

action between temperature and SLA (figure 1a,b). The overall

model for microbial breakdown of litter mixtures was signifi-

cant ( p ¼ 0.042) and showed a significant effect of pH

(figure 1c). For detritivore-mediated breakdown of litter mix-

tures, the overall model was not significant ( p ¼ 0.107) but it

showed significant effects of litter PD and its interaction with

temperature (figure 1d ). For total alder breakdown, the overall

model was significant ( p ¼ 0.046) and showed the effects

of temperature and its interaction with pH (figure 1f ). The

overall model for microbial breakdown of alder was signifi-

cant ( p ¼ 0.029) and showed an effect of temperature

(figure 1e). Finally, detritivore-mediated breakdown of alder

was not significantly affected by any factor ( p ¼ 0.90).

Litter breakdown rates were higher in coarse-mesh than in

fine-mesh bags for litter mixtures and alder across all sites

(litter mixtures: Z ¼ 23.19, p ¼ 0.0014; alder: Z ¼ 23.87,

p , 0.001) and at temperate sites (litter mixtures: Z ¼ 22.76,
p ¼ 0.0058; alder: Z ¼ 23.36, p , 0.001). In the tropics, break-

down was faster in coarse-mesh bags for alder, but the

difference was weaker than in temperate sites (Z ¼ 22.21,

p ¼ 0.027) and there was no difference for litter mixtures

(Z ¼ 21.81, p ¼ 0.070; figure 1g,h).
4. Discussion
(a) Climatic effects on global patterns of litter

breakdown in streams
The analysis of our global dataset revealed influences of

several abiotic and biotic factors on litter breakdown rate in

streams, paralleling findings for terrestrial ecosystems

[9,11,14]. The only factor having no influence on breakdown

was stream width, counter to our expectations [41], probably

because we sampled only during stable base-flow periods.

Mean annual temperature was a key influence on litter break-

down of alder, having a main effect on total and microbial

breakdown. As expected, microbial breakdown rate increased

with temperature and hence was higher towards lower lati-

tudes. A companion study found that this rate increased

with contemporaneous water temperature, and the relation-

ship conformed to the metabolic theory of ecology [27].

Here, we found the relationship to hold with long-term air

temperature data.

Although we did not detect any variation with temperature

for detritivore-mediated breakdown when it was examined

separately, total breakdown of alder increased towards

cooler streams, and this pattern was most likely related to the

higher abundance and diversity of litter-consuming detriti-

vores at higher latitudes [38,57]. Accordingly, our comparison

of coarse-mesh and fine-mesh bags revealed a greater role of

detritivores on litter breakdown in temperate than in tropical

streams, although this difference was most obvious for

litter mixtures.

(b) Major influence of litter quality on breakdown
of litter mixtures

While breakdown of a single substrate type (alder leaves)

across latitudes was mostly influenced by environmental fac-

tors and especially temperature, litter variables (SLA and PD)

were of major importance to explain variation in breakdown

of litter mixtures. This agrees with the results of other global-

scale studies [12] and a comprehensive meta-analysis [11]

based on data from terrestrial ecosystems. Nevertheless, for

litter mixtures, temperature was important as well in that it

modulated litter effects on breakdown.

Counter to our prediction, litter SLA had a negative over-

all influence on total breakdown of litter mixtures. This result

contrasts with those of previous research showing that break-

down is greater in leaves with lower lignin content [19,22],

which tends to be correlated with SLA [45]. However, the

positive interaction of SLA with temperature indicates that

small SLAs enhanced breakdown only at low temperatures,

whereas the opposite was true in streams of warmer regions,

where breakdown of litter mixtures with a higher mean SLA

was faster (figure 1b). This result is not easily explained but

might reflect a relatively larger influence of detritivores at

lower latitudes that use tough leaves for purposes other

than nutrition, such as case construction by caddisflies [58].
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(c) Detritivore-mediated breakdown driven by
phylogenetic diversity in litter mixtures

Detritivore-mediated breakdown was mostly driven by PD of

litter mixtures, but apparently in the direction opposite to our

prediction. The negative effect of PD on breakdown suggests

that phylogenetic proximity of litter mixtures enhances detri-

tivore consumption. This finding could be due to lower

phylogenetic distance between litter species resulting in a

higher concentration of high-quality resources, whereas

larger phylogenetic distance caused the dilution of such

resources [59]. Similarly, one of the few studies to explore

PD effects on breakdown found that a lower phylogenetic

distance in litter mixtures promoted microbial biomass and

litter nutrient concentration [60].

However, this pattern was inconsistent across climates, as

occurred for SLA. Breakdown of litter mixtures composed of

species showing higher phylogenetic proximity was faster

only in cooler streams, whereas the opposite was true at

higher temperatures (figure 1d ). This discrepancy might be

related to a higher specialization of litter-consuming detriti-

vores at temperate latitudes [61], which would benefit from

the concentration of their preferred resources, whereas more
generalist detritivores in the tropics [62] could be relatively

more efficient when more varied resources are available.
(d) Higher breakdown in more alkaline waters
Stream pH, which typically reflects basic catchment lithology

[63,64], also influenced litter breakdown rates, especially for

litter mixtures. Breakdown was faster at higher pH, which

agrees with the well-known effect of greater breakdown in

more basic waters [65]. The effect of pH on alder breakdown

was, however, modulated by climate: while breakdown was

faster in more alkaline waters at higher temperatures, the oppo-

site was true in cooler streams (figure 1f). This interaction may

reflect the facts that (i) microbial decomposition is most impor-

tant in the tropics and is boosted by higher calcium

concentration [66,67], and (ii) major litter consumers such as

stoneflies are more important in circumneutral and acidic

streams at higher latitudes [68,69], while they are rare in the tro-

pics [57]. Consistent with this explanation, caddiflies, which

dominate the guild of litter-consuming detritivores in tropical

streams [57], tend to be more sensitive to low pH [70]. However,

targeted experiments are required to test these possibilities.
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5. Conclusion
Our study is one of very few to assess litter breakdown in

streams at the global scale [27,28,30,71]. The number of samples

was relatively small for such broad scope (24 study sites), limit-

ing statistical power of the analyses; nevertheless, we were able

to show that multiple biotic and abiotic factors influence rates of

litter breakdown in streams at the global scale, with (i) a large

positive influence of temperature on microbial breakdown of

alder leaves; (ii) a greater role of litter-consuming detritivores

on breakdown towards high latitudes, where these detritivores

are typically more abundant and diverse; (iii) a notable influence

of litter quality and PD on breakdown of litter mixtures that

varies across climates, possibly through different effects on

microbial and detritivore assemblages at different latitudes;

and (iv) generally faster breakdown in more basic waters with

some influence of temperature, possibly owing to interactions

with microbial activity, which is the most important mechanism

for litter breakdown in warmer waters. Our models explained

up to 41% of the total variance in the datasets, indicating that

our explanatory variables could be important drivers of litter

breakdown. However, substantial unexplained variation indi-

cates that further comparative research is required to develop a
comprehensive picture of litter breakdown in streams at the

global scale. Such understanding is vital to appropriate manage-

ment of these ecosystems in the face of multiple anthropogenic

stressors [72,73].
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