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High-throughput gene expression data are one of the primary
resources for exploring complex intracellular dynamics in modern
biology. The integration of large amounts of public data may allow
us to examine general dynamical relationships between regulators
and target genes. However, obstacles for such analyses are study-
specific biases or batch effects in the original data. Here we present
Immuno-Navigator, a batch-corrected gene expression and coexpres-
sion database for 24 cell types of the mouse immune system. We
systematically removed batch effects from the underlying gene
expression data and showed that this removal considerably improved
the consistency between inferred correlations and prior knowledge.
The data revealed widespread cell type-specific correlation of expres-
sion. Integrated analysis tools allow users to use this correlation of
expression for the generation of hypotheses about biological net-
works and candidate regulators in specific cell types. We show several
applications of Immuno-Navigator as examples. In one application
we successfully predicted known regulators of importance in
naturally occurring Treg cells from their expression correlation with
a set of Treg-specific genes. For one high-scoring gene, integrin β8
(Itgb8), we confirmed an association between Itgb8 expression in
forkhead box P3 (Foxp3)-positive T cells and Treg-specific epigenetic
remodeling. Our results also suggest that the regulation of Treg-
specific genes within Treg cells is relatively independent of Foxp3
expression, supporting recent results pointing to a Foxp3-indepen-
dent component in the development of Treg cells.
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High-throughput gene expression data, including microarray
and next-generation sequencing data, are widely used in the

study of biology. Over time, large amounts of such data have
accumulated in public databases such as ArrayExpress and Gene
Expression Omnibus (1, 2). In addition to their original purpose,
these datasets contain an enormous potential for the study of
biological networks, such as signaling pathways and regulatory
interactions. For example, correlation of gene expression is widely
used for the inference of regulatory networks and signaling path-
ways (3, 4). Publicly available data could allow researchers to
base their predictions on hundreds or even thousands of samples,
thus strongly increasing statistical power. Several coexpression da-
tabases have been developed, such as ATTED-II (5), COXPRESdb
(6), Human Gene Correlation Analysis (HGCA) (7), and STAR-
NET (8), which collect gene expression data and compute a mea-
sure of correlation of expression, such as Pearson correlation
coefficients (PCCs), between pairs of probes or genes. Other data-
bases and their analysis tools are also accessible (9).
It is reasonable to assume that coexpression networks and reg-

ulatory interactions differ significantly among different cell types. In
cells of the hematopoietic lineage, for example, cell identities during
the progress of differentiation are defined by different combinations

of lineage-specific and cell type-specific receptor molecules, sig-
naling pathways, and transcriptional regulators (10, 11). However,
most existing coexpression databases do not support the analysis of
cell type-specific coexpression. One notable study examined gene
coexpression in a several tissues separately and showed that such
a tissue-specific approach was more efficient in predicting disease
genes (12). Other efforts, such as the Immunological Genome
Project (ImmGen) and ImmuNet, offer data-driven approaches for
studying the immune system (13, 14). However, low sample counts
per cell type in the ImmGen dataset prohibit analysis of cell type-
specific correlation of expression. ImmuNet integrates several
types of data to infer networks but makes no distinction between
cell types and focuses on well-known signaling pathways. At present,
no database exists that allows integrative analysis of correlation of
gene expression in a cell type-specific manner in cells of the
immune system.
An additional weakness of existing coexpression databases is

their lack of treatment of batch effects. Batch effects are technical
sources of variation in data and are widespread in high-throughput
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biological data (15–17). Strong laboratory-specific effects, as well as
variations associated with data processing (18), have been reported
in microarray experiments (19). Batch effects are not removed by
normalization (15), making the task of combining data from
different studies difficult. Batch effects are expected to affect
coexpression databases strongly, because they incorporate gene
expression data obtained by different researchers in different
laboratories using different experimental protocols and solutions
and under different conditions. Nevertheless, the influence of
such effects on correlation of gene expression has been scarcely
studied, and to the best of our knowledge none of the above
databases addresses this problem.
Here, we present Immuno-Navigator (sysimm.ifrec.osaka-u.ac.jp/

immuno-navigator/), to our knowledge the first gene expression and
coexpression database which addresses the two issues of cell
type-specific correlation of expression and the influence of batch
effects for cells of the hematopoietic lineage. Immuno-Navigator
contains gene expression and expression correlation data for 24
mouse cell types of the immune system, with the use of PCC values
to estimate correlation of gene expression in a cell type-specific
manner. We first analyzed the influence of batch effects in different
studies on estimated correlation of gene expression and attempted
to remove these effects. Through genome-wide comparison of
data before and after treatment of batch effects, we showed that
the batch-effect reduction substantially improved the quality of the
expression data and resulting correlation data (see SI Appendix, SI
Results for a detailed description). Secondly, our cell type-specific
expression data allowed us to find several types of correlation of
gene expression, ranging from cell type-specific to widespread
correlation. These findings stress the relevance of analyzing coex-
pression data in a cell type-specific manner.
The combination of cell type-specific correlation data with large-

scale analysis functions (SI Appendix, SI Results, Practical Example
Analysis Using the Immuno-Navigator Database and Fig. S1) make
Immuno-Navigator a valuable resource for network inference
and the generation of hypotheses regarding regulatory mechanisms
and signaling pathways. We illustrate the usage of the database by a
number of examples of applications. In one application we found
that expression of the Treg-specific transcription factor forkhead
box P3 (Foxp3) within Treg cells is not correlated with the ex-
pression of the genes bound by Foxp3. This result supports the
existence of additional regulatory mechanisms that are in-
dependent of Foxp3 expression levels and that control the ex-
pression of Treg-specific genes in Treg cells (20–23). In addition,
by using our own data as input to the database functions, we
could successfully predict previously unidentified candidate
genes of importance in Treg cells. We identified integrin β8
(Itgb8) as one of the genes with high correlation of expression
with Treg-specific genes in Treg-derived samples. We experimen-
tally confirmed an association between Itgb8 expression in Foxp3+

T cells and Treg-specific DNA demethylation of the conserved
noncoding sequence 2 (CNS2) in the Foxp3 locus.

Results
Gene Expression and Correlation Data in Mouse Hematopoietic Lineage
Cells. We collected and manually annotated 3,434 microarray
samples for 24 mouse hematopoietic lineage cells originating from
261 studies present in ArrayExpress (Materials and Methods and
SI Appendix, Fig. S2 and Table S1) (1). These data contain samples
from both unstimulated cells and cells treated with various stimuli.
Exploratory analysis of this data collection revealed the presence of
considerable batch effects (15). One way of illustrating the pres-
ence of batch effects is by performing principal component analysis
(PCA), followed by the plotting of samples marked by cell type
(Fig. 1 and SI Appendix, Fig. S3). Fig. 1A shows the 3,434 samples
plotted according to the principal components (PCs) of the data
before batch-effect reduction. PC1 (which explains 19.0% of the
total variance) is associated with cell types of the myeloid lineage,

such as macrophages and dendritic cells (DCs). However, PC2
(explaining 10.8% of the variance) does not seem to be associated
with any particular cell type(s). PC2 is likely to reflect some un-
known source of variance or batch effect. In addition, hierarchical
clustering of these untreated data resulted in strong clustering of
samples according to their study of origin, another indicator for the
presence of batch effects (SI Appendix, SI Results, Assessment of the
Presence of Batch Effects and Fig. S4A).
We performed batch-effect reduction on these gene expression

data using ComBat (24), treating each study as a batch (Materials
and Methods). Inspection of the resulting batch-treated gene
expression data suggested that this treatment strongly reduced
batch effects. The first two PCs of the batch-treated samples (Fig.
1B) appear to be associated with biologically relevant variables;
PC1, which explains 34.0% of the variance in the batch-treated
data, divides cell types of the myeloid lineage (negative values),
of the lymphoid lineage (positive values), and progenitor cells
(intermediate values). PC2, explaining 14.1% of variance, is
roughly associated with the degree of maturation of cells, with
progenitor cells having high positive values and differentiated
cell types having lower values. Similarly, PC3, explaining 8.0% of
variance, appears to separate B-cell–derived samples from other
samples (SI Appendix, Fig. S3). In addition, compared with the

Fig. 1. Exploratory analysis of batch effects. Scatter plots are shown for all
samples according to the two PCs of the gene expression data before (A) and
after (B) treatment of batch effects. Shapes and colors indicate cell types (see
legend). A rough indication of cell type clusters is given.△, progenitor cell types;
□, myeloid cell types; ○, lymphoid cell types. Cell-type abbreviations are as in SI
Appendix, Table S1.
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untreated data, hierarchical clustering of the batch-treated data
resulted in samples being less clustered by study, another indication
that batch effects have been reduced successfully (SI Appendix,
Fig. S4B).
Although the gene expression data describe the behavior of

each gene, correlation data reflect the biological networks underlying
the relationship between any pair of genes. As a measure for
correlation, we used PCCs, which were measured between all
pairs of probes, for both untreated and batch-treated expression
data. We found that highly (positively or negatively) correlated
probe pairs, which could be caused by batch effects, were generally
decreased in number after batch effect reduction (Fig. 2A; see also
SI Appendix, Fig. S5 for all cell types). Although there was a general
tendency for probe pairs with high correlation in the raw data to be
correlated in the batch-processed data also (Fig. 2B; see also SI
Appendix, SI Results, Evaluation of Batch Effect Reduction and
Table S2), only a minority(12.2% on average; roughly 5–25%,
depending on the cell type) of significantly correlated probe pairs
was also significantly correlated after batch-effect treatment (Fig.
2C), and about 5% (roughly 1–12%) (Fig. 2C) even had a change of
sign of the PCC after batch treatment. Most likely, many of these
correlations in the untreated data are artifacts caused by the strong
batch effects in the original data.

Two Illustrative Examples of Expression Correlation Affected by Batch
Effects. As mentioned above, batch-effect reduction using ComBat
had a large impact on the correlation between many probe pairs.
We will discuss the large-scale consequences of this treatment in
the next section. Here, we present two anecdotal examples (Fig.
3). The histone H3K27 demethylase Jmjd3 (also referred to as
“Kdm6b”) is involved in inflammatory control in macrophages
(25, 26) and is directly induced by binding of the transcription
factor NF-κB to a cluster of three binding sites in the Jmjd3
promoter (25). In the raw, macrophage-derived data (601 samples
over 60 batches), no strong correlation was observed between
Jmjd3 and Nfkb1 (PCC: −0.07) (Fig. 3A). The scatter plot of the
probes for these two genes revealed that, although the samples of
many studies showed a clear positive correlation, the overall
correlation in the macrophage-derived samples was cancelled out

by the samples of a few studies. After batch-effect reduction, the
bias caused by these samples was removed, and the PCC between
Jmjd3 and Nfkb1 increased to 0.49 (Fig. 3B). Furthermore, the 100
genes with the highest correlation with Jmjd3 in the batch-treated,
macrophage-derived data had a clear enrichment of NF-κB–binding
sites in their promoter regions (SI Appendix, Table S3). This
example is only one illustration of how treatment of batch effects
improved the expression correlation estimates and made them
more consistent with known biological interactions. Probe pairs
for which correlation was reduced after batch treatment were
more common; one example is shown in Fig. 3 C and D. In the raw
data (Fig. 3C), a strong positive correlation (PCC: 0.62) was observed
between suppression of tumorigenicity 7-like (St7l) and magnesium-
dependent protein phosphatase 1 alpha (Ppm1a) in macrophage-
derived samples. However, this correlation was caused mainly by
the samples of a few studies having particularly high values for
both probes. Within the samples originating from a single study,
no correlation was observed. After batch-effect treatment, the
correlation was strongly decreased (PCC: 0.11) (Fig. 3D).

Treatment of Batch Effects Improves Genome-Wide Gene Correlation
Estimates. Next, we addressed the improvement in the quality of
gene correlation data on a larger scale. Because a direct assessment
of the accuracy of gene expression correlation is difficult, we
used a number of indirect indicators to evaluate the quality of
PCC values after batch-effect reduction. Please see SI Appendix, SI
Results, Evaluation of Batch Effect Reduction, for a more detailed
description of these analyses. In brief, after batch-effect reduction,
we found an increased consistency between cell types in terms of
the correlated genes that they contained. (i) Between pairs of cell
types there was an increase in common correlated gene pairs (SI
Appendix, Fig. S6). (ii) The number of gene pairs that had highly
correlated expression in multiple cell types increased (SI Appendix,
Table S4). (iii) Moreover, similarity in gene correlation between cell
types was more consistent with the hematopoietic lineage tree, with
relatively high similarity among progenitor cells, among lymphoid
cell types, and among myeloid cell types (SI Appendix, Fig. S7).
(iv) Gene pairs with similar functional annotations were more
often highly correlated (SI Appendix, Fig. S8). (v) Probe pairs assigned

Fig. 2. Treatment of batch effects strongly changes gene expression correlation. (A) The distribution of PCC values in the set of 601 macrophage-derived
gene expression samples before (Upper) and after (Lower) batch-effect reduction. (B) Density scatter plot of the PCCs between all 1.0 × 109 probe pairs in data
obtained from macrophages. The x and y axes represent PCC values before and after batch-effect reduction, respectively. The white and black “x” signs mark
the two probe pairs shown in Fig. 3 A and B and Fig. 3 C and D, respectively. (C) For probe pairs with significant correlation in the raw data, the fraction of
probe pairs that are significantly/not significantly, and consistently/inconsistently (same/different sign) correlated in the batch-treated data are shown. Cell-
type abbreviations are as in SI Appendix, Table S1. For MPPs no PCC threshold could be defined.
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to the same gene were more often highly correlated (SI Appendix,
Figs. S9 and S10).
Together, these results indicate that treatment of batch effects

improved the quality of the expression data and the resulting
gene expression correlation measures.

Different Modes of Correlation of Gene Expression. Several coexpression
databases exist, but they typically calculate correlation over samples
originating from a collection of different tissues and cell types. Our
dataset, however, allows the analysis of expression correlation in
specific cell types and comparison between cell types and the com-
bined data of all cell types. We found that cell type-specific data
contained significantly correlated gene pairs that could not be found
in the combined dataset. For example, of the gene pairs that were
found to be correlated significantly in one, two, and three cell types,
only 2.4, 4.4, and 5.8%, respectively, were also found to be correlated
in the combined data of all cell types (SI Appendix, Fig. S11). On the
other hand, for 848,675 gene pairs we found significant positive
correlation of expression only in the combined data and not in any of
the investigated cell types. Visual inspection of such gene pairs
revealed that these pairs typically consisted of gene pairs with similar
cell type-specific expression. These results illustrate the existence of
several modes of correlation of expression, including (i) cell type-
specific correlation of expression in which two genes are correlated
in only a subset of cell types and not in the combined data (Fig. 4A);
(ii) widespread correlation of expression in which two genes are
correlated in most cell types and also in the combined data (Fig.
4B); (iii) pairs of genes that have high (or low) expression in the
same cell types but whose expression is not correlated within the
samples of any individual cell type (Fig. 4C); and (iv) nonlinear
relationships between two genes (Fig. 4D).

The Immuno-Navigator Database. We collected all gene expression
data and correlation data after the batch-effect treatment in a
database and constructed the Immuno-Navigator database. Our
database and tools allow users to make a distinction between the
modes of correlation described above. This distinction is crucial
for the findings we describe further below, such as the lack of
correlation between Foxp3 and Foxp3-bound target genes and
the prediction of cell type-specific candidate regulators. The use
of Immuno-Navigator consists of roughly four parts: (i) basic analysis
of single genes; (ii) guilt-by-association analysis; (iii) correlation gene
set enrichment analysis (correlation GSEA); (iv) and prediction of
genes that are highly connected to a set of genes within the inferred
correlation networks. To illustrate the various uses of our database,
we briefly explain a few examples here. For more details, see SI
Appendix, SI Results, Practical Example Analysis Using the Immuno-
Navigator Database and Fig. S1 the online documentation of the
Immuno-Navigator database.
Analysis of single genes. Inspection of the correlation of expression
of genes can provide valuable hypotheses regarding the function
of a query gene and the regulatory pathways underlying its expres-
sion. Here we briefly illustrate the use of our data using Foxp3 as the
query gene. Foxp3 has only one probe set, and its highest signals are
observed in Treg cell-derived samples (SI Appendix, Fig. S1 A and
B), as is consistent with its known function as a key regulator in the
development and function of Tregs (27, 28). Genes with high posi-
tive or negative correlation with Foxp3 can be easily extracted for
each of the cell types in our dataset (SI Appendix, Fig. S1 C–E).
Other information, such as links to external databases, functional
annotations, and predicted transcription factor-binding sites (TFBSs)
are provided also. Visualizing the most highly correlated genes of
Foxp3 within Treg cell-derived samples in a correlation network
showed that Foxp3 expression was highly correlated with that of
interleukin 2 receptor alpha [Il2ra (Cd25)], dystonin (Dst), and
IKAROS family zinc finger 4 [Ikzf4 (Eos)] (SI Appendix, Fig. S1F).
These genes, in turn, were highly correlated with other Treg
markers. On the other hand, Foxp3 also had relatively high

correlation with NF-κB subunit 1 (Nfkb1) and B-cell CLL/lymphoma
3 (Bcl3). Nfkb1 encodes a subunit of NF-κB, a key regulator of the
response to various immune stimuli, and Bcl3 encodes a transcrip-
tional coactivator of NF-κB. These two genes in turn were connected
with Stat3, an important regulator of responses to cytokines and
immune tolerance (29). Thus, the inspection of neighboring genes
in the correlation network can suggest the function of the query
gene and the presence of distinct regulatory modules.
Guilt-by-association analysis. The prediction of regulatory interactions
is one of the key problems in cellular biology. Although the amount
of genome-wide transcription factor-binding data is increasing, it is
still limited to a small subset of transcription factors in specific cell
types or tissues. On the other hand, the scanning of promoter re-
gions using position weight matrices (PWMs) to predict TFBSs
remains a widely used method for finding candidate regulators but
is well known to have low accuracy. In Immuno-Navigator, TFBS
predictions can be further supported by the guilt-by-association
principle: We make the assumption that a gene of interest is
controlled by the same regulators as genes with similar expression
profiles. In particular, Immuno-Navigator allows TFBS predictions
for the individual query gene to be supplemented by the enrich-
ment analysis of TFBS motifs in the set of 100 top correlated
genes, in a cell type-specific way. SI Appendix, Fig. S1G shows the
enriched motifs for genes that are correlated with interferon-
induced protein with tetratricopeptide repeats 1 (Ifit1) in macro-
phage samples. Topmotifs here include those of STAT and interferon-
regulatory factor (IRF) transcription factor family members, which are
well known to regulate expression of IFN-induced genes, including

Fig. 3. Examples of probe pairs with changes in correlation after batch-effect
treatment. (A and B) Correlation between Jmjd3 and Nfkb1 in macrophage-
derived samples before (A) and after (B) batch-effect reduction. This pair of
probes is indicated in Fig. 2B by the white “x.” For a selection of studies, samples
are indicated (different studies are represented by different colors). In the raw
data, samples of several batches show correlation, but the overall correlation is
neutralized by the samples originating from a few studies. After batch-effect
treatment, the PCC increases strongly from −0.07 to 0.49. (C and D) Similar plots
for Ppm1a and St7l in macrophage-derived samples. This pair of probes is in-
dicated in Fig. 2B by the black “x.” In the raw data, the PCC value is highly
influenced by samples originating from only a few studies, although no cor-
relation is observed within the samples of a single study. After batch-effect
reduction, the correlation strongly drops.
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Ifit1 (30). The Ifit1 promoter itself also contains predicted sites for
several STAT and IRF transcription factors. In this way, Immuno-
Navigator uses motif enrichment in correlated genes to increase
the confidence of predicted TFBSs in the query gene’s promoter.
In a similar way, functional annotations of a gene of interest can be

inferred from the functions of its correlated genes [Gene Ontology
(GO) enrichment].
Correlation GSEA. It often is interesting to see if a gene of interest
has any bias in its correlation with a set of genes that share some
particular feature. We implemented correlation GSEA, an ap-
proach to detect such biases using a modification of the widely
used GSEA approach (31). We applied this method in the
analysis of Foxp3 and its targets in Treg cells (see Foxp3-Bound
Genes Lack Correlation of Expression with Foxp3 in Treg Cells below)
and on a large collection of ChIP-sequencing (ChIP-seq) data
(SI Appendix, SI Results, Correlation gene set enrichment analysis).
Correlation network hub prediction. A typical problem in molecular
biology is the prediction of candidate regulators for a set of genes
of interest. Under the assumption that the expression of regulators
should affect the expression of downstream target genes (i.e., the
input set), genes that are more frequently highly correlated with a
set of input genes than with noninput genes may include genes that
are relevant to their regulation. Such genes might include direct
regulators (for example transcription factors) or other genes that
indirectly affect the expression of the input set. Thus, genes with
high correlation with many of the downstream genes could be
potential candidate genes for further investigation. Although
mere correlation is not enough for inferring causal relationships,
additional analyses (such as TFBS motif enrichment) could reinforce
such a hypothesis. Immuno-Navigator offers a tool for predicting
such frequently correlated genes. We refer to this methodology as
“correlation network hub prediction” (CNHP).
As a proof of concept, we applied CNHP on 345 genes with

induction of expression 4 h after LPS stimulation in mouse DCs,
a relatively well-studied system for which several regulators of
importance are known. For a detailed description see SI Appendix,
SI Results, Analysis of LPS-inducible genes in dendritic cells and Fig.
S12. In brief, our analysis could successfully predict several known
regulators of the response to LPS stimulation, including STAT and
IRF family members and NF-κB subunits (SI Appendix, Fig. S12A).
Promoter regions of the input genes were strongly enriched for
binding sites for several of these transcription factors, further
supporting the CNHP result (SI Appendix, Fig. S12B).
These results on a relatively well-known system show that our

database and its tools could be used successfully for predicting
known regulators of importance in a cell type-specific manner.

Foxp3-Bound Genes Lack Correlation of Expression with Foxp3 in Treg
Cells.Next, we used our data and analysis methods on an unresolved
problem in immunology. Tregs are essential for immune homeostasis
and can suppress excessive immune reactions harmful to the host.
The transcription factor Foxp3 is essential for developing functional
Tregs (27, 28), but it has also been shown that its expression alone is
not sufficient for Treg function, stability, and lineage establishment
(20, 22, 32). Nevertheless, additional necessary and sufficient factors
for developing stable Tregs remain unknown.
To clarify the extent to which Foxp3 controls gene expression

within Treg cells, we analyzed the correlation of expression between
Foxp3 and genes that are bound by Foxp3 in Tregs. Using ChIP-seq
data for Foxp3 binding in Treg cells, we identified 13,879 genomic
regions bound by Foxp3 and selected a set of 1,300 genes with strong
Foxp3 binding in proximity of their transcription start sites. Using
our correlation GSEA approach, we found that this set of Foxp3-
bound genes showed a significant tendency to have correlated ex-
pression with Foxp3 over our entire expression dataset (i.e., the data
for all cell types combined) (SI Appendix, Fig. S13A). This correlation
of expression with Foxp3 reflects the high expression levels of many
of these Foxp3-bound genes in Treg cells. However, surprisingly,

this tendency was absent within the Treg-derived expression data
(Fig. 5): No difference in correlation with Foxp3 expression was
observed in Treg-derived expression data between Foxp3-bound
and unbound genes. This lack of correlation contrasts strikingly with
other transcription factors such as E74-like factor 1 (Elf1), E26
oncogene homolog 1 (Ets1), and forkhead box O1 (Foxo1), which
tend to have expression in Treg cells correlated with the genes they
bind to (Fig. 5 and SI Appendix, Fig. S13A). To confirm the validity
of the lack of correlation between Foxp3 and Foxp3-bound genes
further, we analyzed the correlation between Foxp3 and a set of
Foxp3-dependent genes as defined by Gavin et al. (21). As
expected, these Foxp3-dependent genes indeed showed increased
correlation with Foxp3 in Treg cells (SI Appendix, SI Results,
Analysis of Foxp3-dependent and -independent genes). Neverthe-
less, even between Foxp3 and these Foxp3-dependent genes,
correlation was in general low (mostly PCC <0.4) (SI Appendix,
Fig. S16A). Together, these results indicate that Foxp3 plays a
critical role in controlling Treg suppressive function and also that
the expression dynamics of most Foxp3-bound genes within Treg
cells are relatively independent of changes in Foxp3 expression.

Fig. 4. Examples of four types of gene expression correlation observed in
our dataset. Each scatter plot shows the values of probes representing two
genes, for all 3,434 microarray samples in our database. Different colors
represent samples obtained from different cell types. (A) Batf2 (x axis) and
Itif1 (y axis) are significantly correlated in a subset of cell types (macro-
phages, classical DCs, and plasmacytoid DCs) but not in other cell types or in
the combined dataset (PCC: 0.32). As example, macrophage samples (pink;
PCC: 0.62) are encircled in black. (B) Cdca8 (x axis) and Cdca5 (y axis) are
significantly correlated in most cell types (typical PCCs >0.80) and also over
the combined dataset (PCC: 0.90). (C) Foxp3 (x axis) and Ikzf2 (y axis) are not
correlated in any cell type-specific dataset, but both show high expression in
Tregs (purple, encircled in black) and, to a lesser degree, in other CD4+ T cells.
As a result of their shared cell type-specific expression, they are significantly
correlated in the combined dataset (PCC: 0.69). (D) Cd4 (x axis) and Cd8a
(y axis). Both variables differ strongly from a normal distribution, and several
distinct clusters can be observed corresponding to cell types that have high/low
expression of Cd4 and/or Cd8a, such as CD4+ T cells (high Cd4 but low Cd8a),
CD8+ T cells (high Cd8a but low Cd4), double-positive cells (DP, high levels of
both Cd4 and Cd8a), and most other cell types (low levels of both Cd4 and
Cd8a). This clearly nonlinear relationship between Cd4 and Cd8a results in high
mutual information (0.47) but a relatively low PCC value (0.21).
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In a large-scale correlation GSEA of 104 ChIP-seq datasets
(SI Appendix, SI Results, Correlation gene set enrichment analysis,
Figs. S14 and S15, and Table S5), we made similar observations
for several other regulators, including PU.1 (encoded by Sfpi1)
and CCAAT/enhancer binding protein beta (C/EBPβ) in DCs.
PU.1 and C/EBPβ tend to bind to genes with increased expression
in DCs, but correlation between these regulators and the genes to
which they bind was very low within the DC-derived samples
(SI Appendix, Fig. S13 B and C). These results suggest that this
pattern might be common for master regulators that prime the cell
fate at the early stage of development. In contrast, Nfkb1 and Stat1
have clearly correlated expression in DCs with the target genes of the
transcription factors they encode (SI Appendix, Fig. S13 B and C).

Analysis of Expression Correlation of Treg-Specific Genes Reveals
Previously Unidentified Candidate Regulators of Importance in Treg
Cells.Given the lack of correlation between Foxp3 expression and
Foxp3-bound genes in Tregs, and even between Foxp3 and Foxp3-
dependent genes, it is reasonable to assume that other regulators
are required for defining a Treg-specific transcriptome. So far,
several studies have attempted to find key regulators in Treg cells
by focusing on genes with highly Treg-specific expression (33) or on
regulators associated with a Treg cell signature in expression data
obtained from various CD4+ T cells (34). The Immuno-Navigator
dataset, on the other hand, allows us to find genes that are highly
correlated with Treg-specific genes specifically in Treg-derived
expression data. Such genes may play a role in the definition of
Treg-specific transcriptomes, especially if the correlation with
Treg-specific genes is observed only within Treg cell-derived
samples and not in those other cell types.
For this purpose, we examined gene expression profiles of

Treg cells by RNA sequencing (RNA-seq) and defined a set of
248 Treg-specific genes as genes with higher expression in Treg
cells, which are CD25+, than in unstimulated and stimulated
CD25− T cells (SI Appendix, Fig. S17). We used CNHP to predict
genes that have highly correlated expression specifically with
these genes, especially in Treg-derived expression data. From the
results we can make several observations (Fig. 6). First, several
genes known to play a role in Treg functionality [IKAROS family
zinc finger 2 (Ikzf2), Ikzf4, Ctla4, Icos, Il2ra] are among the top-
scoring genes (Fig. 6 A and B). This category also includes genes
that only recently have been shown to be of importance, such as
neuropilin 1 (Nrp1) (ranked sixth out of 22,399 genes) (35) and
Itgb8 (ranked 13th). The use of Itgb8 as a marker for thymically
derived Tregs and its importance in Treg-mediated immunosup-
pression was verified experimentally and reported during the
preparation of this paper (36, 37). Furthermore, top-scoring genes
include multiple genes that have been reported by other studies as
having high expression in Tregs, including Mdfic (ranked 17th),

Prnp (ranked 28th; see also ref. 38), and Nt5e (ranked 31st) (33).
In general, high-scoring genes have a relatively high expression in
Treg cells compared with CD4 T cells (Fig. 6 A and B). For most
of the top-scoring genes, correlation of expression with the Treg-
specific genes is mainly observed only in Treg cell-derived samples,
and, for some, to a lesser extent in CD4 T-cell samples, but not in
the expression data of other cell types or in the combined data of all
cell types (Fig. 6B).
More importantly, the top-ranked genes also include several

genes for which no clear role in Treg cells has been discovered so
far and which could be missed by more traditional approaches. For
example, T-lymphoma invasion and metastasis-inducing protein 1
(Tiam1) is highly correlated with 45 of the input genes in Treg cells
(P value: 1e-44). Although Tiam1 also has some correlation with
Treg-specific genes in CD4 T-cell–derived samples, such corre-
lation is not observed in other cell types. CNHP using as input a set
of Foxp3-independent genes (21) also led to Tiam1 being the top-
scoring gene (SI Appendix, SI Results, Analysis of Foxp3-dependent
and -independent genes and Fig. S16D). Recently, Tiam1 has been
shown to be important in the activation of LFA-1 through T-cell
receptor (TCR) signaling (39), which is known to be relatively
strong in Treg cells (28). Tiam1 has relatively high expression in
Treg cells compared with other CD4 T cells (3.5-fold higher).
Surprisingly, Foxp3 was not present among the top genes

(ranked 1,383rd) (Fig. 6B). Indeed, Foxp3 had significantly high
correlation of expression in Treg cell-derived samples with only one
of the Treg-specific input genes: Ikzf4. To illustrate the discrepancy
between top-scoring genes and Foxp3, we created a correlation
network for these genes in which pairs of genes with significantly
high correlation of expression in Treg-derived samples are con-
nected (Fig. 6C). Many of the top-scoring genes have correlated
expression in Treg cells, resulting in a tightly interconnected
subnetwork with Tiam1 positioned relatively centrally. On the other
hand, among these genes, only Ikzf4 and Il2ra are correlated with
Foxp3 in the Treg data. In particular, Foxp3 and Il2ra are correlated
not only over the entire dataset (PCC: 0.81) but also within the Treg
cell-derived samples only (PCC: 0.49) (Fig. 6D). Thus, the expression
profile of Foxp3 is not similar to that of most of the high-scoring
genes in Fig. 6B. For example, correlation between Foxp3 and
Tiam1 is low within Treg cells (PCC: 0.22) (Fig. 6E).
In relation with the above, although correlation between

Foxp3 and the 248 Treg-specific genes was almost absent within
Treg cell-derived samples, Foxp3 was highly correlated with
these genes over the expression data of all cell types combined
(Fig. 6B, combined data column). This correlation of expression
mainly reflects the similar Treg-specific expression of Foxp3 and
many of the input genes. To clarify the different tendencies of
the top-scoring genes and Foxp3 further, we compared the cor-
relation networks over the entire dataset (combined over all cell

Fig. 5. Lack of correlation of expression between Foxp3 and Foxp3-bound genes in Tregs. For transcription factors Foxp3, Elf1, Ets1, and Foxo1, the cu-
mulative distribution of PCC values in the Treg-derived data are shown for genes bound by each transcription factor (black line) and genes not bound by the
transcription factor (red line). For Elf1, Ets1, and Foxo1 there was a tendency for bound genes to have higher correlation (arrows) with the transcription factor
in question; this tendency was not observed for Foxp3.
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types) (Fig. 6F) and the network over the Treg-derived samples
only (Fig. 6G). Foxp3 is highly correlated with many Treg-specific
genes over the entire dataset (Fig. 6F) but with only one gene in
the Treg-derived data (Fig. 6G). In contrast, five representative
high-scoring genes [Tiam1, guanylate-binding protein 3 (Gbp3),
Nrp1, Ikzf2, and Itgb8] are frequently correlated with the Treg-
specific genes within the Treg-derived data (Fig. 6G).
Taken together, these results suggest that Foxp3 plays a key role

in conducting Treg suppressive functions but that the dynamics in
expression of these signature genes are regulated by an additional
mechanism that is independent of Foxp3 expression. Immuno-
Navigator and its tools can be used to predict candidate regulators
that might be involved in this regulation in a cell type-specific
manner. Many of the top predicted genes are known to play an

important role in Treg cells, but they also include genes for which
no role in Treg cells is known at present. Such genes represent
interesting candidate regulators for future investigations.

The CNS2 Region Is Demethylated in Foxp3+ Itgb8+ Human T Cells.
Previous studies have shown that functionally stable Treg cells
possess a number of characteristic epigenetic features (23, 32).
One is the Treg-specific DNA demethylation of the CNS2 within
the first intron of the Foxp3 gene (Fig. 7A) (40). Here, for one
of the top-scoring genes, Itgb8 (ranked 13th) (Fig. 7), we ana-
lyzed the DNA methylation status of CNS2 in CD45RA− Foxp3+

T cells as a function of their Itgb8 levels. Cells were sorted into
two fractions, Foxp3+Itgb8− and Foxp3+Itgb8+ (Fig. 7B), and
DNA methylation was evaluated using bisulfite sequencing.
Although Foxp3+Itgb8− cells had mostly methylated CpG

Fig. 6. Application of CNHP on Treg-specific genes. (A) Plot showing the correlation score in Treg-derived expression data (−log10 of P values; y axis) of all
genes vs. their relative expression in Tregs vs. CD4 T cells (x axis). Genes with high correlation and/or Treg-specific expression are indicated. Foxp3 is indicated
by a red arrow. (B) Table showing the top five genes with the highest enrichment score (ranked 1–5) and several genes of importance in Tregs and Treg-
marker genes. Enrichment scores are shown in 23 cell types and in the combined dataset. At the right, the relative fold-increase in mean expression between
Tregs and CD4+ T cells is shown (also see the x axis in A). Genes are sorted by their enrichment score in Treg-derived data (also see the y axis in A). A color code
represents the score (−log10 P value): blue indicates no enrichment; red indicates high enrichment. Cell-type abbreviations are as in SI Appendix, Table S1.
(C) Correlation network of the genes shown in B within Treg-derived samples. Nodes represent genes, and significantly correlated genes are connected with
an edge. The size of nodes reflects their correlation score as shown in A, and their color reflects their relative mean expression in Tregs vs. CD4 T cells as in
B. Foxp3 is indicated by a red arrow. (D) Scatter plot for probes representing Foxp3 and Il2ra (Cd25) over all 3,434 samples in our database. Treg-derived
samples are indicated. Both genes have high expression in Treg-derived samples, resulting in high correlation (PCC: 0.81). Correlation is high within the Treg-
derived samples, also (PCC: 0.49). (E) Scatter plot for probes representing Foxp3 and Tiam1 for Treg-derived samples. No significant correlation is observed
(PCC: 0.22). (F) Correlation network of the Treg-signature genes, Foxp3, and five representative genes with high enrichment scores (Tiam1, Nrp1, Ikzf2, Itgb8,
and Gbp3). Nodes represent genes, and edges represent significantly high correlation of expression in the combined gene expression data of all cell types.
(G) The same network for the same genes as in F, with edges representing significant correlation of expression in the Treg-derived expression data.
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dinucleotides in CNS2, we observed that this region was demeth-
ylated in Foxp3+Itgb8+ cells (Fig. 7C). Recent studies showed that
Itgb8 expression by Treg cells plays a role in controlling the release
of active TGB-β1 and in suppressing inflammation (36, 37). Al-
though the underlying molecular mechanism remains unclear, our
result suggests that Itgb8-expressing Treg cells might represent
functionally stable Treg cells.

Discussion
In this study, we present Immuno-Navigator, a batch-corrected
gene expression and coexpression database for cells of the immune
system, its underlying gene expression data and analysis tools,
and several examples of applications. An important advantage of
Immuno-Navigator is that our database allows us to distinguish
between different modes of expression correlation easily (Fig. 3).
Users can look up correlated genes and additional supporting
information for a gene of interest in a cell type-specific manner.
For any query gene, enrichment of regulatory motifs or functional
annotation of its top correlated genes can be accessed easily in a
cell type-specific manner. Correlation between regulators and
sets of genes (e.g., candidate target genes) can be inspected, thus
assisting the interpretation of ChIP-seq (or similar) data. Genes
or regulators that have highly correlated expression with a set of
input genes can be predicted, thus creating hypotheses for further
experimental validation. All the expression and correlation data
used in this study are available for download at sysimm.ifrec.
osaka-u.ac.jp/immuno-navigator/.
In one application, we show how our data can be used to find

genes that have highly correlated expression with a set of Treg-
specific genes. Top-scoring genes contained not only many known
regulators of importance but also several genes that thus far have
not been reported to play a role in defining Tregs. An important
point is that for many of the top-scoring genes, correlation of
expression with the input genes was observed predominantly in
Treg-derived samples only and not in other cell types. Indeed, the
combination of cell type-specific data and our analysis tools allows
users to distinguish easily between highly cell type-restricted
correlation (such as Treg-restricted correlation) and more
widespread correlation of expression. Genes that show high corre-
lation of expression with Treg-specific genes only in Treg-derived
samples may present attractive candidates for identifying key regu-
lators of Treg development. An additional important point is the
Foxp3-independence of the Treg-associated genes. In our analysis
we found a surprising lack of correlation of expression between
Foxp3 and Foxp3-bound genes in Treg-derived data. This finding
was supported by similar observations for a number of other regu-
lators. Although Foxp3 has been reported to be a key regulator for
Treg development, it also has been shown that Foxp3 overexpression
in conventional T cells could not recapitulate the whole gene
expression profiles of Tregs (22) and that Foxp3-null Tregs
obtained from Foxp3gfpko mice express Treg signature genes (21).
In addition, we previously demonstrated that Foxp3-binding genes
are correlated with the repressed genes after TCR stimulation in
Tregs but not with the Treg signature genes (23). These observa-
tions are consistent with our findings and suggest that Foxp3 does
not function as an initiator for Treg development itself. We hope
that Immuno-Navigator provides genuine candidates for inducing
Treg signature gene expression and thus initiating Treg develop-
ment. As one example, we found that the expression of one of the
top-scoring genes in Foxp3+ T cells, Itgb8, was associated with
Treg-specific DNA demethylation in the CNS2 region. Although
the molecular mechanisms remain unclear, our findings might
indicate that Itgb8-dependent signaling plays a role in the establish-
ment of Treg-specific epigenetic modifications during Treg devel-
opment, before the induction of Foxp3 expression.
The analysis of large-scale biological data can be severely ham-

pered by insufficient consideration of the underlying biological (cell
types, stimuli, and other) and experimental (batches, platforms,

and other) variables. Batch effects have been reported to be
widespread in biological data (15), but such effects are often
ignored. The biases caused by batch effects in gene coexpression
data have not been studied thoroughly, and thus far, existing
gene coexpression databases have paid no attention to them.
This lack of attention to batch effects is particularly dangerous,
because our results show that batch effects tend to increase the
overall correlation observed in a dataset and, naturally, have a
large impact on the resulting inferred coexpression networks. On
the level of pairs of genes, batch effects can strongly affect cor-
relations. As shown in this study, in extreme cases, negatively
correlated genes can become significantly positively correlated
after batch-effect treatment, and vice versa. Discrepancies that
have been observed among existing databases of coexpression (9)
might be explained, at least in part, by such batch effects.
Although the present study focuses on gene expression data

originating from cells of the immune system, our approach (SI
Appendix, SI Results, General Data Analysis Approach and Fig. S22)
is generally applicable, regardless of species or biological system.
Cell type-specific regulatory interactions are of key importance
in immunology. We therefore explicitly treated data in a cell type-
specific manner, used this prior knowledge to guide batch-effect
reduction, and implemented analysis and visualization tools
allowing easy comparison between cell types. Only this approach
allowed us to predict Treg-specific candidate regulators. Never-
theless, this approach could easily be applied to other biological
variables, e.g., types of tumor cells. Regarding experimental
variables, we presented several genome-wide analyses indicating
that batch treatment improves the quality of inferred PCC values.

Fig. 7. Itgb8 and DNA methylation of CNS2. (A) A schematic summary of
the human Foxp3 locus, with the CNS2 element indicated in red. (B) Cell
sorting of CD45RA− Foxp3+ T cells according to Itgb8 levels. DNA was sub-
sequently extracted from the Itgb8− and Itgb8+ fraction and subjected to
bisulfite sequencing. (C) DNA methylation of the CNS2 region by bisulfite
sequencing in Foxp3+ Itgb8− (Left) and Foxp3+ Itgb8+ (Right) T cells. Black
and white circles indicate methylated and unmethylated CpG residues, re-
spectively. Each column represents one CpG dinucleotide in the CNS2 region.
These results are representative of two replicates.
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Among these quality indicators, only the consistency with the he-
matopoietic lineage tree is immune-specific. In applications on other
systems, alternative indicators can be used that reflect generally
accepted prior knowledge of the system of interest. Furthermore,
recent advances in batch-effect treatment methodology are expected
to make this general approach more widely applicable, including
application on other omics data (16, 41).
Finally, it is widely known that correlation alone does not

imply a causal relationship. In addition, coexpression should not
be confused with coregulation, and it should be kept in mind that
our reported correlations reflect dynamics only on the mRNA
level. Gene activity is widely accepted to be regulated at many
other levels, including posttranslational modifications, which are
independent of mRNA concentration. Conversely, a lack of corre-
lation does not necessarily imply independence. Even small changes
in mRNA can be functionally relevant, and unknown biases in the
incorporated gene expression data might obscure existing inter-
actions. Nevertheless, when supported by additional analyses and
careful interpretation, we believe that our database can help
both computational and experimental studies of gene regulation
and signaling pathways in the immune system. Furthermore, in
the case of Immuno-Navigator, matching the results with the known
hematopoietic lineage tree can provide further insights.

Materials and Methods
A complete discussion of all methods, including correlation GSEA, RNA-seq,
ChIP-seq, DNAmethylation analysis, and supporting computational analysis is
included in SI Appendix, SI Materials and Methods. Additional information in
Immuno-Navigator includes predicted TFBSs and GO annotation terms for
each gene. In addition, for each gene, enriched TFBSs and GO terms for the
top 100 most highly correlated genes in each cell type have been precalcu-
lated and are available in the database. Please refer to SI Appendix,
SI Materials and Methods for a more detailed description of these features.

Microarray Data Collection. Microarray datasets were downloaded from
ArrayExpress (1). The database was searched for samples obtained from several
cell types of the hematopoietic lineage. To facilitate downstream analyses, we
focused on samples processed by the Affymetrix GeneChip Mouse Genome
430 2.0 platform, the most frequently used platform for mouse samples in
ArrayExpress. We manually assigned a cell type to each sample using the
annotation data provided in the Sample and Data Relationship Format
(SDRF) files in ArrayExpress. The 3,881 samples (for 38 different cell types)
obtained by this method were normalized together using the Robust Multi-
array Average (RMA) method (42) using the “affy” package in R (43).

Treatment of Batch Effects. We used the ComBat method in the R package
“sva” to reduce batch effects (24, 44). ComBat adjusts for batch effects using
parametric and nonparametric empirical Bayes frameworks in datasets in
which batch covariates are known. Here, by default, we treated studies and
publications as proxies for batches. In practice, we used ArrayExpress accession
numbers to designate each study or paper. Six studies contained more than 50
samples; one (ArrayExpress accession number E-TABM-310) contained 216 sam-
ples. Annotation data indicated that the samples of the E-TABM-310 study were
taken over several years. Therefore we used the dates in the annotation data to
subdivide this dataset further into 26 subbatches, 15 of which contained at least
five samples. However, to the best of our knowledge, no clear date information
was present for other large studies, and therefore each was treated as a single
batch. We excluded studies (batches) with fewer than five samples and samples
for cell types with fewer than 20 samples. Using the cell-type annotation and
batch information of all samples as input for ComBat, we obtained batch-
corrected expression data. The final data contained 3,434 samples from 261
studies covering 24 cell types (SI Appendix, Table S1).

Correlation of Gene Expression. The PCC was used as measure for similarity of
expression. For all probe pairs the PCC was calculated over the data obtained
for each of the 24 cell types separately and over all combined data. All PCC
values (roughly 2.5 × 1010 values for all probe pairs, over 24 cell types and the
combined dataset) and associated scatter plots are available in our database.
All PCC values are available for download from Immuno-Navigator.

Definition of Significantly Correlated Probe Pairs and Gene Pairs. Probe pairs
with an absolute PCC value exceeding a PCC threshold were defined as being

significantly correlated. In the batch-treated gene expression data, the PCC
thresholds were decided as follows: all expression data were shuffled, and
PCCs for all probe pairs over the shuffled data were calculated for each cell
type separately and for all of the combined data. To limit the influence of
remaining batch effects, the shuffling was done in a way that would preserve
remaining batch effects even in the shuffled data (SI Appendix, SI Materials and
Methods, Construction of Shuffled Data and Fig. S18). Next, the distributions of
PCC values in the true and shuffled batch-treated data were compared, and
false-discovery rates (FDRs) were calculated for each absolute PCC value between
0 and 1 in steps of 1e-6. A PCC threshold then was decided for each cell type and
for all combined data, based on the following conditions: (i) the PCC threshold
should be at least 0.4; (ii) the corresponding FDR should be at most 0.01;
(iii) at least 1 million probe pairs should exceed the PCC threshold in the true
data; and (iv) at most 6 million probe pairs should exceed the PCC threshold in
the true data. The purpose of these conditions is to set a threshold for each cell
type that meets at least a certain level of relevance (in terms of absolute PCC
values) and reliability (in terms of FDR) and simultaneously to attempt to obtain
similar amounts of significantly correlated probe pairs in each dataset (condi-
tions iii and iv). Using the above conditions, a PCC threshold could be defined for
23 of 24 of the cell types (SI Appendix, Table S6). The one cell type for which no
threshold could be set was the dataset for multipotent progenitor cells, which
was the smallest dataset in our data (20 samples). In general, the PCC threshold
increases with decreasing sample counts.

For each cell type, and for the combined data, we thus obtained a set of
significantly correlated probe pairs. Finally, using the gene-to-probe annotation of
themicroarray platform,we converted these probepairs to significantly correlated
gene pairs. Two genes, A and B, are defined as significantly correlated if at least
one probe of gene A is significantly correlated with at least one probe of gene B.

Evaluation of the Influence of Batch-Effect Reduction on Gene Correlation. To
facilitate the comparison of overlap in significantly correlated gene pairs
between cell types and between untreated and batch-treated data, we focused
only on significantly positively correlated gene pairs. Significantly correlated
gene pairs in the batch-treated data were defined using the PCC thresholds
described above. For the untreated data, to avoid biases in the comparison with
the treated data, the same number of gene pairs with the highest correlation
was regarded as significantly correlated for each cell type.

For hierarchical clustering of cell types by similarity in PCC values, we
randomly selected 1 million microarray probe pairs and for each cell type
collected the corresponding PCC values. These PCC values were used to cluster
cell types using hierarchical clustering, using as distance function 1 minus the
correlation in PCC values. We performed hierarchical clustering for both for
the untreated and the batch-treated data.

For comparison of PCC values among genes with shared functional annota-
tions, GO basic and GO slim (release date January 11, 2015) and mouse an-
notations (GO Consortium validation January 9, 2015) were downloaded
from the Gene Ontology Consortium website (45). More details of the
analysis are given in SI Appendix, SI Results, Evaluation of Batch
Effect Reduction.

For the comparison between probe sets mapped to the same gene (same-
gene probes) and probe setsmapped to different genes (different-gene probes),
the PCC was calculated between all pairs of probes representing the same gene
(35,164 probe pairs representing 10,556 genes with multiple probes) and
between the same number of probe pairs representing randomly selected
different genes. Differences in the distribution of PCC values between the
same-gene probes and the different-gene probes were measured using the
area under the curve of receiver operating characteristic curves.

Prediction of Genes with Frequent High Correlation to an Input Set of Genes.
Given a set S of input genes, we obtain genes that are frequently correlated
specifically with the genes in set S as follows. For each gene g, let CS,g be the
count of significantly correlated genes in set S and let CG,g be the count of
significantly correlated genes in the genome-wide set of genes. The prob-
ability p of observing CS,g or a higher number of significant correlations
between g and the jSj genes in set S given CG,g can be calculated using the
binomial distribution. In case g is also an element of S, we use jSj − 1 to reflect
the fact that correlation of g with itself is not considered. Immuno-Navigator
allows CNHP on a set of genes of interest over all cell types and the combined
data, simultaneously. Typical run times are less than 1 min for all analyses. We
describe the application of this analysis on randomly selected sets of genes in SI
Appendix, SI Materials and Methods, Application of Correlation Network Hub
Prediction on Random Sets of Genes and Fig. S19, and the analysis of its ro-
bustness to noise in SI Appendix, SI Materials and Methods, Robustness of Re-
sults of Correlation Network Hub Prediction and Figs. S20 and S21.
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