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Abstract

The detection of somatic mutations from cancer genome sequences is key to understanding the 

genetic basis of disease progression, patient survival and response to therapy. Benchmarking is 

needed for tool assessment and improvement but is complicated by a lack of gold standards, by 

extensive resource requirements and by difficulties in sharing personal genomic information. To 

resolve these issues, we launched the ICGC-TCGA DREAM Somatic Mutation Calling Challenge, 

a crowdsourced benchmark of somatic mutation detection algorithms. Here we report the 

BAMSurgeon tool for simulating cancer genomes and the results of 248 analyses of three in silico 
tumors created with it. Different algorithms exhibit characteristic error profiles, and, intriguingly, 

false positives show a trinucleotide profile very similar to one found in human tumors. Although 

the three simulated tumors differ in sequence contamination (deviation from normal cell sequence) 

and in subclonality, an ensemble of pipelines outperforms the best individual pipeline in all cases. 

BAMSurgeon is available at https://github.com/adamewing/bamsurgeon/.

Declining costs of high-throughput sequencing are transforming our understanding of 

cancer1–3 and facilitating delivery of targeted treatment regimens4–6. Although new methods 

for detecting cancer variants are rapidly emerging, their outputs are highly divergent. For 

example, four major genome centers predicted single-nucleotide variants (SNVs) for The 

Cancer Genome Atlas (TCGA) lung cancer samples, but only 31.0% (1,667/5,380) of SNVs 

were identified by all four7. Calling somatic variants is a harder problem than calling 

germline variants8 because of variability in the number of somatic mutations, extent of 

tumor subclonality and effects of copy-number aberrations.

Benchmarking somatic variant detection algorithms has been challenging for several 

reasons. First, benchmarking is resource intensive; it can take weeks to install and hundreds 

of CPU-hours to execute an algorithm. Second, evolving technologies and software make it 

difficult to keep a benchmark up to date. For example, the widely used Genome Analysis 

Toolkit was updated five times in 2013. Third, establishing gold standards is challenging. 

Validation data may be obtained on independent technology or from higher-depth 

sequencing, but routines used to estimate ‘ground truth’ may exhibit sources of error similar 
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to those of the algorithms being assessed (for example, alignment artifacts). Privacy controls 

associated with personal health information hinder data sharing. Further, most research has 

focused on coding aberrations, restricting validation to <2% of the genome. Fourth, 

sequencing error profiles can vary between and within sequencing centers9. Finally, most 

variant-calling algorithms are highly parameterized. Benchmarkers may not have equal and 

high proficiency in optimizing each tool.

To identify the most accurate methods for calling somatic mutations in cancer genomes, we 

launched the International Cancer Genome Consortium (ICGC)-TCGA Dialogue for 

Reverse Engineering Assessments and Methods (DREAM) Somatic Mutation Calling 

Challenge (“the SMC-DNA Challenge”)10. The challenge structure allowed us to perform an 

unbiased evaluation of different approaches and distribute the process of running and tuning 

algorithms by crowdsourcing. To create tight feedback loops between prediction and 

evaluation, we generated three subchallenges, each based on a different simulated tumor-

normal pair with a completely known mutation profile and termed IS1, IS2 and IS3 

(Supplementary Note 1 and Supplementary Fig. 1). To produce these large-scale 

benchmarks, we first developed BAMSurgeon, a tool for accurate tumor genome 

simulation11–14.

Our analyses of error profiles revealed characteristics associated with accuracy that could be 

exploited in algorithm development. Strikingly, many algorithms, including top performers, 

exhibit a characteristic false positive pattern, possibly owing to introduction of deamination 

artifacts during library preparation. We also found that an ensemble of several methods 

outperforms any single tool, suggesting a strategy for future method development.

RESULTS

Generating synthetic tumors with BAMSurgeon

Defining a gold standard for somatic mutation detection is fraught with challenges: no tumor 

genome has been completely characterized (i.e., with all real somatic mutations known); 

thus, estimates of precision and recall are subject to the biases of site-by-site validation. 

False negatives are particularly difficult to study without a ground truth of known mutations. 

Typically, validation involves targeted capture followed by sequencing, sometimes on the 

same platform. To address the lack of fully characterized tumor genomes, simulation 

approaches are often used. Existing approaches to create synthetically mutated genomes 

simulate reads and their error profiles either de novo on the basis of a reference genome15 

(https://github.com/lh3/wgsim/) or through admixture of polymorphic (for example, dbSNP) 

sites between existing BAM sequence alignment files16. In the first approach, simulated 

reads can only approximate sequencing error profiles, which vary between and within 

sequencing centers, and it is challenging to add mutations at multiple user-specified variant 

allele frequencies (VAFs) to simulate subclones. In the second, platform-specific error 

profiles are accurate, but the repertoire of spiked-in mutations is limited to examples 

detected previously, and thus already known to be discoverable. An overview of these 

approaches is in Supplementary Note 2.
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BAMSurgeon represents a third approach: directly adding synthetic mutations to existing 

reads (Fig. 1a). BAMSurgeon can add mutations to any alignment stored in BAM format, 

including RNA-seq and exome data. It can generate mutations at any allelic fraction, 

allowing simulation of multiple subclones or sample contamination; can avoid making 

mutations incongruent with existing haplotypes; and supports copy-number variation–aware 

addition of mutations if copy-number information is available. In addition, BAMSurgeon 

supports an increasing number of alignment methods, allowing testing of aligner-caller 

combinations on the same mutations.

Briefly, the software works by selecting sites using coverage information from the target 

BAM file. Mutations are spiked in by modifying reads covering the selected sites, realigning 

a requisite number to achieve the desired alternate allele fraction, and merging the reads 

back into the original BAM by replacement. Realistic tumors are created (Fig. 1b) by 

partitioning a high-depth BAM, optionally with ‘burn-in’ mutations to differentiate it from 

the original BAM, into two disjoint subset BAMs. One receives the spike-in mutations to 

become the simulated tumor; the other is left intact and is the matched normal. The result is 

a synthetic tumor-normal pair and a VCF file of true positives (TPs). BAMSurgeon is open 

source and highly parameterized, thereby allowing fine-tuning of characteristics such as 

tumor purity, subclone number and coverage thresholds.

To demonstrate BAMSurgeon’s utility, we performed a series of quality-control studies. 

First, we took the sequence of the HCC1143 BL cell line and created two separate synthetic 

tumor-normal pairs, each using the same set of spiked-in mutations but with different 

random read splitting. We executed four widely used, publicly available mutation callers on 

each pair: MuTect16, RADIA (RNA and DNA integrated analysis)17, Strelka18 and 

SomaticSniper19. We assessed performance on the basis of recall (fraction of spiked-in 

mutations detected), precision (fraction of predicted SNVs that are true) and F-score 

(harmonic mean of precision and recall). Ordering and error profiles were largely 

independent of read splits: RADIA and SomaticSniper retained first and second place, 

whereas MuTect and Strelka were third and fourth (Supplementary Fig. 2). Second, we 

generated alignments of HCC1143 using the Burrows-Wheeler Aligner (BWA) and 

NovoAlign with and without insertion or deletion (indel) realignment. Caller ordering was 

largely independent of aligner used (Fig. 1c). Finally, we tested whether BAMSurgeon 

results are influenced by genomic background by taking the same set of mutations and 

spiking them into both HCC1143 and HCC1954 BWA-aligned BAMs. Caller ordering was 

largely independent of cell line (Fig. 1d).

The ICGC-TCGA DREAM Somatic Mutation Calling Challenge

To maximize participation, we began with three synthetic genomes each generated by 

applying BAMSurgeon to an already-sequenced tumor cell line, thereby avoiding data 

access issues associated with patient-derived genomes. The tumors varied in complexity, 

with IS1 being the simplest and IS3 being the most complex. IS1 had a moderate mutation 

rate (3,537 somatic SNVs), 100% tumor cellularity and no subclonality. In contrast, IS3 had 

a higher mutation rate (7,903 somatic SNVs) and three subpopulations present at different 

VAFs. Tumor and normal samples had ~450 million 2-by-101-bp paired-end reads produced 
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by an Illumina HiSeq 2000 sequencer, resulting in ~30× average coverage (Fig. 1e and 

Supplementary Table 1). Sequences were distributed via the GeneTorrent client from Annai 

Systems. As a supplement to local computing resources, participants were provided cost-free 

access to the Google Cloud Platform, where Google Cloud Storage hosted the data and the 

Google Compute Engine enabled scalable computing. Contestants registered for the SMC-

DNA Challenge and submitted predicted mutations in VCF format through the Synapse 

platform20 (https://www.synapse.org/#!Synapse:syn312572/). Multiple entries were allowed 

per team, and all scores were displayed on public, real-time leaderboards (Supplementary 

Table 1). To assess overfitting, we excluded a fraction of each genome from leaderboard 

scores during the challenge.

Over 157 d, we received 248 submissions from 21 teams, as well as 21 submissions by the 

SMC-DNA Challenge administration team to prepopulate leaderboards. A list of all 

submissions, along with a description of the pipeline used in each, is in Supplementary Table 

2 and the Supplementary Data 1. The set of all submissions shows clear precision-recall 

trade-offs (Fig. 2a and Supplementary Fig. 3) and distinctions amongst top-performing 

teams. Performance metrics varied substantially across submissions: for the simplest tumor, 

IS1, recall ranged from 0.559 to 0.994, precision from 0.101 to 0.997 and F-score from 

0.046 to 0.975.

We then used the “wisdom of the crowds”12,13 by aggregating predictions into an ensemble 

classifier. We calculated consensus SNV predictions by majority vote (TP or false positive, 

FP) at each position across the top k submissions. For IS1, consensus predictions were 

comparable to those of the best-performing teams (F-score = 0.955–0.984; Fig. 2b). The 

consensus achieved high precision (range: 0.968–0.999; Supplementary Fig. 4a) while 

maintaining recall (range: 0.939–0.971; Supplementary Fig. 4b). To assess robustness we 

evaluated the majority vote predictions of randomly selected sets of submissions. The 

consensus classifier improved and stabilized as submissions were added (Supplementary 

Fig. 5). Consensus classifiers for IS2 and IS3 outperformed the best method and showed 

stable performance (Supplementary Figs. 3 and 4).

Effects of parameterization

The within-team variability caused by version and parameter changes was often comparable 

to that across different teams: 25.6% of variance in IS1 occurred within teams. Critically, 

this does not reflect overfitting: a team’s best submission yielded nearly identical 

performance on the leaderboard and held-out data (for IS1 the median difference was −1.87 

× 10−3, ranging from −0.091 to 0.032; Supplementary Fig. 6). F-scores were tightly 

correlated between training and testing data sets (Spearman’s rank correlation coefficient (ρ) 

= 0.98 for all three tumors; Fig. 3a), as were precision and recall (Supplementary Fig. 7). 

The large variability in accuracy of submissions within a single team highlights the very 

strong impact of tuning parameters during the challenge. Initial submissions by a team (Fig. 

3b) tended to achieve a favorable recall with an unsatisfactory precision. The median team 

improved its F-score from 0.64 to 0.91 (range of improvement: 0.18–0.98) by exploiting 

leader-board feedback. Similar results were observed for IS2 and IS3 (Supplementary Figs. 

6 and 7).
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We considered the ranking of each team within each tumor based on initial (“naive”) and 

best (“optimized”) submissions. In general, rankings were moderately changed by 

parameterization: when a team’s naive submission ranked in the top 3, its optimized 

submission remained among the top 3 66% of the time (Fig. 3c). Nevertheless, teams 

routinely improved their overall performance, with 39% able to improve their F-score by at 

least 0.05 through parameter tuning and 25% improving it by more than 0.20 (Fig. 3d). 

These improvements did not lead to overfitting (Fig. 3a,b), a result emphasizing the 

importance of verification data for algorithm tuning.

Effects of genomic localization

In subsequent analyses, we focused on the single highest F-score submission from each 

team, supplemented by submissions generated by executing widely used algorithms with 

default parameters (for example, MuTect, Strelka, SomaticSniper and VarScan). We first 

examined the effect of genomic location on prediction accuracy. For IS1, F-scores differed 

significantly between intergenic, intronic, untranslated and coding regions (P = 6.61 × 10−7; 

Friedman rank-sum test; Fig. 4a). Predictions were more accurate for coding SNVs (median 

F-score = 0.95 ± 0.13; ±s.d. unless otherwise noted) than for those in UTRs (median = 0.93 

± 0.14; P = 3.3 × 10−3; paired Wilcoxon rank-sum test), introns (median = 0.91 ± 0.17; P = 

2.3 × 10−5) or intergenic regions (median = 0.90 ± 0.19; P = 7.6 × 10−6). This may reflect 

algorithm tuning on exome sequences or differences in either sequence characteristics or 

completeness of databases used for germline filtering across these different genomic regions. 

These trends were replicated in IS2 and IS3 (Supplementary Fig. 8a,b).

Next, we evaluated error rates on nonsynonymous mutations, which are the most likely to be 

functionally relevant (Fig. 4b and Supplementary Fig. 8c,d). Teamwise ranks were generally 

preserved across different genomic regions (Supplementary Fig. 9), and performance metrics 

were well correlated (Supplementary Fig. 10) across genomic regions. Nevertheless, few 

teams achieved 100% accuracy on nonsynonymous mutations. On IS1, 4/18 teams (ranked 

1st, 2nd, 5th and 15th on the entire genome) achieved 100% accuracy on nonsynonymous 

mutations. The remaining submissions contained false negatives (FNs; 3/13), FPs (4/13) or 

both (6/13). Most nonsynonymous SNVs in IS1 were correctly detected by all submissions 

(22/39), but 7/39 were missed (i.e., FNs) by at least two teams. These results hold when all 

individual submissions were considered (Supplementary Fig. 11). In more complex tumors, 

more errors were seen. No team achieved 100% accuracy on nonsynonymous mutations in 

IS2: the top two teams made one and four errors, respectively. For IS3, two teams (ranked 

second and third overall) had 100% SNV accuracy, and error profiles differed notably 

between subclonal populations (Supplementary Fig. 12). Thus, even in the most accurately 

analyzed regions of the genome, there are significant inter-algorithm differences in 

prediction accuracy.

Next we asked whether error rates differed across chromosomes as well as between 

functional regions. For IS1, we observed a surprisingly large F-score range across 

chromosomes from 0.76 (chromosome 21, chr21) to 0.93 (chr11) compared to with 

resampled null chromosomes of equal size (chr21, 0.90 ± 0.074; chr11, 0.90 ± 0.076). The 

poor prediction accuracy for chr21 was an outlier: the next worst-performing chromosome 

Ewing et al. Page 6

Nat Methods. Author manuscript; available in PMC 2016 May 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



was chr1 (F-score = 0.87). Chr21 showed lower F-scores than that expected by chance (false 

discovery rate (FDR) = 3.6 × 10−25; two-way ANOVA), whereas chr11 showed higher F-
scores (FDR = 2.8 × 10−3, two-way ANOVA; Supplementary Table 3). The reduced 

prediction accuracy on chr21 was observed in both FPs (Supplementary Fig. 13a) and FNs 

(Supplementary Fig. 13b). We compared a series of 12 variables thought to influence 

prediction accuracy (Supplementary Table 4). FPs on chr21 showed higher reference-allele 

counts (mean of 33 versus 23 for the rest of the genome; P < 0.01, one-way ANOVA) and 

base qualities (sum of 1,268 versus 786; P < 0.01, one-way ANOVA) than FPs on other 

chromosomes (Supplementary Table 5). These chromosome-specific trends influenced all 

algorithms in similar ways: permutation analysis showed no chromosome or submission 

with more variability than that expected by chance (Supplementary Fig. 14a). Interestingly, 

there was no evidence of chromosome-specific error on IS2 and IS3, making its origins and 

generality unclear (Supplementary Figs. 14b,c, 15 and 16). We premasked chromosomes to 

exclude regions containing structural variations, and there was no evidence of kataegis 

(small genomic regions with a localized concentration of mutations) in any tumor21 

(Supplementary Fig. 17). These results highlight the variability of mutational error profiles 

across tumors.

Characteristics of prediction errors

We next exploited the large number of independent analyses to identify characteristics 

associated with FPs and FNs. We selected the best submission from each team and focused 

on 12 variables (Supplementary Table 4). In IS1, 9/12 variables were weakly associated with 

the proportion of submissions that made an error at each position (0 ≤ ρ ≤ 0.1; 

Supplementary Figs. 18–29). To evaluate whether these factors contribute simultaneously to 

somatic SNV prediction error, we created a Random Forest22 for each submission to assess 

variable importance (Supplementary Table 6). Key variables associated with FP rates (Fig. 

5a) included allele counts and base and mapping qualities. Intriguingly, each of these was 

associated with increased error for some algorithms and reduced error for others. Key 

determinants of FN rates included mapping quality and normal coverage (Fig. 5b). The 

characteristics of FNs and FPs differed for most algorithms for IS1 (median ρ = 0.40; range: 

−0.19 to 0.71; Supplementary Fig. 30), IS2 (Fig. 5c,d) and IS3 (data not shown).

To further compare error profiles across tumors, we executed three widely used somatic 

SNV prediction algorithms with default settings: MuTect (Fig. 5e,f), SomaticSniper (Fig. 

5g,h) and Strelka (Fig. 5i,j). Error profiles showed universal, algorithm-specific and tumor-

specific components. For example, elevated nonreference allele counts were associated with 

FPs in all tumors for all three methods. FNs were much more sensitive to coverage in the 

normal sample for Strelka than for other algorithms (Fig. 5j). The largest notable tumor-

specific difference was strong association of normal sample coverage with FPs in IS1 and 

IS2, but not IS3, for all algorithms (Fig. 5e,g,i).

Given the importance of context-specific errors in sequencing23–25, we evaluated 

trinucleotide bias. BAMSurgeon spike-ins (TPs) had no trinucleotide bias relative to the 

genome (Supplementary Fig. 31), but FPs showed two significant biases in all three tumors 

(P < 2.2 × 10−16, χ2 test; Fig. 6). First, NCG-to-NTG errors accounted for the four most 
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enriched trinucleotides. This profile, along with elevated NCN-to-NAN and NTN-to-NCN 

mutations, closely matches the age signature (Signature 1A) detected in human cancers26. 

Second, mutations of a C to create a homopolymeric trinucleotide (i.e., ACA-to-AAA, 

GCG-to-GGG, TCT-to-TTT) accounted for the 6th–8th most enriched profiles. Because both 

these signatures were detected in positions with no spike-ins, they are entirely artifactual. 

The Signature 1A profile was detected in the FPs of some, but not all, submissions 

(Supplementary Fig. 32) and was not associated with specific sequencing characteristics 

(Supplementary Fig. 33 and Supplementary Table 7).

DISCUSSION

The crowdsourced nature of the SMC-DNA Challenge created a large data set for learning 

general error profiles of somatic mutation detection algorithms and gives specific guidance. 

We see diverse types of bias across the three tumors, along with a trinucleotide profile of 

FPs closely resembling the mutational Signature 1A found in primary tumors, likely 

reflecting spontaneous deamination of 5-methylcytosine at NCG trinucleotides26. 

Algorithms may be detecting low levels present in all cells, artifacts may arise in sequencing 

(for example, library preparation artifacts) or current algorithms may have higher error rates 

at NCG trinucleotides. Rigorous mutation verification appears critical before mutational 

signature generation. As seen with previous challenges12,13, ensembles were comparable to 

the best individual submission, even when including many poorly performing submissions. 

This suggests that mutation calls should be made by aggregating multiple algorithms, 

although this strategy would need tuning to account for its significant computational 

demands.

The real-time leaderboard highlighted the critical role of parameterization: teams were able 

to rapidly improve, particularly in precision, once they had an initial performance estimate. 

Robust ensemble learners may eventually eliminate the problem of parameter optimization, 

but meanwhile, many studies may benefit from a multistep procedure. An initial analysis 

would be followed with a round of experimental validation and then a final parameter 

optimization. The lack of overfitting suggests a modest amount of validation data may 

suffice, although studies on larger numbers of tumors are needed to optimize this strategy. 

Indeed, participants were often able to improve performance over time, which suggests that, 

as with previous crowdsourced challenges, real-time feedback can yield improved methods 

without overfitting12,13.

Perhaps the most notable impact of this Challenge has been the creation of ‘living 

benchmarks’. Since the ground truth was revealed, 204 new submissions have been made by 

22 teams who are using the Challenge data for pipeline evaluation and development. We will 

keep leaderboards open indefinitely to allow rapid comparison of methods, and we hope 

journals will expect benchmarking on these data sets in reports of new somatic SNV 

detection algorithms.

METHODS

Methods and any associated references are available in the online version of the paper.
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ONLINE METHODS

Synthetic tumor generation

An overview of the process for generating synthetic tumor-normal pairs using BAMSurgeon 

is shown in Figure 1. BAMSurgeon supports SNV, Indel and SV spikein, each accomplished 

by a separate script (addsnv.py, addindel.py and addsv.py). As the results presented in this 

paper only cover single-nucleotide mutations, the SNV portion of the software will be 

discussed. Sites for single-nucleotide mutations are represented by a single base in the 

reference genome; three examples are shown in Figure 1a indicated by the blue, orange and 

green arrows; let S be one of these sites. A column of n bases b0…n ∈ {A,T,C,G} from n 
reads is aligned over reference position S. Let the reference base R ∈ {A,T,C,G}. The 

variant allele fraction (VAF) at S refers to the fraction of bases in b at S, where b ≠ R. In 

BAMSurgeon, the VAF is specified for each site independently and implemented so that for 

each site S, n × VAF reads are selected and the bases b in those reads aligned to position S 
are changed to some base m ∈ {A,T,C,G}, where m ≠ b ≠ R (Fig. 1a, step 2). Optionally, a 

minimum alternate allele fraction (let this be a) can be specified such that the specified 

mutation at S will not be made if any other position sharing a read with position S has VAF 

≥ a. For the synthetic tumors analyzed in this paper, this value was set to a = 0.1. This 

effectively prevents mutation spike-in ‘on top’ of existing alternate alleles and avoids 

making mutations that would be inconsistent with existing haplotypes. For each site, 

modified reads are output to a temporary BAM file, and reads are realigned using one of the 

supported methods, which currently includes bwa backtrack27, bwa mem28, Bowtie2 (ref. 

29), GSNAP30 and NovoAlign (http://www.novocraft.com/) (Fig. 1a, step 3). For each site, a 

number of parameters govern whether a mutation will be made successfully. These include 

minimum read depth, i.e., |b|, which defaults to 5; minimum read depth for the mutation, i.e., 

|m|, which defaults to 2; and a minimum differential coverage |bafter|/|bbefore|, which must be 

≥0.9 by default. For these last three parameters, the synthetic tumor analyzed in this paper 

was generated using these default values. If any of these criteria are not met, the mutation at 

the failing site is skipped and will not appear in the ‘truth’ output. All remapped mutations 

are merged together and then merged with the original BAM at the end of the process (Fig. 

1a, step 4). This scheme also allows for parallelization, which is implemented in each of the 

BAMSurgeon tools.

The procedure for generating synthetic tumor-normal pairs using BAMSurgeon is outlined 

in Figure 1b. This process requires a high-coverage BAM file; for IS1, HCC1143 BL was 

used, obtained from https://cghub.ucsc.edu/datasets/benchmark_download.html. To 

differentiate this from the original BAM file (step 1 of Fig. 1b), we selected 10,000 single-

nucleotide sites at random using the script included in etc/randomsites.py in the 

BAMSurgeon distribution, requiring that the selected bases be present in the GRCh37 

reference (i.e., positions not represented by the ‘N’ gap character) and covered by at least ten 

reads in the original high-coverage BAM file. Of these, 9,658 were added to the original 

BAM using addsnv.py (Supplementary Data 2) as well as structural mutations not discussed 

here. This ‘burned-in’ BAM was then sorted by read name using SAMtools sort-n, and the 

read pairs were distributed randomly into two BAMs, with each read pair having 50% 

chance to end up in one or the other of the output BAMs (step 2, Fig. 1b). A script to 
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accomplish this is included in the BAMSurgeon distribution in etc/bamsplit.py. Because the 

original BAM contained 60× genome coverage worth of reads, each of the split BAMs 

contained ~30× worth of reads. One of the two BAMs was arbitrarily designated ‘synthetic 

normal’ and the other ‘pre-tumor’. We again selected 4,000 single-nucleotide sites at random 

and used addsnv.py to add these to the ‘pre-tumor’ BAM (step 3, Fig. 1b). Of these, 3,537 

were added to the BAM file (Supplementary Data 2). The relevant settings for addsnv.py 

were as follows: -s 0.1 -m 0.5 -d 0.9 –mindepth 5 –minmutreads 2. Following addition of 

structural mutations, the resulting ‘synthetic tumor’ was post-processed to ensure adherence 

to the SAM format specification using the script etc/postprocess.py, included in the 

BAMSurgeon distribution. The resulting tumor-normal pair was validated via 

ValidateSamFile. jar (part of the Picard tool set: http://broadinstitute.github.io/picard/) and 

distributed to participants. Given the mutations spiked into the synthetic tumor, a ‘truth’ 

VCF was generated and used as the ground truth against which participant mutation calls 

returned in VCF format were judged using the evaluation script available at https://

github.com/Sage-Bionetworks/ICGC-TCGA-DREAM-Mutation-Calling-challenge-tools.

BAMSurgeon robustness

To test the robustness of BAMSurgeon, we compared the output of four commonly used 

algorithms— MuTect16, RADIA17, SomaticSniper19 and Strelka18—on the original data set 

against the output when an alternate aligner (NovoAlign), cell line (HCC1954) or read split 

was used. The same spike-in set of mutations was used in each control case. The following 

algorithm procedures were used for each control case.

First, MuTect (v.1.14) was run with default parameters and the per-chromosome VCF output 

was concatenated using Picard MergeVcfs (v.1.107). Only calls flagged with “PASS” were 

retained.

Second, RADIA (github-July-11-2014) was run with default parameters, and the output 

VCF files were filtered using the radia filter script with default parameters. After the filtered 

VCF files were indexed using igvtools (v2.3.12)31, the VCFs were merged together using 

VCFtools (v0.1.11)32. Finally, high-confidence somatic SNVs were extracted to generate the 

final VCF file.

Third, somatic SNV candidates were detected using bam-somaticsniper (v.1.0.2) with the 

default parameters except-q option (mapping quality threshold). The -q was set to 1 instead 

of 0 as recommended by the developer. To filter the candidate SNVs, we generated a pileup 

indel file for both normal BAM and tumor BAM files using SAMtools (v0.1.6). The 

SomaticSniper package provides a series of Perl scripts to filter out possible FPs (http://

gmt.genome.wustl.edu/packages/somatic-sniper/documentation.html). First, standard and 

LOH filtering were performed using the pileup indel files, and then the bam-readcount filter 

(bam-readcount downloaded on 10 January 2014) was applied with a mapping quality filter -

q 1 (otherwise default settings). In addition, we ran the FP filter. Finally, the high-confidence 

filter was used with the default parameters. The final VCF file that contains high-confidence 

somatic SNVs was used.
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Last, the configuration script was used to set up the Strelka (v1.0.7) analysis pipeline. The 

default configuration file for BWA was used with the default parameters with the exception 

of SkipDepthFilters - depth filter was turned off. Following the configuration step, somatic 

SNVs were called using eight cores. This step automatically generates a VCF file containing 

confident somatic SNVs, and the VCF file was used.

The resulting predictions were compared using recall (equation (1)), precision (equation (2)) 

and F-score (equation (3)).

(1)

(2)

(3)

Univariate analysis

A subset of all submissions was used for downstream analysis; this subset consisted of the 

best submission from each team along with four default submissions submitted by SMC-

DNA Challenge admins: MuTect, SomaticSniper, Strelka and VarScan33 using default 

parameters. A list of all positions called by at least one of these submissions was generated 

(including all true SNV positions). For each of these positions, 12 genomic factors were 

calculated: depth of coverage in tumor and normal data set, median mapping quality, read 

position, number of reference alleles, number of nonreference alleles, sum of base qualities, 

homopolymer rate, G+C content, region type, distance to nearest germline single-nucleotide 

polymorphism (SNP) and trinucleotide sequence spanning position. Coverage was 

calculated using BEDTools34 coverage (v2.18.2), which calculated the number of reads at 

each position in both the tumor and normal BAM files. Mapping quality was extracted from 

the tumor BAM file by converting the BAM file to a BED file using BEDTools bamtobed 

(v2.18.2) and calculating the median quality score at each position using BEDTools groupby 

(v2.18.2). The median read position of each genomic position was extracted using Bio-

SamTools Pileup (v1.39). Number of reference alleles, number of alternate alleles and sum 

of base qualities were determined using SAMtools35 mpileup (v0.1.18). Both homopolymer 

rate and G+C content were measured over a 201-bp window (±100 bp from position) 

determined using BEDTools getfasta (v2.18.2). Homopolymer rate was measured using the 

following equation, where n represents the number of bases in each homopolymer and N 
represents the number of homopolymers:

(4)

G+C content was measured using the equation

(5)
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Annovar region-based annotation (v.2012-10-23) was used to annotate the genomic elements 

at each position—classifying as intergenic, intronic, untranslated and exonic. SNPs were 

called using the Genome Analysis ToolKit (GATK)36 UnifiedGenotyper, VariantRecalibrator 

and ApplyRecalibration (v2.4.9). The distance to the closest SNP was calculated using 

BEDTools closest (v2.18.2).

Finally, a recent study showed that cancer types show unique somatic SNV signatures 

defined by the SNV base change and the trinucleotide context surrounding the variation26. 

To explore the effect of both on SNV prediction, we added base changes (as defined by 

submitted VCF files) and trinucleotide context (extracted using BEDTools getfasta) to our 

model.

To determine the relationship between each variable and prediction success, we plotted each 

genomic variable against the proportion of submissions that made an error at each position. 

The Spearman correlation coefficient and corresponding P value were calculated for 

continuous variables, and a one-way ANOVA was run on categorical variables (base change, 

trinucleotide context and coding region).

Multivariate analysis

A Random Forest was used to model the effect of all 12 genomic variables on SNV 

prediction. Prior to modeling, the correlation between variables was tested. Variables were 

loosely correlated, with the exception of tumor and normal coverage and reference and 

alternate allele counts. Because of this correlation, the cforest implementation of Random 

Forest from the R package Party (v1.0-13) was used to reduce correlation bias22,37–39. 

Average decrease in accuracy, as output by the function varimp from the same package, was 

used to quantify the importance of each variable: the larger the decrease in accuracy, the 

more important the variable in explaining prediction accuracy. Each tree predicts whether a 

submission called an SNV at that position. Ten thousand trees were created, and at each 

branch three variables were randomly selected for node estimation. This model was run on 

each submission, analyzing true and false SNV positions separately (number of observations 

can be found in Supplementary Table 7). One submission, 2319000, failed to converge when 

the model was run with 10,000 trees, so the model was run with 1,000 trees on this 

submission (only). The directional effect of each variable was determined by calculating the 

median difference between a sample from each response category using the Wilcoxon rank 

test. Variable importance was compared across submissions and visualized with a dot map—

generated using lattice (v0.20-29) and latticeExtra (v0.6-26)—where dot size and color 

reflect the mean decrease in accuracy and directional effect of the variable for that 

submission, respectively, and background shading shows the accuracy of the model fit (for 

example, Fig. 4a). Finally, submissions were clustered by variable importance using the 

Diana algorithm.

Trinucleotide analysis

The trinucleotide context (±1 bp) at each SNV called was found using BEDTools getfasta (v.

2.18.2). Trinucleotide counts were calculated, ensuring that forward and reverse strands 

were binned together (for example, ATG was binned with CAT). These bins were further 
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stratified by the base change of the central base as documented in the submitted FCF files. 

For three FP positions, out of approximately 200,000, the base change specified did not 

align with the reference, i.e., the base change specified was from T to C, whereas the 

trinucleotide at that position was AGT. These positions were considered to be alignment 

errors, and the positions were removed from the analysis. The distribution of trinucleotides 

in each base change was plotted and normalized using the trinucleotide distribution of the 

genome.

(6)

Genomic trinucleotide counts were found by pattern matching each trinucleotide in the 

FASTA reference file. Again these trinucleotides found in either the forward or reverse 

strand were binned together. TP and FP positions were plotted separately to compare 

distributions. Both trinucleotide distributions were tested against the genomic distribution 

using a χ2 test for given probabilities in the R statistical environment (v.3.0.3).

Coding versus noncoding

To determine whether position functionality affected SNV prediction, we annotated all 

positions using Annovar region-based annotation (v.2012-10-23) to determine the genomic 

element of each SNV. Positions called by at least one submission (including all true SNVs) 

were binned into intergenic (n = 24,226), intronic (n = 10,893), untranslated (n = 252) and 

coding (n = 211) regions. The F-score of positions in these regions was calculated and 

visualized in a strip plot generated using lattice (v0.20-29) and latticeExtra (v0.6-26). The 

difference in F-score over the four regions was tested using Friedman rank-sum test to 

account for the effect of each submission. The difference in F-score of each pair of regions 

was compared using the paired Wilcoxon rank-sum test.

Accuracy in exonic regions

The F-score was calculated in a subset of SNVs located in exonic regions corresponding to 

known genes (as determined by Annovar gene-based annotation (v.2012-10-23)). It was 

hypothesized that algorithms would have increased prediction success in these regions 

owing to the negative clinical impact that prediction errors would have. Out of the 126 called 

positions in functional genes, a further subset of 42 positions was extracted and classified on 

the basis of mutation functionality; only nonsynonymous SNVs were present in this subset 

(as determined by Annovar). Selection criteria ensured that these positions were called by 

four or more of the submissions. Lattice (v0.20-29) and latticeExtra (v0.6-26) were used to 

compare the difference in prediction success of submissions in this subset.

Chromosomal bias of predicted SNVs

The F-score of each submission on each chromosome was calculated individually. A box 

plot, generated using lattice (v0.20-29) and latticeExtra (v0.6-26), suggested differences in 

F-scores over chromosomes. To quantify the chromosome variation seen, we implemented a 

two-way ANOVA incorporating chromosomes and submissions.
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Resulting P values were adjusted for multiple-hypothesis testing using FDR40. To account 

for the variation seen in chromosome 21, we compared the distributions of ten genomic 

variables (Supplementary Table 5) in both FNs and FPs on chromosome 21 against the 

remaining genome using the Wilcoxon rank-sum test. P values were adjusted for multiple 

testing using the false discovery rate method.

To further analyze chromosomal bias, we compared the rank of each submission on 

individual chromosomes to the overall rank of the submission. The significance of the 

observed variation was tested by generating a null distribution similar to that previously 

described. The F-score of null ‘chromosomes’ (randomly sampled positions over 10,000 

iterations) was calculated and used to rank submissions. The deviation of each submission 

on each chromosome from its overall rank was weighed by the difference in overall F-score 

accuracy between the chromosome rank and overall rank. We then determined the number of 

times, over the 10,000 iterations, that the deviation seen in the null ranks was greater than 

the deviation in the chromosomal ranks. This count was divided by 10,000 to produce the 

probability of observing the chromosomal variation by chance alone (or the P value) for 

each submission on each chromosome. The variation and corresponding P value were 

visualized using a dot map generated using lattice (v0.20-29) and latticeExtra (v0.6-26).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
BAMSurgeon simulates tumor genome sequences. (a) Overview of SNV spike-in. (1) A list 

of positions is selected in a BAM alignment. (2) The desired base change is made at a user-

specified variant allele fraction (VAF) in reads overlapping the chosen positions. (3) Altered 

reads are remapped to the reference genome. (4) Realigned reads replace corresponding 

unmodified reads in the original BAM. (b) Overview of workflow for creating synthetic 

tumor-normal pairs. Starting with a high-depth mate-pair BAM alignment, SNVs and 

structural variants (SVs) are spiked in to yield a ‘burn-in’ BAM. Paired reads from this BAM 

are randomly partitioned into a normal BAM and a pre-tumor BAM that receives spike-ins 

via BAMSurgeon to yield the synthetic tumor and a ‘truth’ VCF file containing spiked-in 

positions. Mutation predictions are evaluated against this ground truth. (c,d) To test the 
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robustness of BAMSurgeon with respect to changes in aligner (c) and cell line (d), we 

compared the rank of RADIA, MuTect, SomaticSniper and Strelka on two new tumor-

normal data sets: one with an alternative aligner, NovoAlign, and the other on an alternative 

cell line, HCC1954. RADIA and SomaticSniper retained the top two positions, whereas 

MuTect and Strelka remained third and fourth, independently of aligner and cell line. (e) 

Summary of the three in silico tumors described here.
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Figure 2. 
Overview of the SMC-DNA Challenge data set. (a) Precision-recall plot for all IS1 entries. 

Colors represent individual teams, and the best submission (top F-score) from each team is 

circled. The inset highlights top-ranking submissions. (b) Performance of an ensemble 

somatic SNV predictor. The ensemble was generated by taking the majority vote of calls 

made by a subset of the top-performing IS1 submissions. At each rank k, the gray dot 

indicates performance of the ensemble algorithms ranking 1 to k, and the colored dot 

indicates the performance of the algorithm at that rank.
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Figure 3. 
Effects of algorithm tuning. (a) The performance of groups on the training data set and on 

the held-out portion of the genome (~10%) are tightly correlated (Spearman’s ρ = 0.98) and 

fall near the plotted y = x line for all three tumors. (b) F-score, precision and recall of all 

submissions made by each team on IS1 are plotted in the order they were submitted. Teams 

were ranked by the F-score of their best submissions. Color coding as in a. The horizontal 

red lines give the F-score, precision and recall of the best-scoring algorithm submitted by the 

Challenge administrators, SomaticSniper. A clear improvement in recall, precision and F-
score can be seen as participants adjusted parameters over the course of the challenge. Bar 

width corresponds to the number of submissions made by each team. (c) For each tumor, 

each team’s initial (“naive”) and final (“optimized”) submissions are shown, with dot size 

and color indicating overall ranking within these two groups. An “X” indicates that a team 

did not submit to a specific tumor (or changed the team name). Algorithm rankings were 

moderately changed by parameterization. (d) For each tumor, we assessed how much each 
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team was able to improve its performance. The color scale represents bins of F-score 

improvement.
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Figure 4. 
Effects of genomic localization. (a) Box plots show the median (line), interquartile range 

(IQR; box) and ±1.5× IQR (whiskers). For IS1, F-scores were highest in coding and 

untranslated regions and lowest in introns and intergenic (P = 6.61 × 10−7; Friedman rank-

sum test). (b) Rows show individual submissions to IS1; columns show genes with 

nonsynonymous SNV calls. Green shading means a call was made. The upper bar plot 

indicates the fraction of submissions agreeing on these calls, and the color indicates whether 

these are FPs or TPs. The bar plot on the right gives the F-score of the submission over the 

whole genome. The right-hand side covariate shows the submitting team. All TPs are shown, 

along with a subset of FPs.
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Figure 5. 
Characteristics of prediction errors. (a–j) Random Forests assess the importance of 12 

genomic variables on SNV prediction accuracy (Online Methods). Random Forest analysis 

of FPs (a,c,e,g,i) and FNs (b,d,f,h,j) for IS1 (a,b) and IS2 (c,d) as well as for all three 

tumors using default settings with widely used algorithms MuTect (e,f), SomaticSniper (g,h) 

and Strelka (i,j). Dot size reflects mean change in accuracy caused by removing this variable 

from the model. Color reflects the directional effect of each variable (red for increasing 

metric values associated with increased error; blue for decreasing values associated with 

increased error; black for factors). Background shading indicates the accuracy of the model 

fit (see bar at bottom for scale). Each row represents a single set of predictions for a given in 
silico tumor, and each column shows a genomic variable. SNP, single-nucleotide 

polymorphism.
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Figure 6. 
Trinucleotide error profiles. Proportions of FP SNVs are normalized to the number observed 

in the entire genome (top) binned by trinucleotide context (bottom) for IS1–IS3.
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