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Abstract
Systems-scale profiling approaches have become widely used in translational
research settings. The resulting accumulation of large-scale datasets in public
repositories represents a critical opportunity to promote insight and foster
knowledge discovery. However, resources that can serve as an interface
between biomedical researchers and such vast and heterogeneous dataset
collections are needed in order to fulfill this potential. Recently, we have
developed an interactive data browsing and visualization web application, the
Gene Expression Browser (GXB). This tool can be used to overlay deep
molecular phenotyping data with rich contextual information about analytes,
samples and studies along with ancillary clinical or immunological profiling
data. In this note, we describe a curated compendium of 93 public datasets
generated in the context of human monocyte immunological studies,
representing a total of 4,516 transcriptome profiles. Datasets were uploaded to
an instance of GXB along with study description and sample annotations. Study
samples were arranged in different groups. Ranked gene lists were generated
based on relevant group comparisons. This resource is publicly available online
at .http://monocyte.gxbsidra.org/dm3/landing.gsp
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            Amendments from Version 1

Per reviewers’ comments we added background information about 
the subject matter (monocyte immunobiology), as well as details 
regarding the dataset selection and curation process. Figure 2 and 
Figure 3 were also updated. The table orientation was changed, 
and we have also updated the title of this article. 

See referee reports

REVISED

Introduction
Platforms such as microarrays and, more recently, next generation 
sequencing have been leveraged to generate molecular profiles at 
the scale of entire systems. The global perspective gained using such 
approaches is potentially transformative. Transcriptome profiling 
enabled for instance the characterization of molecular perturbations 
that occur in the context of a wide range disease processes1–10. This 
in turn has provided opportunities for the discovery of biomarkers 
and for the development of novel therapeutic modalities3,11–13. More 
recently such systems-scale profiling of the blood transcriptome 
has also been used to monitor response to vaccines or therapeutic 
drugs14–19. The democratization of these approaches has led to pro-
liferation of data in public repositories: over 1.7 million individual 
transcriptome profiles from more than 65,000 studies have been 
deposited to date in the NCBI Gene Expression Omnibus (GEO), a 
public repository of transcriptome profiles.

Taken together this vast body of “collective data” holds the 
promise of accelerating the pace of biomedical discovery by 
creating countless opportunities for identifying and filling critical 
knowledge gaps. Building tools that provide biomedical researchers 
with the ability to seamlessly interact with collections of datasets 
along with rich contextual information is essential in promoting 
insight and enabling knowledge discovery. To address this need we 
have developed an interactive data browsing and visualization web 
application, the Gene Expression Browser (GXB).

GXB was described in a recent publication and is available as 
open source software on GitHub20. This tool constitutes a simple 
interface for the browsing and interactive visualization of large 
volumes of heterogeneous data. Users can easily customize data 
plots by adding multiple layers of information, modifying the order 
of samples, and generating links that capture these settings, which 
can be inserted in email communications or in publications. Access-
ing the tool via these links also provides access to rich contextual 
information that is essential for data interpretation. This includes 
access to gene information and relevant literature, study design 
information, detailed sample information as well as ancillary data20.

In recent years, a large number of transcriptional studies have been 
conducted aiming at the characterization and functional classifica-
tion of monocytes in health and disease. Monocytes are a population 
of immune cells found in the blood, bone marrow, and spleen. They 
constitute ~10% of the total circulating blood leukocytes in humans. 
They can remain in the blood circulation for up to 1–2 days, after 
which time, if they have not been recruited to a tissue, they die and 
are removed. They are considered the systemic reservoir of myeloid 
precursors for renewal of tissue macrophages and dendritic cells. 

Monocytes play a key role during immune response as professional 
phagocytes21,22, and producers of immune mediators23,24. Indeed, 
reports show that monocytes are recruited at the site of infections as 
innate effectors of the inflammatory response to microbes, killing 
pathogens via phagocytosis, production of reactive oxygen interme-
diate (ROIs)25, reactive nitrogen intermediate (RNIs)26,27, myeloper-
oxidase (MPO)28,29, and producing inflammatory cytokines30 that 
contribute to further amplifying the antimicrobial response31.

Human monocytes are derived from hematopoietic stem cells in 
the bone marrow and are released into peripheral blood circulation 
upon maturation. They are divided into three major subsets based 
on the expression of the cell surface markers CD14 and CD16. 
The most prevalent subset in the blood circulation, accounting for 
90% of all monocytes, are the classical monocytes that express 
high levels of CD14 but low levels of CD16 (CD14++CD16-). The 
remaining 10% is divided into two subsets: intermediate mono-
cytes with high expression of CD14 and CD16 (CD14++CD16+ 
or CD14+CD16+) and non-classical monocytes that express low 
levels of CD14 but high levels of CD16 (CD14dimCD16++ or 
CD14-CD16++)32–34. The factors that govern the migration of 
monocytes and roles that each subset plays during disease proc-
esses are not well understood. 1) In autoimmune diseases: Non-
classical monocytes are regarded as crucial effectors in the 
pathogenesis of rheumatoid arthritis, ankylosing spondylitis35, 
systemic lupus erythematosus (SLE)36 and multiple sclerosis37. 
This monocyte subset carries a distinct inflammatory signature 
in patients with SLE36. Classical monocytes on the other hand 
have been shown to dominate the inflamed mucosa in Crohn’s 
disease38. Skewing of monocytes towards the intermediate subset 
has been observed in patients with autoimmune uveitis and linked to 
administration of glucocorticoid therapy39. 2) In cardiovascular dis-
eases: circulating monocytes play a pivotal role by releasing cock-
tails of cytokines, factor and proteases that are involved in vascular 
growth40. Monocyte subsets show functional and phenotypic changes 
in cardiovascular diseases. The accumulation of classical monocytes 
is for instance a hallmark of progression of atherosclerosis41–43. An 
association between intermediate monocytes and cardiovascular 
events has also been documented with this monocyte subset being 
proportionally elevated following myocardial infarction or atrial 
fibrillation44,45 or in at risk subjects46. 3) In cancer: Intermediate 
monocytes are viewed as potential diagnostic indicators for color-
ectal cancer47. Another study has shown that elevated abundance 
of intermediate monocytes is associated with survival of adult 
or childhood acute lymphoblastic leukemia48. The changes of 
gene expression profiles in monocytes reveal high specificity for 
the tissue type and cancer histotype, and are induced in response 
to soluble factors released by the cancer cells in the primary or 
metastatic site49. Moreover, monocytes, comprising the mono-
cyte-myeloid-derived suppressor cells population, from patients 
with metastatic breast cancer resemble the reprogrammed immu-
nosuppressive monocytes in patients with severe infections, 
both by their surface and functional phenotype but also by their 
gene expression profile50. This signature of immunosuppression 
could therefore constitute a good biomarker for assessing disease 
progression. 4) In infections: monocytes are also key players in 
the immediate immune response to infectious agents as well as the 
subsequent development of the adaptive immune response51. Given 
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the importance of classical and intermediate monocytes in patho-
genesis of infectious and other inflammatory disorders, delineation 
of their functional and phenotypic characteristics has been studied 
extensively. The response mounted by classical monocytes has 
emerged as being critical for the control of a wide range of infectious 
diseases, including infections caused by bacteria52–57, parasites58 and 
fungi59. In contrast, intermediate monocytes have been associated 
with pathologic immune responses against bacteria60,61 and para-
sites62. In the context of HIV infection; CD14 expression is reduced 
on classical monocytes in chronically HIV-1 infected adults on anti- 
retroviral therapy63,64. Moreover, loss of CCR2 expressing non-
classical monocytes is associated with cognitive impairment in 
antiretroviral therapy-naïve infected subjects65 . Altogether these 
findings indicate that monocytes are more than circulating precur-
sors and have different effector functions in response to various 
infections and during inflammation. Clearly furthering our under-
standing of the role of monocyte subsets in health and disease will 
require many more studies, also we hope that the dataset compen-
dium that we are making available to the research community via 
this publication can help support these endeavors.

In this data note we are making available via GXB a curated com-
pendium of 93 public datasets relevant to human monocyte immu-
nobiology, representing a total of 4,516 transcriptome profiles.

Materials and methods
Identification of monocyte datasets
Potentially relevant datasets deposited in GEO were identified using 
an advanced query based on the Bioconductor package GEOmetadb 
and the SQLite database that captures detailed information on 
the GEO data structure; https://www.bioconductor.org/pack-
ages/release/bioc/html/GEOmetadb.html66. The search query was 
designed to retrieve entries where the title and description contained 
the word Monocyte OR Monocytes, were generated from human 
samples, using Illumina or Affymetrix commercial platforms. The 
query result is appended with rich metadata from GEOmetadb that 
allows for manual filtering of the retrieved collection.

The relevance of each entry returned by this query was assessed 
individually. This process involved reading through the descriptions 
and examining the list of available samples and their annotations. 
Sometimes it was also necessary to review the original published 
report in which the design of the study and generation of the dataset 
is described in more detail. Using the search query, the results 
also returned a number of datasets that did not include profiles of 
monocytes but instead of “monocyte-derived dendritic cells” or 
“monocyte-derived macrophages”. During our manual screen these 
were excluded as were studies employing monocytic cell lines. 
Only studies including primary human monocyte profiles were 
retained. The datasets cover a broad range of studies investigat-
ing human monocyte immunobiology in the context of diseases 
and through comparison with diverse cell populations and study 
types as illustrated by a graphical representation of relative occur-
rences of terms in the descriptions of the studies loaded into our tool  
(Figure 1). A wide range of cell types and diseases are repre-
sented. Ultimately, the collection was comprised of 93 curated 
datasets. It includes datasets generated from studies profiling pri-
mary human CD14+ cells isolated from patients with autoimmune 
diseases (7), bacterial, virus and parasite infections (7), cancer  
(4), cardiovascular diseases (4), kidney diseases (4), as well as 
monocytes isolated from healthy subjects (58) (Figure 2). The 58 
datasets in which monocytes were isolated from healthy subjects 
were classified based on whether profiling was conducted ex vivo or 
following in vitro experiments. In total 38 datasets were identified in 
which primary human CD14+ cells were stimulated or infected in in 
vitro experiments (Figure 2). Among the many noteworthy datasets, 
there are 8 datasets investigating differences between monocytes sub-
sets; classical (CD14++CD16-), intermediate (CD14+CD16+) and 
non-classical monocytes (CD14-CD16++)32–34 [GXB: GSE16836, 
GSE18565, GSE25913, GSE34515, GSE35457, GSE51997, 
GSE60601, GSE66936]. Another dataset from Banchereau and 
colleagues investigated responses of monocyte and dendritic cells 
to 13 different vaccines in vitro67 [GXB: GSE44721]. The datasets 
that comprise our collection are listed in Table 1 and can be browsed 
interactively in GXB.

Figure 1. Thematic composition of the dataset collection. Word frequencies extracted from text descriptions of the studies loaded into the 
GXB tool are depicted as a word cloud. The size of the words is proportional to their frequency.
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Figure 2. Break down of the dataset collection by category. The pie chart on the left panel indicates dataset frequencies by disease status. 
The chart on the right panel indicates the type of studies carried out for the 58 datasets consisting of monocyte obtained exclusively from 
healthy donors.

Dataset upload and annotation on GXB
Once a final selection was made each dataset was downloaded from 
GEO in the SOFT file format. It was in turn uploaded on an instance 
of the Gene Expression Browser (GXB) hosted on the Amazon Web 
Services cloud. Available sample and study information were also 
uploaded. Samples were grouped according to possible interpreta-
tions of study results and ranking based on the different group com-
parisons that were computed (e.g. comparing monocyte isolated 
from case vs controls in studies where profiling was performed 
ex-vivo; or stimulated vs medium control in in vitro experiments).

Short Gene Expression Brower tutorial
The GXB software has been described in detail in a recent 
publication20. This custom software interface provides users with a 
means to easily navigate and filter the dataset collection available 
at http://monocyte.gxbsidra.org/dm3/landing.gsp. A web tutorial 
is also available online: http://monocyte.gxbsidra.org/dm3/tutori-
als.gsp#gxbtut. Briefly, datasets of interest can be quickly identi-
fied either by filtering using criteria from pre-defined lists on the 
left or by entering a query term in the search box at the top of the 
dataset navigation page. Clicking on one of the studies listed in the 
dataset navigation page opens a viewer designed to provide interac-
tive browsing and graphic representations of large-scale data in an 
interpretable format. This interface is designed to present ranked 
gene lists and display expression results graphically in a context-
rich environment. Selecting a gene from the rank ordered list on 
the left of the data-viewing interface will display its expression 
values graphically in the screen’s central panel. Directly above the 
graphical display drop down menus give users the ability: a) To 

change how the gene list is ranked; this allows the user to change 
the method used to rank the genes, or to include only genes that 
are selected for specific biological interest; b) To change sample 
grouping (Group Set button), in some datasets a user can switch 
between groups based on cell type to groups based on disease type, 
for example; c) To sort individual samples within a group based 
on associated categorical or continuous variables (e.g. gender or 
age); d) To toggle between the bar chart view and a box plot view, 
with expression values represented as a single point for each sam-
ple. Samples are split into the same groups whether displayed as a 
bar chart or box plot; e) To provide a color legend for the sample 
groups; f) To select categorical information that is to be overlaid at 
the bottom of the graph. For example, the user can display gender 
or treatment status in this manner; g) To provide a color legend for 
the categorical information overlaid at the bottom of the graph; and 
h) To download the graph as a png image or csv file for perform-
ing a separate analysis. Measurements have no intrinsic utility in 
absence of contextual information. It is this contextual information 
that makes the results of a study or experiment interpretable. It is 
therefore important to capture, integrate and display information 
that will give users the ability to interpret data and gain new insights 
from it. We have organized this information under different tabs 
directly above the graphical display. The tabs can be hidden to make 
more room for displaying the data plots, or revealed by clicking 
on the blue “show info panel” button on the top right corner of the 
display. Information about the gene selected from the list on the 
left side of the display is available under the “Gene” tab. Infor-
mation about the study is available under the “Study” tab. Infor-
mation available about individual samples is provided under the 
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Table 1. List of datasets constituting the collection.

Title Platforms Diseases
Number 

of 
samples

Experiments GEO ID Ref

Interaction of bone marrow stroma and monocytes: bone marrow stromal 
cell lines cultured with monocytes Affymetrix Healthy 8 In vitro GSE10595 68 

Monocyte gene expression profiling in familial combined hyperlipidemia and 
its modification by atorvastatin treatment Affymetrix Familial combined 

hyperlipidemia 9 In vitro GSE11393 69 

Performance comparison of Affymetrix and Illumina microarray technologies Affymetrix Acute coronary syndrome 10 Ex vivo GSE11430 70 

Gene expression profiling in pediatric meningococcal sepsis reveals 
dynamic changes in NK-cell and cytotoxic molecules Affymetrix Meningococcal sepsis 41 Ex vivo GSE11755 N/A

Effect of interferon-gamma on macrophage differentiation and response to 
Toll-like receptor ligands Affymetrix Healthy 10 In vitro GSE11864 71 

Human monocyte and dendritic Cell Subtype Gene Arrays Affymetrix Healthy 8 Ex vivo GSE11943 72 

Microarray analysis of human monocytes infected with Francisella tularensis Affymetrix Healthy 14 In vitro GSE12108 73 

Human blood monocyte profile in Ventilator-Associated Pneumonia patients Affymetrix Pneumonia 60 Ex vivo GSE12838 N/A

Quercetin supplementation and CD14+ monocyte gene expression Affymetrix Healthy 6 Ex vivo GSE13899 74 

Effects of PMN-Ectosomes on human macrophages Affymetrix Healthy 16 In vitro GSE14419 N/A

Homogeneous monocytes and macrophages from hES cells following 
coculture-free differentiation in M-CSF and IL-3 Affymetrix Healthy 9 Ex vivo GSE15791 75 

Expression data from human macrophages Affymetrix Healthy 38 In vitro GSE16385 76 

Transcriptional profiling of CD16+ and CD16- peripheral blood monocytes 
from healthy individuals Affymetrix Healthy 8 Ex vivo GSE16836 32 

COPD-Specific Gene Expression Signatures of Alveolar Macrophages 
as well as Peripheral Blood Monocytes Overlap and Correlate with Lung 
Function 

Affymetrix Chronic Obstructive 
Pulmonary Disease 12 Ex vivo GSE16972 77 

Loss-of-function mutations in REP-1 affect intracellular vesicle transport in 
fibroblasts and monocytes of CHM patients Affymetrix Choroideremia 15 Ex vivo GSE17549 78 

Effect of two weeks erythropoietin treatment on monocyte transcriptomes of 
cardiorenal patients Illumina Cardiorenal syndrome 48 Ex vivo GSE17582 N/A

Comparison of gene expression profiles between human monocyte subsets Affymetrix Healthy 6 Ex vivo GSE18565 79 

Subpopulations of CD163 positive macrophages are classically activated in 
psoriasis Illumina Psoriasis 58 Ex vivo GSE18686 80 

Mycobacterium tuberculosis Chaperonin 60.1 has Bipolar Effects on Human 
peripheral blood-derived Monocytes Affymetrix Healthy 21 In vitro GSE18794 N/A

Blood Transcriptional Profiles of Active TB (Separated cell) Illumina Tuberculosis 44 Ex vivo GSE19443 11 

Filaria induced monocyte dysfunction and its reversal following treatment Affymetrix Filariasis 14 Ex vivo GSE2135 81 

Ubiquinol-induced gene expression signatures are translated into reduced 
erythropoiesis and LDL cholesterol levels in humans Affymetrix Healthy 6 Ex vivo GSE21351 82 

Monocyte vs Macrophage Study Affymetrix Healthy 6 In vitro GSE22373 83 

Monocyte gene expression patterns distinguish subjects with and without 
atherosclerosis Illumina Carotid atherosclerosis 95 Ex vivo GSE23746 N/A
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Title Platforms Diseases
Number 

of 
samples

Experiments GEO ID Ref

Deconvoluting Early Post-Transplant Immunity Using Purified Cell Subsets 
Reveals Functional Networks Not Evident by Whole Blood Analysis Affymetrix Kidney Transplantation 179 Ex vivo GSE24223 84 

Cooperative and redundant signaling of leukotriene B4 and leukotriene D4 
in human monocytes Affymetrix Healthy 10 In vitro GSE24869 85 

Gene expression profiling of the classical (CD14++CD16-), intermediate 
(CD14++CD16+) and nonclassical (CD14+CD16+) human monocyte 
subsets 

Illumina Healthy 24 Ex vivo GSE25913 34 

Direct Cell Conversion of Human Fibroblasts to Monocytic phagocytes by 
Forced Expression of Monocytic Regulatory Network Elements Illumina Dermatomyositis 15 Ex vivo GSE27304 N/A

cMyb and vMyb in human monocytes Affymetrix Healthy 6 In vitro GSE2816 86 

Temporal transcriptional changes in human monocytes following acute 
myocardial infarction: The GerMIFs monocyte expression study Illumina Acute myocardial infarction 76 Ex vivo GSE28454 N/A

mRNA expression profiling of human immune cell subset (Roche) Affymetrix Healthy 47 Ex vivo GSE28490 87 

mRNA expression profiling of human immune cell subsets (HUG) Affymetrix Healthy 33 Ex vivo GSE28491 87 

Changes in gene expression profiles in patients with 5q- syndrome in 
CD14+ monocytes caused by lenalidomide treatment Illumina 5q- syndrome 17 Ex vivo GSE31460 N/A

Genome-wide analysis of lupus immune complex stimulation of purified 
CD14+ monocytes and how this response is regulated by C1q Illumina Healthy 8 In vitro GSE32278 88 

Transcriptome analysis of circulating monocytes in obese patients before 
and three months after bariatric surgery Illumina Obesity 48 Ex vivo GSE32575 89 

CD4 on human monocytes Affymetrix Healthy 6 In vitro GSE32939 90 

Peripheral Blood Monocyte Gene Expression in Recent-Onset Type 1 
Diabetes Illumina Type 1 Diabetes 22 Ex vivo GSE33440 91 

Traffic-related Particulate Matter Upregulates Allergic Responses by a 
Notch-pathway Dependent Mechanism Affymetrix Healthy 16 In vitro GSE34025 N/A

Human monocyte activation with NOD2L vs. TLR2/1L Affymetrix Healthy 45 In vitro GSE34156 92 

Bacillus anthracis’ lethal toxin induces broad transcriptional responses in 
human peripheral monocyte Affymetrix Healthy 8 In vitro GSE34407 93 

Gene expression profiles of human blood classical monocytes 
(CD14++CD16-), CD16 positive monocytes (CD14+16++ and 
CD14++CD16+), and CD1c+ CD19- dendritic cells 

Affymetrix Healthy 9 Ex vivo GSE34515 N/A

Genome-wide analysis of monocytes and T cells’ response to interferon 
beta Illumina Healthy 12 In vitro GSE34627 94 

Highly pathogenic influenza virus inhibit Inflammatory Responses in 
Monocytes via Activation of the Rar-Related Orphan Receptor Alpha 
(RORalpa) 

Affymetrix Healthy 12 In vitro GSE35283 N/A

Transcriptome profiles of human monocyte and dendritic cell subsets Illumina Healthy 49 Ex vivo GSE35457 95 

Influenza virus A infected monocytes Illumina Healthy 6 In vitro GSE35473 96 

PGE2-induced OSM expression Affymetrix Chronic wound 6 Ex vivo GSE36995 97 
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Title Platforms Diseases
Number 

of 
samples

Experiments GEO ID Ref

Inflammatory Expression Profiles in Monocyte to Macrophage Differentiation 
amongst Patients with Systemic Lupus Erythematosus and Healthy Controls 
with and without an Atherosclerosis Phenotype 

Illumina Systemic lupus 
erythematosus 72 Ex vivo GSE37356 N/A

New insights into key genes and pathways involved in the pathogenesis of 
HLA-B27-associated acute anterior uveitis Affymetrix Acute anterior uveitis 6 In vitro GSE37588 N/A

Analysis of blood myelomonocytic cells from RCC patients Illumina Renal cell carcinoma 8 Ex vivo GSE38424 98 

Nanotoxicogenomic study of ZnO and TiO2 responses Illumina Healthy 90 In vitro GSE39316 N/A

Macrophage Microvesicles Induce Macrophage Differentiation and miR-223 
Transfer Affymetrix Healthy 24 In vitro GSE41889 99 

TREM-1 is a novel therapeutic target in Psoriasis Affymetrix Psoriasis 15 In vitro GSE42305 100 

Comparison study between Uremic patient with Healthy control Affymetrix Chronic kidney disease 6 Ex vivo GSE43484 N/A

Microarray analysis of IL-10 stimulated adherent peripheral blood 
mononuclear cells Affymetrix Healthy 8 In vitro GSE43700 101 

Monocytes and Dendritic cells stimulated by 13 human vaccines and LPS Illumina Vaccination 128 In vitro GSE44721 67 

Gene expression profile of human monocytes stimulated with all-trans 
retinoic acid (ATRA) or 1,25a-dihydroxyvitamin D3 (1,25D3) Affymetrix Healthy 12 In vitro GSE46268 102 

Transcriptome analysis of blood monocytes from sepsis patients Illumina Sepsis 44 Ex vivo GSE46955 103 

Tumor-educated circulating monocytes are powerful specific biomarkers for 
diagnosis of colorectal cancer Illumina Colorectal Cancer 93 Ex vivo GSE47756 49 

Similarities and differences between macrophage polarized gene profiles Illumina Healthy 12 In vitro GSE49240 104 

The effect of cell subset isolation method on gene expression in leukocytes. Illumina Healthy 50 Ex vivo GSE50008 N/A

Transcriptome analysis of HIV-infected peripheral blood monocytes Illumina HIV 86 Ex vivo GSE50011 105 

Gene expression profiles in T-lymphocytes and Monocytes of participants of 
the Tour de France 2005 Affymetrix Healthy 66 Ex vivo GSE5105 N/A

Effects of exercise on gene expression level in human monocytes Affymetrix Healthy 24 Ex vivo GSE51835 106 

T helper lymphocyte- and monocyte-specific type I interferon (IFN) 
signatures in autoimmunity and viral infection. Affymetrix Autoimmune diseases 36 Ex vivo GSE51997 107 

Longitudinal comparison of monocytes from an HIV viremic vs avirmeic 
state Affymetrix HIV 16 Ex vivo GSE5220 108 

Expression data from monocytes and monocyte derived macrophages Affymetrix Healthy 12 In vitro GSE52647 N/A

Transcriptome analysis of primary monocytes from HIV+ patients with 
differential responses to therapy Illumina HIV 14 Ex vivo GSE52900 109 

Human blood monocyte response to IL-17A in culture Affymetrix Healthy 6 In vitro GSE54884 N/A

Divergent genome wide transcriptional profiles from immune cell subsets 
isolated from SLE patients with different ancestral backgrounds Illumina Systemic lupus 

erythematosus 208 Ex vivo GSE55447 110 
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Title Platforms Diseases
Number 

of 
samples

Experiments GEO ID Ref

Cell Specific Expression & Pathway Analyses Reveal Novel Alterations in 
Trauma-Related Human T-Cell & Monocyte Pathways Affymetrix Trauma patients 42 Ex vivo GSE5580 111 

Immune Variation Project (ImmVar) [CD14] Affymetrix Healthy 485 Ex vivo GSE56034 N/A

Transcriptomics of human monocytes Illumina Healthy 1202 Ex vivo GSE56045 112 

Effect of vitamin D treatment on human monocyte Affymetrix Healthy 16 In vitro GSE56490 NA

Monocytes of patients with familial hypercholesterolemia show alterations in 
cholesterol metabolism Affymetrix Hypercholesterolemia 23 Ex vivo GSE6054 113 

Gene expression data from CD14++ CD16- classical monocytes from 
healthy volunteers and patients with pancreatic ductal adenocarcinoma Affymetrix Pancreatic ductal 

adenocarcinoma 12 Ex vivo GSE60601 N/A

Activation of the JAK/STAT pathway in Behcet’s Disease Affymetrix Behcet’s Disease 29 Ex vivo GSE61399 N/A

Alarmins MRP8 and MRP14 induce stress-tolerance in phagocytes under 
sterile inflammatory conditions Illumina Sterile Inflammation 12 In vitro GSE61477 N/A

GM-CSF induced gene-regulation in human monocytes Affymetrix Healthy 6 In vitro GSE63662 114 

Treatment of human monocytes with TLR7 or TLR8 agonists Affymetrix Healthy 9 In vitro GSE64480 115 

Restricted Dendritic Cell and Monocyte Progenitors in Human Cord Blood 
and Bone Marrow Illumina Healthy 36 Ex vivo GSE65128 116

Interleukin-1- and Type I Interferon-Dependent Enhanced Immunogenicity 
of an NYVAC-HIV-1 Env-Gag-Pol-Nef Vaccine Vector with Dual Deletions of 
Type I and Type II Interferon-Binding Proteins 

Illumina Vaccination 20 In vitro GSE65412 NA

Comparative analysis of monocytes from healthy donors, patients with 
metastatic breast cancer, sepsis or tuberculosis. Illumina Breast cancer and Bacterial 

infection 13 Ex vivo GSE65517 50 

Expression data from intermediate monocytes from healthy donors and 
autoimmune uveitis patients Affymetrix Autoimmune uveitis 21 Ex vivo GSE66936 39 

Induction of Dendritic Cell-like Phenotype in Macrophages during Foam Cell 
Formation Affymetrix Healthy 22 In vitro GSE7138 117

Genome Wide Gene Expression Study of Circulating Monocytes in human 
with extremely high vs. low bone mass Affymetrix Healthy 26 Ex vivo GSE7158 N/A

Genomic profiles for human peripheral blood T cells, B cells, natural killer 
cells, monocytes, and polymorphonuclear cells: comparisons to ischemic 
stroke, migraine, and Tourette syndrome 

Affymetrix Healthy 18 Ex vivo GSE72642 118 

Expression data from monocytes of individuals with different collateral flow 
index CFI Affymetrix Coronary artery disease 160 Ex vivo GSE7638 39 

Leukotriene D4 induces gene expression in human monocytes through 
cysteinyl leukotriene type I receptor Affymetrix Healthy 8 In vitro GSE7807 119

Gene expression profile during monocytes to macrophage differentiation Affymetrix Healthy 9 In vitro GSE8286 N/A

Toll-like receptor triggering of a vitamin D-mediated human antimicrobial 
response Affymetrix Healthy 50 In vitro GSE8921 120 

TRAIL Is a Novel Antiviral Protein against Dengue Virus Affymetrix Dengue 10 In vitro GSE9378 NA

Gene Expression-Based High Throughput Screening: APL Treatment with 
Candidate Compounds Affymetrix Leukemia 24 Ex vivo GSE976 121 

Innate immune responses to TREM-1 activation Affymetrix Healthy 11 In vitro GSE9988 122 
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“Sample” tab. Rolling the mouse cursor over a bar chart’s element 
while displaying the “Sample” tab lists any clinical, demographic, 
or laboratory information available for the selected sample. Finally, 
the “Downloads” tab allows advanced users to retrieve the original 
dataset for analysis outside this tool. It also provides all available 
sample annotation data for use alongside the expression data in third 
party analysis software. Other functionalities are provided under 
the “Tools” drop-down menu located in the top right corner of the 
user interface. Some of the notable functionalities available through 
this menu include: a) Annotations, which provides access to all the 
ancillary information about the study, samples and dataset organ-
ized across different tabs; b) Cross-project view, which provides 
the ability for a given gene to browse through all available studies; 
c) Copy link, which generates a mini-URL encapsulating informa-
tion about the display settings in use and that can be saved and shared 
with others (clicking on the envelope icon on the toolbar inserts 
the url in an email message via the local email client); and d) Chart 
options, which gives user the option to customize chart labels.

Dataset validation
Quality control checks were performed with the examination of 
profiles of relevant biological indicators. Known leukocyte mark-
ers were used, such as CD14, which is expressed by monocytes 
and macrophages; as well as markers that would indicate significant 
contamination of the sample by other leukocyte populations: such 
as CD3, a T-cells marker; CD19, a B-cell marker; CD56, an NK 
cell marker (Figure 3; The expression of the CD14 marker across 
all studies can be checked using the cross project functionality of 
GXB: http://monocyte.gxbsidra.org/dm3/geneBrowser/crossProje
ct?probeID=201743_at&geneSymbol=CD14&geneID=929). We 
have systematically verified that expression of the genes encoding 
those surface markers was consistent with grouping labels provided 
by depositors. In addition, expression of the XIST transcripts, 
in which expression is gender-specific, was also examined to 
determine its concordance with demographic information provided 
with the GEO submission (expression of XIST should be high in 
females and low in males).

Figure 3. Illustrative example showing the abundance levels of CD14 transcripts across samples in a given study. The expression of 
this gene is indicative of the purity of primary human monocyte preparation; this marker is expected to be high in monocyte preparations and 
low in other leukocyte populations. In this view of the GXB expression of CD14 can be visualized across projects listed on the left.
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Data availability
All datasets included in our curated collection are also available 
publically via the NCBI GEO website: http://www.ncbi.nlm.nih.
gov/geo/; and are referenced throughout the manuscript by their 
GEO accession numbers (e.g. GSE25913). Signal files and sample 
description files can also be downloaded from the GXB tool under 
the “downloads” tab.
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 University of California San Diego, La Jolla, CA, USA

General Comments
 
Modern genomics, especially with the emergence of high-throughput next-generation sequencing, is
generating data at such a rapid rate that new tools for organizing, visualizing, sharing, and integrating
heterogeneous data in the context of scientific information are needed for scientists to efficiently use
these published data. The Chaussabel group has recently developed an interactive data browsing and
visualization web application, the Gene Expression Browser (GXB), to address this problem.
 
In this data note, Dr. Rinchai  report a compendium of ninety-six curated human monocyteet al.
transcriptome datasets from GEO spanning a broad range of diseases, cell types, and experiments.
These datasets were then uploaded to the Gene Expression Browser for exploratory data analysis and

dataset validation. The Gene Expression Browser should prove very useful for investigating large
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dataset validation. The Gene Expression Browser should prove very useful for investigating large
datasets; however, I have several questions and comments regarding the curated data itself:
 
Title: 
The novel aspect and apparent emphasis of this data note is using the Gene Expression Browser to more
easily explore the curated ninety-six datasets. But the current title emphasizes the key information on
fostering the knowledge discovery. Please consider rephrasing it by focusing on the monocyte datasets
and web application.
 
Introduction: 
As the Gene Expression Browser has been described in detail previously, the emphasis of this data note
should be on the curated data. It would be helpful to discuss the motivation for creating this particular
compendium of monocyte transcriptome datasets as well as the intended use of the curated data given
the breadth and heterogeneity of diseases, cell types, and experiments that it includes.
 
Methods:
1. Please elaborate more specifically on how the datasets were curated. What were the eligibility criteria
for inclusion into the compendium?
 
2. The table summarizing the published data can difficult to read due to its landscape orientation.
Consider rotating the table from a landscape orientation to a portrait orientation.
 
3. In the right pie chart of Figure 2, there are twelve datasets studying primary monocytes; however,
datasets classified as  stimulation, infection, and monocyte subsets may also contain primaryin vitro
monocytes. Better categorization is needed.
 
4. Data validation is critical for verifying that a dataset is acceptable for use.  The authors mention
performing dataset validation but do not report the related results or summary of their validation.  On page
9, the process of assessing contamination by other leukocyte populations using surface markers should
be done carefully as CD14  monocytes do share surface marker CD4.
 
5. In Fig. 3, it is unclear whether the orange bar plot is referring to CD4  T cells or CD4  cells in general.
They are different cell types.

We have read this submission. We believe that we have an appropriate level of expertise to
confirm that it is of an acceptable scientific standard, however we have significant reservations,
as outlined above.

 No competing interests were disclosed.Competing Interests:

Author Response 29 Mar 2016
, Sidra Medical and Research Center, QatarDarawan Rinchai

We thank the reviewers for their valuable feedback and suggestions to improve our manuscript.

Title: 
Following the suggestion of the reviewers we changed the title of the manuscript to “A curated
compendium of of transcriptome datasets of relevance to human monocyte immunobiology

research”.

+

+ +
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research”.

Introduction: 
Thanks for raising this point. We added a long paragraph and new references in the introduction to
emphasize the role of monocyte across different diseases and the motivation for creating this
compendium of monocyte transcriptome datasets. 
 
Methods:
1. We have added information about how datasest were selected for inclusion in the collections in
the methods section under the title “Identification of monocyte datasets”…“Using the search query,
the results also returned a number of datasets that did not include profiles of monocytes but
instead of “monocyte-derived dendritic cells” or “monocyte-derived macrophages”. During our
manual screen these were excluded as were studies employing monocytic cell lines. Only studies
including primary human monocyte profiles were retained.”…

2. We agree with the reviewer that presenting the table using landscape orientation makes it
difficult to read. We therefore changed table format from landscape to portrait orientation.
 
3. Thank you for pointing this out. We changed the label on this figure to read “ex-vivo, no
treatment”. These include studies where monocytes were isolated from healthy subjects for
comparison with other cell types, or evaluation of variation among healthy individuals.

4. Assessing contamination can indeed be difficult, especially using this type of data where
cell-level information is lacking. We plan to explore with our bioinformatics collaborators the
development of a "scoring" approach to better quantify potential contamination but this is not a
simple matter to address. At this point we have simply verified for each dataset that expression of
markers was consistent with grouping labels provided by depositors. We have added language in
the manuscript to clarify this point.
 
5. Thank you for pointing out this typo on this label. This dataset focuses on genomic profile of
human blood both CD4+ and CD8+ T cells, B cells, NK cells monocytes and neutrophil. Figure 3

 was corrected accordingly as shown in the new Figure 3. 

 No competing interests were disclosed.Competing Interests:
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 Marc Pellegrini
Division of Infection and Immunity, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC,
Australia

In this short descriptive report the authors put their published Gene Expression Browser tool to work in
arranging several thousand transcriptome profiles obtained from public datasets that looked at monocyte
immunology. They were able to compare groups of monocytes based on phenotypic attributes and rank
gene expression. The authors provide a nice summary of the technique and validation.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
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I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:
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