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Migratory birds have a light-dependent magnetic compass, the
mechanism of which is thought to involve radical pairs formed
photochemically in cryptochrome proteins in the retina. Theoret-
ical descriptions of this compass have thus far been unable to
account for the high precision with which birds are able to detect
the direction of the Earth’s magnetic field. Here we use coherent
spin dynamics simulations to explore the behavior of realistic mod-
els of cryptochrome-based radical pairs. We show that when the
spin coherence persists for longer than a few microseconds, the
output of the sensor contains a sharp feature, referred to as a
spike. The spike arises from avoided crossings of the quantum
mechanical spin energy-levels of radicals formed in crypto-
chromes. Such a feature could deliver a heading precision suffi-
cient to explain the navigational behavior of migratory birds in the
wild. Our results (i) afford new insights into radical pair magneto-
reception, (ii) suggest ways in which the performance of the com-
pass could have been optimized by evolution, (iii) may provide the
beginnings of an explanation for the magnetic disorientation of
migratory birds exposed to anthropogenic electromagnetic noise,
and (iv) suggest that radical pair magnetoreception may be more
of a quantum biology phenomenon than previously realized.
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Migratory birds have a light-dependent magnetic compass (1–
4). The primary sensory receptors are located in the eyes (2,

3, 5–7), and directional information is processed bilaterally in a
small part of the forebrain accessed via the thalamofugal visual
pathway. The evidence currently points to a chemical sensing
mechanism based on photo-induced radical pairs in cryptochrome
flavoproteins in the retina (8–18). Anisotropic magnetic interac-
tions within the radicals are thought to give rise to intracellular
levels of a cryptochrome signaling state that depend on the ori-
entation of the bird’s head in the Earth’s magnetic field (8, 9, 19).
In support of this proposal, the photochemistry of isolated cryp-
tochromes in vitro has been found to respond to applied magnetic
fields in a manner that is quantitatively consistent with the radical
pair mechanism (15). Aspects of the radical pair hypothesis have
also been explored in a number of theoretical studies, the majority
of which have concentrated on the magnitude of the anisotropic
magnetic field effect (9, 10, 16, 17, 19–27). Very little attention has
been devoted to the matter we address here: the precision of the
compass bearing available from a radical pair sensor (28).
To migrate successfully over large distances, it is not sufficient

simply to distinguish north from south (or poleward from equator-
ward) (29). A bar-tailed godwit (Limosa lapponica baueri), for ex-
ample, was tracked by satellite flying from Alaska to New Zealand
in a single 11,000-km nonstop flight across the Pacific Ocean (30). A
directional error of more than a few degrees could have been fatal.
Because the magnetic compass seems to be the dominant source of
directional information (31), and the only compass available at night
under an overcast (but not completely dark) sky, migratory birds
must be able to determine their flight direction with high precision
using their magnetic compass. Studies have shown that migratory
songbirds can detect the axis of the magnetic field lines with an
accuracy better than 5° (32, 33). Any plausible magnetoreception

hypothesis must be able to explain how such a directional precision
can be achieved. Previous simulations of radical pair reactions (9, 10,
17, 20, 21) show only a weak dependence on the direction of the
geomagnetic field and therefore cannot straightforwardly account
for the magnetic orientation of birds in the wild.
Theoretical treatments of radical pair-based magnetoreception

typically involve simulations of the quantum spin dynamics of
short-lived radicals in Earth strength (∼50 μT) magnetic fields (9,
10, 17). The general aim is to determine how the yield of a reaction
product depends on the orientation of the reactants with respect to
the magnetic field axis. A crucial element in all such calculations is
the presence of nuclear spins whose hyperfine interactions are the
source of the magnetic anisotropy (8, 16). Most studies have fo-
cused on idealized spin systems comprising the two electron spins,
one on each radical, augmented by one or two nuclear spins (9, 21–
27, 34). Only a handful has attempted to deal with realistic, mul-
tinuclear radical pairs (10, 16, 17, 20). The other critical ingredient
in such simulations is the lifetime of the electron spin coherence: if
the spins dephase completely before the radicals have a chance to
react, there can be no effect of an external magnetic field (35).
Several studies have assumed, explicitly or implicitly, that the spin
coherence persists for about a microsecond, i.e., the reciprocal of
the electron Larmor frequency (1.4 MHz) in a 50-μT field (9, 10, 17,
20). Either because the spin system was grossly oversimplified (9,
21–27, 34), or because of this restriction on the spin coherence time,
previous theoretical treatments have generally predicted the re-
action yield to be a gently varying (often approximately sinusoidal)
function of the orientation of the radical pair in the geomagnetic
field. Although capable of delivering information on the direction
of the field, such a compass would not provide a precise heading. A
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more sharply peaked dependence on the field direction would be
needed to achieve a compass bearing with an error of 5° or less.
Here, we explore the behavior of cryptochrome-inspired rad-

ical pairs with multinuclear spin systems and long-lived (>1 μs)
spin coherence. We conclude that there is ample scope for a
cryptochrome-based radical pair compass to have evolved with a
heading precision sufficient to explain the navigational behavior
of migratory birds both in the laboratory and in the wild.

Results
Spin Dynamics Simulations. Product yields of radical pair reactions
were calculated as described elsewhere (10, 16, 36–38) by solving a
Liouville equation containing (i) the internal magnetic (hyperfine)
interactions of the electron spin with the nuclear spins in each
radical, (ii) the magnetic (Zeeman) interactions of the two electron
spins with the external magnetic field, and (iii) appropriate spin-
selective reactions of the singlet and triplet states of the radical pair.
As a starting point, we modeled [FAD•− TrpH•+], the radical

pair that is responsible for the magnetic sensitivity of isolated
cryptochrome molecules in vitro (15). It consists of the radical
anion of the noncovalently bound flavin adenine dinucleotide
(FAD) cofactor and the radical cation of the terminal residue of

the “tryptophan (Trp) triad” electron transfer chain within the
protein (39–41). All calculations were performed in a coordinate
system aligned with the tricyclic flavin ring system (Fig. 1A): x
and y are, respectively, the short and long in-plane axes, and z is
normal to the plane. Hyperfine interaction tensors were calcu-
lated by density functional theory (SI Appendix, Section S1).
Following Lee et al. (16), the 14 largest hyperfine interactions, 7
in FAD•− and 7 in TrpH•+, were included (see SI Appendix,
Section S2 for additional simulations including up to 22 nuclear
spins.) A magnetic field strength of 50 μT was used throughout.
The relative orientation of the two radicals was that of FAD and
Trp-342 in Drosophila melanogaster cryptochrome (Protein Data
Bank ID code 4GU5) (SI Appendix, Section S1) (42, 43). The
initial state of the spin system was a pure singlet. Two approxi-
mations (SI Appendix, Sections S3 and S4) were introduced to
make simulations of the 16-spin system computationally tractable
(9): (i) exchange and dipolar interactions between the radicals
were assumed to be negligible, and (ii) the singlet and triplet states
were assumed to react to form distinct products with identical first
order rate constants, k. The lifetime of the radical pair, τ, is de-
fined as the reciprocal of k. As a measure of the available di-
rectional information, we calculated ΦS, the fractional yield of the
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Fig. 1. Reaction yields of a [FAD•− TrpH•+] radical pair. (A) The axis system used in the simulations superimposed on the tricyclic flavin ring system. (B) The
variation of ΦS with θ for radical pairs with lifetimes between 1 and 100 μs. For clarity, two of the traces have been offset vertically: by −0.001 (light green) and
−0.002 (red). θ specifies the direction of the magnetic field in the zx plane of the flavin. (C) The same data as in B (1- to 20-μs lifetimes) presented as 2D polar plots.
In each case, only the anisotropic part of ΦS is shown, with red and blue indicating values, respectively, larger and smaller than the isotropic value. The five plots
are drawn on the same scale. The blue features at θ = ±90° (labeled * in the 20-μs plot) are the spikes. (D) The anisotropic part ofΦS (10-μs lifetime) presented as a
3D polar plot. A circle in the xy plane (θ = 90°) is included as a guide to the eye. The blue disk in the xy plane (labeled *) gives rise to the spike. The smaller blue
disk, labeled # (also in C), angled at ∼40° to the xy plane, comes principally from the N1 indole nitrogen of TrpH•+. Its tilt reflects the orientation of the indole
group of the tryptophan relative to the flavin (42, 43). (E) Visual modulation patterns calculated from ΦS (1- to 20-μs lifetimes) representing the directional
information available from an array of cryptochrome-containing magnetoreceptor cells distributed around the retina. The bright spot in the lower half of the
pattern arises from the spike. (F) 3D polar plot of ΦS (10-μs lifetime) averaged over a 360° rotation around an axis in the xy plane. This object has been rotated by
90° relative to D and scaled up by a factor of 2.1. The patterns in E were calculated using the same averaging procedure (SI Appendix, Section S6).
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product formed from the singlet state of the radical pair after the
reactions have proceeded to completion (10, 16). Spin relaxation
processes were not included in the initial simulations. Further
details are given in the SI Appendix, Section S5.

Flavin-Tryptophan Radical Pair. Fig. 1B shows the variation of ΦS
for [FAD•− TrpH•+] as the direction of a 50-μT magnetic field,
specified by the angle θ, is rotated in the zx plane of the flavin.
When θ = 0, the field is parallel to the flavin z axis (Fig. 1A).
With a lifetime τ = 1 μs,ΦS exhibits a shallow minimum around θ =
90° and maxima near 0° and 180°, as found previously (16).
Shorter lifetimes gave even weaker angular variation. As the
lifetime is prolonged from 1 μs toward 100 μs, the dependence of
ΦS on θ becomes increasingly structured, and a prominent spike
emerges, strengthens, and narrows. Centered accurately at θ =
90°, this feature occurs when the magnetic field is in the plane of
the flavin ring system (parallel to the x axis). As τ is increased
beyond 100 μs, the only change is that the spike grows (by
roughly a factor of 3 as τ → ∞).
The anisotropy of ΦS can be seen more clearly from polar plots

of the same data (Fig. 1C) after subtraction of the isotropic
components. As the lifetime is prolonged, the anisotropy grows,
and ΦS depends more strongly on θ. As expected from time-
reversal symmetry, ΦS is invariant to inversion of the direction of
the magnetic field, a property shared by the avian magnetic com-
pass (29). Very similar behavior was found when the magnetic field
was rotated in the molecular zy plane. In fact, ΦS has roughly axial
symmetry around the molecular z axis, apart from a tilted feature
arising predominantly from the indole nitrogen of TrpH•+, as may
be seen from the 3D polar plot in Fig. 1D (τ = 10 μs). The spikes
in Fig. 1 B and C at θ = 90° are, in fact, cross-sections through the
thin equatorial disk produced when the magnetic field axis is close
to the xy plane of the flavin (Fig. 1D).
Fig. 1E shows “visual modulation patterns” (9, 19, 28) calculated

for the same radical pair as Fig. 1 B–D (details in SI Appendix,
Section S6). They are representations of a bird’s perception of the
directional information delivered by an array of cryptochrome-
containing magnetoreceptor cells distributed around the retina: in
this case, for a bird in the northern hemisphere looking horizontally
toward magnetic north in a 50-μT magnetic field with a 66° in-
clination. As the lifetime τ is prolonged, and the spike becomes
stronger, the spot that indicates the axis of the geomagnetic field

lines becomes more intense and less diffuse. It is not hard to
imagine that the patterns in Fig. 1E for τ ≥ 5 μs would give more
precise compass headings than that for τ = 1 μs.
Finally, a degree of rotational disorder among the magneto-

receptor cells (19, 28) can be modeled by averaging the polar
plot in ΦS (Fig. 1D) over a 360° rotation around a chosen axis (SI
Appendix, Section S6). If this axis is in the xy plane of the flavin,
the thin blue equatorial disk in Fig. 1D turns into the needle-
shaped object (Fig. 1F; τ = 10 μs) that appears to be ideal for
determining a precise compass bearing. As mentioned above, a
radical pair sensor is an inclination compass rather than a po-
larity compass so that the resemblance of Fig. 1F to a magnetized
compass needle should not be taken too literally.

Origin of the Spike in ΦS. The approximate axial symmetry of ΦS
for τ = 1 μs (Fig. 1C) has been noted before and was attributed
principally to the two nitrogens, N5 and N10, in the central ring
of the FAD•− radical (10, 16). N5 and N10 are the only nuclei in
[FAD•− TrpH•+] with hyperfine tensors that, like ΦS, are ap-
proximately axially symmetric around the flavin z axis. It there-
fore seems probable that they also play a role in creating the
spike that arises when τ > 5 μs.
This prediction is confirmed by Fig. 2A, which shows ΦS for a

very slightly modified version of [FAD•− TrpH•+]. The z compo-
nents of the hyperfine interactions of N5 and N10 in flavin radicals
are large, and the x and y components have small but nonzero
absolute values (SI Appendix, Section S7). The calculated principal
values of the two interactions are (Axx, Ayy, Azz) = (−0.087, −0.100,
1.757) mT for N5 and (−0.014, −0.024, 0.605) mT for N10 (SI
Appendix, Section S1; here 1 mT corresponds to 28 MHz). When
Axx and Ayy for either N5 or N10 were set to zero, the spike was
attenuated by 60–70%; when Axx and Ayy for both nitrogens were
set to zero, the spike disappeared (Fig. 2A). The rest of ΦS
remained essentially unchanged. The strong, sharp component of
ΦS for [FAD•− TrpH•+] therefore owes its existence, at least in
part, to the form of the hyperfine tensors of N5 and N10 in the
flavin radical, i.e., large Azz and small but nonzero jAxxj and

�
�Ayy

�
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SI Appendix, Section S8 contains an analysis that unambig-
uously attributes the thin equatorial disk in Fig. 1D to avoided
crossings of the quantum mechanical energy levels of the radical
pair spin Hamiltonian as a function of the magnetic field di-
rection and predicts that the line shape of a cross-section
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Fig. 2. Reaction yields of various radical pairs. (A) ΦS for a [FAD•− TrpH•+] radical pair in which the transverse principal components of selected nitrogen
hyperfine interactions (Axx and Ayy) were set to zero: for N5 (blue), N10 (red), and both N5 and N10 (green). ΦS for the unmodified [FAD•− TrpH•+] is shown in
black. In all cases, τ = 1 ms. For clarity, three of the traces have been offset vertically by 0.006 (green) and 0.003 (blue and red). (B) ΦS for a [FAD•− Y•] radical
pair in which radical Y• contains a single 14N nucleus with an axial hyperfine tensor with principal components (Axx, Ayy, Azz) = (0.0, 0.0, 1.0812) mT (modeled
on N1 in TrpH•+). The radical pair lifetimes are as indicated (1–100 μs). The angle between the z axes of Y• and FAD•− was 45°; the intensity of the spike was
found to decrease smoothly to zero as this angle was increased from 0° to 90°. For clarity, the five traces for τ < 100 μs have been offset vertically, from top to
bottom, by 0.020, 0.016, 0.012, 0.008, and 0.004 respectively. (C) ΦS for toy radical pairs, [X• Y•]. For the red, orange and green traces, X• contains a single 14N
hyperfine tensor with principal components (Axx, Ayy, Azz) = (−0.0989, −0.0989, 1.7569) mT. For the blue and black traces, (Axx, Ayy, Azz) = (−0.2, −0.2, 1.7569)
and (−0.4, −0.4, 1.7569) mT, respectively. In all five cases, Y• contains a single 14N nucleus with an axial hyperfine interaction: (Axx, Ayy, Azz) = (0.0, 0.0, 1.0812)
mT. The two hyperfine tensors have parallel z axes. The radical pair lifetimes are as indicated (10, 33.3, 100 μs); ×2 and ×4 indicate the doubling and qua-
drupling of Axx and Ayy in X•. For clarity, three of the traces have been offset vertically by 0.03 (green) and 0.06 (orange and red).

4636 | www.pnas.org/cgi/doi/10.1073/pnas.1600341113 Hiscock et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1600341113/-/DCSupplemental/pnas.1600341113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1600341113/-/DCSupplemental/pnas.1600341113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1600341113/-/DCSupplemental/pnas.1600341113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1600341113/-/DCSupplemental/pnas.1600341113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1600341113/-/DCSupplemental/pnas.1600341113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1600341113/-/DCSupplemental/pnas.1600341113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1600341113/-/DCSupplemental/pnas.1600341113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1600341113/-/DCSupplemental/pnas.1600341113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1600341113/-/DCSupplemental/pnas.1600341113.sapp.pdf
www.pnas.org/cgi/doi/10.1073/pnas.1600341113


through the disk (i.e., the spike) will be an upside-down Lorentzian.
When Axx and Ayy for both nitrogens are set to zero, the avoided
crossings become level crossings and the spike vanishes.

Simpler Flavin-Containing Radical Pairs. To obtain further insight
into the origin of the spike, simulations were performed for three
radical pairs related to [FAD•− TrpH•+] (1). When the TrpH•+

radical was replaced by a hypothetical radical that had no hyperfine
interactions, ΦS was found to vary smoothly and approximately
sinusoidally with θ and barely changed as τ was increased from 1
to 100 μs (SI Appendix, Section S9) (2). This pattern (gentle,
smooth θ dependence, no spike) persisted when a single isotropic
hyperfine interaction was present in the second radical (SI Ap-
pendix, Section S9) (3). However, when the second radical con-
tained an axially anisotropic hyperfine interaction with Axx = Ayy =
0 or Axx = Ayy ≠ 0, the spike at θ = 90° reappeared and, as in Fig.
1B, strengthened with increasing lifetime (Fig. 2B). From this and
other simulations of flavin-containing radical pairs, it appears that
an additional condition for the existence of the spike is that the
radical that partners the FAD•− should have at least one nucleus
with an anisotropic hyperfine interaction. This condition is amply
fulfilled by TrpH•+, in which the indole nitrogen and the aromatic
hydrogens all interact anisotropically with the electron spin (16).

A Toy Radical Pair. To confirm and further explore these con-
clusions, we devised a “toy” radical pair, with a smaller, more
manageable spin system, that behaves qualitatively like [FAD•−

TrpH•+]. One radical (X•) had a single nitrogen with a hyperfine
tensor similar to that of the N5 in FAD•−. The other (Y•) had a
single nitrogen with an axial hyperfine tensor modeled on the
indole nitrogen in TrpH•+. Like [FAD•− TrpH•+], [X• Y•] shows
a spike at θ = 90° superimposed on a rolling background (Fig.
2C). The spike became more pronounced when either the life-
time was prolonged or the amplitudes of the small transverse
hyperfine components in X• were increased. For example, dou-
bling Axx and Ayy when τ = 10 μs increased the amplitude of the
spike by about the same amount as increasing τ from 10 to 33 μs
without changing Axx and Ayy (Fig. 2C).

Spin Relaxation in the Toy Radical Pair. Of course, the spin co-
herence does not persist indefinitely but inevitably relaxes toward
the equilibrium state in which all spin correlation has vanished.
The rate of this process is highly relevant because there can be no
magnetic field effect if the spin system equilibrates before the
radicals react. The dominant spin relaxation pathways in a cryp-
tochrome-based radical pair probably arise from modulation of
hyperfine interactions by low-amplitude stochastic librational
motions of the radicals within their binding pockets in the protein.
The approach to equilibrium is likely to be highly complex for
realistic radicals undergoing realistic motions especially because
the external magnetic field is weaker than many of the hyperfine
interactions. In general, one can expect a multitude of relaxation
pathways, at a variety of rates, not all of which necessarily degrade
the performance of the radical pair as a compass sensor (44).
To explore the conditions necessary for the spike to survive in

the presence of molecular motion, we studied a simple model of
the microscopic dynamics of the FAD•− radical in cryptochrome.
The tricyclic isoalloxazine moiety was allowed to undergo rota-
tional jumps (+β ↔ −β degrees) around its y axis with a first order
rate constant, kr (SI Appendix, Section S10). In the language of
magnetic resonance, this rocking motion constitutes a “symmetric
two-site exchange” process (45), the effect of which is to modulate
the hyperfine field experienced by the electron spin. For a given
set of anisotropic hyperfine interactions, the only additional pa-
rameters are the rocking angle and the rate constant.
To get an initial idea of the expected behavior, we started with the

toy radical pair introduced above. Fig. 3A shows ΦS when Y• is
stationary and X• undergoes 10° rotational jumps (i.e., β = 5°)

around its y axis. The lifetime of the radical pair was fixed at 10 μs, so
that any relaxation pathway occurring on this timescale, or faster,
could influence ΦS. When the rocking is sufficiently fast (kr ≥ 3 ×
109 s−1; Fig. 3A), the differences in the magnetic interactions in the
two orientations are averaged by the motion and a single sharp spike
is seen at θ = 90°. As kr is reduced, the averaging becomes less ef-
ficient, causing attenuation of the spike (without significant broad-
ening) and flattening of the gently varying background (Fig. 3A and
SI Appendix, Section S11). Spin relaxation is most efficient when kr is
comparable to the strengths of the hyperfine interactions, i.e.,∼108 s−1.
Under these conditions, ΦS tends toward 0.25, the statistical
singlet fraction expected at thermal equilibrium.
These simulations were performed for a rocking axis (y) per-

pendicular to the symmetry axis (z) of the hyperfine tensor in X•.
Rotation around an axis tilted out of the xy plane results in less
extensive modulation of the magnetic interactions, less efficient
spin relaxation, and less attenuation of the spike for a given kr. In
this respect, Fig. 3A represents the worst case. The behavior of
ΦS when kr ≤ 108 s−1 is discussed in SI Appendix, Section S12.
In summary, the spike survives if kr ≥ 3 × 109 s−1 (Fig. 3A).

This value corresponds to a librational wavenumber of the aro-
matic ring systems greater than ∼0.1 cm−1.

Spin Relaxation in a Flavin-Containing Radical Pair. We now look at
the effects of motion on a more realistic spin system. It proved
impractical to repeat the above calculation for the full (16-spin)
[FAD•− TrpH•+] radical pair treated above. Instead, we studied
[FAD•− Y•] in which FAD•− contained seven nuclear spins (as
above) and Y• was the same as in the toy radical pair, [X• Y•]. Fig.
3B showsΦS for [FAD•−Y•] with the FAD•− radical undergoing 10°
rotational jumps (β = 5°) around its y axis with rate constants in the
fast exchange regime: 109 s−1 ≤ kr ≤ 3 × 1011 s−1. As was the case for
[X• Y•] (Fig. 3A), when τ = 10 μs, the spike at θ = 90° persists for
rocking rates down to 3 × 109 s−1 and is even visible when kr= 109 s−1.
Similar behavior was found for a [X• TrpH•+] pair in which TrpH•+

underwent 10° jumps (SI Appendix, Section S13). Spin relaxation
effects were more pronounced for jumps larger than 10°.
Clearly, the dynamics of FAD•− and TrpH•+ in cryptochrome

are considerably more complicated than this two-site jump model.
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Fig. 3. Reaction yields of radical pairs with spin relaxation included. (A) The
toy radical pair, [X• Y•]. X• has a single 14N nucleus with hyperfine components
(Axx, Ayy, Azz) = (−0.2, −0.2, 1.7569) mT; Y• has a single 14N nucleus with hy-
perfine components (0.0, 0.0, 1.0812) mT. The two hyperfine tensors have
parallel z axes. The radical pair lifetime is 10 μs. X• underwent 10° rotational
jumps (i.e., β = 5°) around the y axis with rate constants kr between 3 × 1011

and 108 s−1, as indicated. (B) The [FAD•− Y•] radical pair. FAD•− has seven
magnetic nuclei, as in Fig. 1. Y• has single 14N nucleus with hyperfine com-
ponents (Axx, Ayy, Azz) = (0.0, 0.0, 1.0812) mT. The radical pair lifetime is 10 μs.
FAD•− underwent 10° rotational jumps (i.e., β = 5°) around the y axis, with rate
constants kr varying between 3 × 1011 and 109 s−1, as indicated. In A and B, the
direction of the magnetic field (θ) is varied in the zx plane of the flavin ring
system (Fig. 1A). Almost identical results were found for the zy plane.
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However, we can infer from these exploratory studies that the spike
in ΦS is not excessively sensitive to reasonably rapid, relatively low-
amplitude motions of the type likely to occur for the radicals in
their binding sites in cryptochrome. The message we take from
these calculations is that radical motions on timescales faster than
about 1 ns could allow the spikiness of ΦS to survive.

Precision of the Compass Bearing. The directional information
available fromΦS will inevitably be degraded by stochastic noise in
the detection system (46). We can anticipate that for a given noise
level, a sharper and stronger spike will deliver a more precise
compass bearing. In SI Appendix, Section S14, we attempt to
quantify the effects of detector noise on the signals in Fig. 1. It is
shown that to obtain a precision of 1° when τ = 1 μs, the noise
level would have to be ∼40 times smaller than when τ = 10 μs. If
such an improvement in signal-to-noise had to be achieved by av-
eraging repeated measurements, it would take ∼402 = 1,600 times
longer for a radical pair with a lifetime of 1 μs than for one with 10
μs. Put another way, a bird might be able to obtain a ±1° compass
bearing in, say, 1 s instead of 30 min or by using ∼1,600 times fewer
cryptochrome molecules, if τ were 10 μs rather than 1 μs.

Discussion
We have demonstrated that a radical pair magnetoreceptor
may be capable of much higher angular precision than pre-
viously thought possible. More specifically, we have presented a
version of the radical pair model that could potentially explain
the magnetic compass precision observed for night-migratory
songbirds (32, 33). The feature that makes this feasible, referred
to as a spike, emerges naturally for cryptochrome-based radical
pairs when the lifetime of the spin coherence exceeds 1 μs.

FAD Radical. A fundamental requirement for the occurrence of a
pronounced spike in the reaction yield (ΦS) is that one of the rad-
icals is FAD•− or at least something closely resembling it. In par-
ticular, the two nitrogen nuclei (N5 and N10) in the central ring of
the tricyclic flavin ring system appear to have almost ideal magnetic
hyperfine interactions (16). The width and height of the spike can be
tuned by adjusting the transverse components (Axx and Ayy) of these
interactions (some experimental values are given in SI Appendix,
Section S7), implying that random mutations in the sequence of the
protein in the neighborhood of the FAD could have provided
evolution with the scope to optimize the compass precision. We
emphasize that the precise values of the hyperfine parameters re-
quired to produce a substantial spike in ΦS are not crucial and were
neither guessed nor carefully chosen; they came directly from in-
dependent molecular orbital calculations (performed several years
before we embarked on the present work) (47).

Partner Radical. A second prerequisite for spiky behavior is that the
radical that partners the FAD•− must have at least one appreciably
anisotropic hyperfine interaction. This condition is certainly satisfied
by the TrpH•+ radical formed by photo-induced electron transfer
along the Trp-triad in cryptochrome, as our simulations demon-
strated. It is also consistent with the oxidized form of ascorbic acid
(Asc•−), a radical that has been tentatively suggested (but for which
there is currently no evidence) as an alternative to TrpH•+, on the
basis that [FAD•− Asc•−] is expected to show much larger magnetic
field effects than [FAD•− TrpH•+] by virtue of the small hyperfine
interactions in Asc•− (16) (see ref. 16 for a more detailed discussion
of possible partner radicals). However, a spike would not be expected
for a [FAD•− Z•] radical pair, in which Z• is a radical completely
devoid of hyperfine interactions, such as superoxide, O•−

2 (even if its
spin relaxation could be made slow enough) (48, 49). Such a radical
pair was originally proposed to explain the reported inability of
European robins (Erithacus rubecula) to use their magnetic compass
when exposed to a narrow-band radiofrequency field at the Larmor
frequency (1.4 MHz for a 50-μT geomagnetic field) (50). However,

very recent experiments (51), designed to replicate the earlier study
(50), under much more stringently controlled conditions, failed to
find specific effects at the Larmor frequency. In contrast, very weak
broadband fields were found to disrupt the birds’magnetic compass
orientation capabilities (51, 52). These new findings are consistent
with radical pairs that have significant hyperfine interactions in both
radicals, e.g., [FAD•− TrpH•+] and [FAD•− Asc•−].

Spin Relaxation and Magnetic Disorientation. The third major con-
dition for the emergence of the spike is that the spin coherence
times of the radicals should be longer than 1 μs, which in turn
means that the librations of the radicals within their binding pockets
must be of relatively low amplitude and not too sluggish. As such
motions are determined by the interactions of the radicals with the
protein environment, this is another property that could have been
optimized by evolution. Spin relaxation much slower that 1 μs has
been invoked before to explain the apparent sensitivity of birds to
weak (nanotesla) monochromatic radiofrequency fields (21, 26, 53,
54). The problem with this proposal is that if there is no possibility
of a spike, a coherence time of 1–2 μs is sufficient to achieve the
optimum compass performance so that there would be no evolu-
tionary pressure to prolong relaxation times beyond this point (55,
56). Because the spike only emerges when the coherence time ex-
ceeds 1 μs, its presence could explain why slow relaxation might
have evolved. Moreover, it may now become possible to understand
how radiofrequency fields, in particular broadband anthropogenic
electromagnetic noise (sometimes called electrosmog) (52), inter-
feres with the operation of the avian compass: not because all an-
isotropy is destroyed (21), but because the spike is attenuated. It
remains to be seen, however, whether the spin relaxation can be
slow enough to explain the reported effects (52).

Experimental Evidence.How could one determine whether a spike
is really responsible for the precision of the avian magnetic
compass? Although direct detection might be challenging, it
should be possible to discover whether conditions could exist in a
cryptochrome that would be compatible with the existence of a
spike. Once it has been established which of the four known
avian cryptochromes (13) plays a role in compass magneto-
reception, and its structure is known, it will be possible to de-
termine more about the librational motions of the radicals and
the spin relaxation they produce. It seems probable that the
magnetic and dynamic properties of a cryptochrome that has
evolved as a compass sensor would differ significantly from those
of cryptochromes that do not have a magnetic sensing function.
It also appears likely that the properties of such a protein in vivo
will differ from those of the isolated protein in vitro, for example,
as a result of binding to signaling partners or attachment to
whatever intracellular structures are responsible for alignment
and/or immobilization of the protein (28).
Another approach would be to extend the behavioral experi-

ments mentioned above in which broadband subnanotesla elec-
tromagnetic noise was found to prevent European robins from
using their magnetic compass (52). If, for example, the birds’
ability to orient was disrupted by 1- to 100-kHz but by not 1- to
10-kHz broadband noise, this would provide evidence for radical pair
lifetimes and spin relaxation times in the range of 10−100 μs (50).

Quantum Biology. The radical pair mechanism of magneto-
reception has found a place in the emerging field of Quantum
Biology (57–59) on the strength of the absolute requirement that
the radical pair must be in a coherent superposition of the
quantum states of the two electron spins. In fact, the initial
electronic singlet state of the radical pair is quantum mechan-
ically entangled [although the entanglement, as such, confers no
advantage in terms of the general operation of the compass (60),
nor is it essential for the existence of the spike]. We recently
showed that the spin dynamics of long-lived radical pairs in weak
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magnetic fields can be described by a semiclassical approxima-
tion that becomes increasingly accurate as the number of nuclear
spins is increased (61, 62). If the behavior of a realistic radical
pair magnetoreceptor can be satisfactorily modeled in terms of
classical rather than quantum oscillations, then arguably it does
not belong under the quantum biological umbrella. However, the
spike discussed here is undeniably a quantum effect, arising from
the mixing of states associated with avoided energy-level
crossings, and is not captured by the semiclassical theory. In this

sense, radical pair magnetoreception may be more of a quantum
phenomenon than hitherto realized.
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