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Summary

A tradeoff between precision and throughput constrains all biological measurements, including 

sequencing-based technologies. Here, we develop a mathematical framework that defines this 

tradeoff between mRNA-sequencing depth and error in the extraction of biological information. 

We find that transcriptional programs can be reproducibly identified at 1% of conventional read 

depths. We demonstrate that this resilience to noise of “shallow” sequencing derives from a natural 

property, low-dimensionality, that is a fundamental feature of gene expression data. Accordingly, 

our conclusions hold for ~350 single cell and bulk gene expression datasets across yeast, mouse 

and human. In total, our approach provides quantitative guidelines for the choice of sequencing 

depth necessary to achieve a desired level of analytical resolution; we codify these guidelines in an 

open source “Read Depth Calculator.” This work demonstrates that the structure inherent in 

biological networks can be productively exploited to increase measurement throughput, an idea 

that is now common in many branches of science such as image processing.
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Introduction

All measurements, including biological measurements, contain a trade-off between precision 

and throughput. In sequencing based measurements like mRNA-seq, measurement precision 

is determined largely by the sequencing depth applied to individual samples. At high 

sequencing depth, mRNA-seq can detect subtle changes in gene expression including the 

expression of rare splice variants or quantitative modulations in transcript abundance. 

However, such precision comes at a cost, and sequencing transcripts from 10,000 single cells 

at deep sequencing coverage (106 reads per cell) currently requires two weeks of sequencing 

on a HiSeq 4000.

Not all biological questions require such extreme technical sensitivity. For example, a 

catalog of human cell types and the transcriptional programs that define them can potentially 

be generated by querying the general transcriptional state of single cells (Trapnell, 2015). In 

principle, theoretical and computational methods could elucidate the tradeoff between 

sequencing depth and granularity of the information that can be accurately extracted from 

samples. Accordingly, optimizing this tradeoff based on the granularity required by the 

biological question at hand would yield significant increases in the scale at which mRNA-

seq can be applied, facilitating applications such as drug screening and whole organ or 

tumor profiling.

The modern engineering discipline of signal processing has demonstrated that structural 

properties of natural signals can often be exploited to enable new classes of low cost 

measurements. The central insight is that many natural signals are effectively “low 

dimensional”. Geometrically, this means that these signals lie on a noisy, low-dimensional 

manifold embedded in the observed, high-dimensional measurement space. Equivalently, 

this property indicates that there is a basis representation in which these signals can be 

accurately captured by a small number of basis vectors relative to the original measurement 

dimension (Donoho, 2006; Candès et al., 2006; Hinton et al., 2006). Modern algorithms 
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exploit the fact that the number of measurements required to reconstruct a low dimensional 

signal can be far fewer than the apparent number of degrees of freedom. For example, in 

images of natural scenes, correlations between neighboring pixels induce an effective low 

dimensionality such that most images are dominated by low frequency content. This allows 

high accuracy image reconstruction even in the presence of considerable measurement noise 

such as point defects in many camera pixels (Duarte et al. 2008). For example, in images of 

natural scenes, correlations between neighboring pixels induce an effective low 

dimensionality that allows high accuracy image reconstruction even in the presence of 

considerable measurement noise such as point defects in many camera pixels (Duarte et al., 

2008).

Like natural images, it has long been appreciated that biological systems contain structural 

features that can lead to an effective low dimensionality in data. Most notably, genes are 

commonly co-regulated within transcriptional modules; this produces covariation in the 

expression of many genes (Eisen et al., 1998; Segal et al., 2003; Bergmann, et al., 2003). 

The widespread presence of such modules indicates that the natural dimensionality of gene 

expression is not determined by the number of genes in the genome, but rather by the 

number of regulatory modules. By analogy to signal processing, this natural structure 

suggests that the lower effective dimensionality present in gene expression data can be 

exploited to make accurate, “inexpensive” measurements that are not degraded by noise. But 

when, and at what error tradeoff, can low dimensionality be leveraged to enable low cost, 

high information-content biological measurements?

Here, inspired by these developments in signal processing, we establish a mathematical 

framework that addresses the impact of reducing coverage depth, and hence increasing 

measurement noise, on the reconstruction of transcriptional regulatory programs from 

mRNA-seq data. Our framework reveals that “shallow mRNA-seq”, which has been 

proposed to increase mRNA-seq throughput by reducing sequencing depth in individual 

samples (Jaitin et al., 2014; Pollen et al., 2014; Kliebenstein, 2012) (Figure 1A), can be 

applied generally to many bulk and single cell mRNA-seq experiments. By investigating the 

fundamental limits of shallow mRNA-seq, we define the conditions under which it has 

utility and complements deep sequencing.

Our analysis reveals that the dominance of a transcriptional program, quantified by the 

fraction of the variance it explains in the dataset, determines the read depth required to 

accurately extract it. We demonstrate that common bioinformatic analyses can be performed 

at 1% of traditional sequencing depths with little loss in inferred biological information at 

the level of transcriptional programs. We also introduce a simple “Read Depth Calculator” 

that determines optimal experimental parameters to achieve a desired analytical accuracy. 

Our framework and computational results highlight the effective low dimensionality of gene 

expression, commonly caused by co-regulation of genes, as both a fundamental feature of 

biological data and a major underpinning of biological signals’ tolerance to measurement 

noise (Figure 1B, 1C). Understanding the fundamental limits and tradeoffs involved in 

extracting information from mRNA-seq data will guide researchers in designing large-scale 

bulk mRNA-seq experiments and analyzing single-cell data where transcript coverage is 

inherently low.
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Results

Statistical properties of gene expression data determine the accuracy of Principal 
Component Analysis at low read depth

To delineate the impact of sequencing depth on the analysis of mRNA-seq data, we 

developed a mathematical framework that models the performance of a common 

bioinformatics technique, transcriptional program identification, at low sequencing depth. 

We focus on transcriptional program identification as it is central in many analyses including 

gene set analysis, network reconstruction (Holter et al., 2001; Bonneau, 2008), and cancer 

classification (Alon et al., 1999; Shai et al., 2003; Patel et al., 2014), as well as the analysis 

of single cell mRNA-seq data. Our model defines exactly how reductions in read-depth 

corrupt the extracted transcriptional programs and determines the precise depth required to 

recover them with a desired accuracy.

Our analysis focuses on the identification of transcriptional programs from mRNA-seq data 

through Principal Components Analysis (PCA), because of its prevalence in gene expression 

analysis (Alter et al., 2000; Ringner, 2008) and its fundamental similarities to other 

commonly used methods. A recent review called PCA the most widely used method for 

unsupervised clustering and noted that it has already been successfully applied in many 

single-cell genomics contexts (Trapnell, 2015). Additionally, research in the computer 

science community over the last decade has shown that many other unsupervised learning 

methods, including k-means, spectral clustering, and locally linear embedding, are naturally 

related to PCA or its generalization, Kernel PCA (Ding et al., 2004; Ng et al., 2001; Ham et 

al., 2004; Bengio et al., 2004). Because of the deep connection between PCA and other 

unsupervised learning techniques, we expect that our conclusions in this section will extend 

to other methods of analysis (and we provide such parallel analysis in the supplementary 

information). Here, we focus on PCA because the well-defined theory behind it provides a 

unique opportunity to understand, analytically, the factors that determine the robustness of 

program identification to low coverage sequencing noise.

PCA identifies transcriptional programs by extracting groups of genes that co-vary across a 

set of samples. Co-varying genes are grouped into a gene expression vector known as a 

principal component. Principal components are weighted by their relative importance in 

capturing the gene expression variation that occurs in the underlying data. Decreasing 

sequencing depth introduces measurement noise into the gene expression data and corrupts 

the extracted principal components.

If the transcriptional programs obtained from shallow mRNA-seq data and deep mRNA-seq 

data are similar, then we can accurately perform many gene expression analyses at low depth 

while collecting data in much higher throughput (Figure 1). We therefore developed a 

mathematical model that quantifies how the principal components computed at low and high 

sequencing depths differ. The model reveals that performance of transcriptional program 

extraction at low read depth is specific to the dataset and even the program itself. It is the 

dominant transcriptional programs, which capture most variance, that are the most stable.
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Formally, the principal components are defined as the eigenvectors of the gene expression 

covariance matrix, and the principal values λi are the associated eigenvalues that equal the 

variance of the data projected onto the component (Alter et al., 2000; Holter et al., 2001). 

We use perturbation theory to model how the eigenvectors of the gene expression covariance 

matrix change when measurement noise is added (Stewart et al., 1990; Shankar, 2012). We 

perform our analysis in units of normalized read counts for conceptual clarity (or normalized 

transcript counts where appropriate), but an identical analysis and error equation can be 

derived in FPKM units through a simple rescaling. The principal component error is defined 

as the deviation between the deep (pci) and shallow  principal components.

(1)

where C and Ĉ are the covariance matrices obtained from deep and shallow mRNA-seq data 

respectively. Equation 1 can be used to model the impact of shallow sequencing on any 

given mRNA-seq dataset. Moreover, qualitative analysis of the equation reveals the key 

factors that determine whether low depth profiling will accurately identify transcriptional 

programs. As expected, this equation indicates that the principal component error depends 

on generic features including read depth and sample number as these affect the difference 

between the shallow and deep covariance matrices in the numerator of Equation 1 (see 

Supplemental Information Section 2.1). However, Equation 1 also reveals that the principal 

component error depends on a system-specific property, the relative magnitude of the 

principal values (captured by λi - λj). Since the principal values correspond to the variance in 

the data along a principal component, this term quantifies whether the information in the 

gene expression data is concentrated among a few transcriptional programs. When genes 

covary along a small number of principal axes, the dataset has an effective low-

dimensionality i.e. the data is concentrated on a low-dimensional sub-space, and 

transcriptional programs can be extracted even in the presence of sequencing noise.

Mouse tissues can be distinguished at low depth in bulk mRNA-seq samples

To understand the implications of this result in the context of an established mRNA-seq data 

set, we applied Equation 1 to a subset of the mouse ENCODE data that uses deep mRNA-

seq (>107 reads per sample) to profile gene expression of 19 different mouse tissues with a 

biological replicate (Shen et al. 2012) (see Experimental Procedures). The analysis revealed 

that the leading, dominant transcriptional programs could be extracted with less than 1% of 

the studies original read depth. Specifically, the first three principal components could be 

recovered with more than 80% accuracy (i.e. an error of 1−.8=20%) with just 55,000 reads 

per experiment (Figures 2A and S1A). To reach 80% accuracy for all of the first nine 

principal components, only 145,000 reads were needed (Figure S1B). Increasing read depth 

further had diminishing returns for principal component accuracy. To increase the accuracy 

of the first three principal components an additional 5% (from 80% to 85%), 55% more 

reads were required. We confirmed these analytical results by simulating shallow mRNA-seq 

through direct sub-sampling of reads from the raw data set (see Experimental Procedures).
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Further, as predicted by Equation 1, the dominant principal components were more robust to 

shallow sequencing noise than the trailing, minor principal components. This is a direct 

consequence of the fact that the leading principal values are well-separated from other 

principal values, while the trailing values are spaced closely together. For instance, λ1 is 

separated from other principal values by at least λ1-λ2≈5×10−6, more than two orders of 

magnitude greater than the minimum separation of λ25 from other principal values, 1.5×10−8 

(Figure 2B). Therefore the 25th principal component requires almost four million reads, 140 

times more than the first principal component, to be recovered with the same 80% accuracy.

To explore whether the shallow principal components also retained the same biological 

information as the programs computed from deep mRNA-seq data, we compared results 

from Gene Set Enrichment Analysis applied to shallow and deep mRNA-seq data. At a read 

depth of ~107 reads per sample, the first three principal components have many significant 

functional enrichments with the second and third principal components enriched for neural 

and haematopoietic processes respectively (Figure 2C; see Figure S1C for first principal 

component). These functional enrichments corroborate the separation seen when the gene 

expression profiles from each tissue are projected onto the second and third principal 

components (see Experimental Procedures). Neural tissues (cerebellum, cortex, olfactory, 

and E-14.5 brain) project along the second principal component while the haematopoietic 

tissues (spleen, liver, thymus, bone marrow, and E-14.5 liver) project along the third 

principal component (Figure 2D).

The statistically significant enrichments of the first three principal components persisted at 

low sequencing depths. At less than 32,000 reads per sample, only 0.37% of the total reads, 

all ten of the top gene sets for these principal components passed our significance threshold 

of p<10−4 (negative predictive value and positive predictive value in Figures S1D,E). To put 

this result in perspective, using only 32,000 reads per sample (corresponding to PCA 

accuracies of 81%, 79% and 75% for the first three principal components respectively) 

would allow a faithful recapitulation of functional enrichments while still multiplexing 

thousands of samples, rather than dozens, in a single Illumina HiSeq sequencing lane. 

Additionally, this low number of reads was still sufficient to separate the different cell types 

(Figure 2D). We obtained similar results when working in FPKM units, suggesting that the 

broad conclusions of our analysis are insensitive to gene expression units (Figures S1F, S1G, 

S1H).

Transcriptional states in single cells are distinguishable with less than 1,000 transcripts 
per cell

We wanted to explore whether shallow mRNA-seq could also capture gene expression 

differences between individual single cells within a heterogeneous tissue, arguably a more 

challenging problem than distinguishing different bulk tissue samples. In addition to the 

biological importance of quantifying variability at the single cell level, single cell mRNA-

seq data provides necessary context for analyzing the performance of shallow sequencing for 

two reasons. First, single cell mRNA-seq experiments are inherently “low depth” 

measurements as current methods can capture only a small fraction (~20%) (Shalek et al., 

2014) of the ~300K transcripts (Velculescu et al., 1999) typically contained in individual 
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cells. Second, since advances in microfluidics (Macosko et al., 2015) now facilitate the 

automated preparation of tens of thousands of individual cells for single cell mRNA-seq, 

sequencing requirements impose a key bottleneck on the further scaling of single-cell 

throughput.

To probe the impact of sequencing depth reductions on single cell mRNA-seq data, we 

analyzed a dataset characterizing 3,005 single cells from the mouse cerebral cortex and 

hippocampus (Zeisel et al., 2015) which were classified bioinformatically at full sequencing 

depth (average of ~15,000 unique transcripts per cell) into nine different neural and non-

neural cell types. In addition to providing a rich biological context for analysis, this dataset 

allows for a quantitative analysis of low-depth transcriptional profiling as it incorporates 

molecular barcodes known as unique molecular identifiers (UMIs) that enable the precise 

counting of transcripts from each single cell. The Zeisel et al. data therefore allowed us to 

analyze the impact of sequencing depth reductions quantitatively in units of transcript counts 

rather than in the less precise unit of raw sequencing reads.

Similarly to the bulk tissue data, we found that leading principal components in single cells 

could be reconstructed with a small fraction of the total transcripts collected in the raw data 

set. We focused our analysis on three classes of cell types, two classes of pyramidal neurons 

with similar gene expression profiles, and oligodendrocytes, which are transcriptionally 

distinct. As the first three principal values were well-separated from the others (Figure S2A), 

Equation 1 estimated that the first three principal components could be reconstructed with 

11%, 22%, and 38% error respectively with just 1000 transcripts per cell (Figure 3A).

We confirmed this result computationally. With just 100 unique transcripts, we were able to 

separate oligodendrocytes from the two classes of pyramidal neurons with >90% accuracy. 

With 1000 unique transcripts per cell, we were able to distinguish pyramidal neurons of the 

hippocampus from those of cortex with the same >90% accuracy (Figure 3B). The different 

depths required to distinguish these subclasses of neural and non-neural cell-types reflect the 

differing robustness of the corresponding principal components. The first principal 

component captures a broad distinction between oligodendrocytes and pyramidal cell types 

(Figure 3C Left) and is the most robust to low read depths. The third principal component 

captures a more fine-grained distinction between pyramidal neurons, but is less robust than 

the first principal component at low read depth, and hence requires more coverage. This is 

consistent with biological intuition: more depth is required to distinguish between pyramidal 

neural subtypes than between oligodendrocytes and pyramidal neurons.

We next asked how contributions of individual genes to a principal component change as a 

function of read depth. For every principal component, we derived a null model consisting of 

the distribution of the individual gene weightings, called loadings, from a shuffled version of 

the data (see Experimental Procedures). Comparing the data to the null model, we found that 

at a depth of ~340 transcripts, >80% of genes significantly associated with the first principal 

component could still be detected (Figure 3C, 3D and Experimental Procedures). At just 100 

transcripts per cell, we were still able to identify oligodendroycte markers, such as myelin-

associated oligodendrocyte basic protein (Mobp) and myelin-associated glycoprotein (Mag), 

as well as neural markers, such as Neuronal differentiation 6 (Neurod6) and Neurogranin 
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(Nrgn), as statistically significant, and reliably classify these distinct cell types. However, 

below 100 transcripts per cell, cell type classification becomes inaccurate, and this is 

correlated with markers such as Neurod6 being no longer statistically associated with the 

first principal component.

We were able to reach similar conclusions with three other single cell mRNA-seq datasets 

(Shalek et al., 2013; Treutlein et al., 2014; Kumar et al., 2014). With similarly low 

sequencing depths, we were able to distinguish transcriptional states of single cells collected 

across stages of the developing mouse lung (Figure S2B-D), wild type mouse embryonic 

stem cells from stem cells with a single gene knockout (Figure S2E-G), and heterogeneity 

within a population of bone-marrow-derived dendritic cells (Figure S2H-J). These results 

were also not PCA specific. We additionally examined two of these datasets with t-SNE and 

LLE, two nonlinear alternatives to PCA, and achieved successful classification of 

transcriptional states (Figure S2K-L), in each case recapitulating the results of the original 

studies with fewer than 5000 reads per cell. These results suggest that low-dimensionality 

enables high accuracy classification at low-read depth across many methods.

Gene expression covariance induces tolerance to shallow sequencing noise

In the datasets we consider, the dominant noise-robust principal components corresponded 

directly to large modules of co-varying genes. Such modules are common in gene expression 

data (Eisen et al., 1998; Alter et al., 2000; Bergmann et al., 2003; Segal et al., 2003). We 

therefore studied the contribution of modularity to principal component robustness in a 

simple, mathematical model of gene expression (Supplemental Information Section 2.2). 

Our analysis showed that the variance explained by a principal component, and hence its 

noise tolerance, increases with the covariance of genes within the associated module (Figure 

4A) and also the number of genes in the module (Figure S3A-C). While highly expressed 

genes also contribute to noise tolerance, in the Shen et al. data set we found little correlation 

between the expression level of a gene and its contribution to the error of the first principal 

component (R2=0.13, Figure S3D).

This analysis predicts that the large groups of tightly co-varying genes observed in the Shen 

et al. and Zeisel et al. datasets will contribute significantly to principal value separation and 

noise tolerance. To directly quantify the contribution of covariance to principal value 

separation in these data, we randomly shuffled the sample labels for each gene. In the 

shuffled data, genes vary independently which eliminates gene-gene covariance, raising the 

effective dimensionality of the data. In contrast to the natural, low dimensional data, the 

principal values of the resulting data were nearly uniform in magnitude. This significantly 

diminished the differences between the leading principal values within the shuffled data 

(Figure 4B, top panel).

Consequently, reconstruction of the principal components became more read depth 

intensive. For instance to recover the first principal component with 80% accuracy from the 

shuffled Zeisel et al. data, 12.5 times more transcripts are required than for the unshuffled 

data (Figure 4B, bottom panels). We reached a similar conclusion for the mouse ENCODE 

data, where shuffling also decreased the differences between the leading principal values and 
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the rest, causing a 23-fold increase in sequencing depth required to recover the first principal 

component with 90% accuracy (Figure S4).

Large-scale survey reveals that shallow mRNA-seq is widely applicable due to gene-gene 
covariance

Both our analysis of Equation 1 and our computational investigations of mRNA-seq datasets 

suggest that high gene-gene covariances increase the distance of leading principal values 

from the rest, thereby enabling the recovery of dominant principal components at low 

mRNA-seq read depths. This finding, if a common phenomenon, suggests that shallow 

mRNA-seq may be rigorously employed when answering many biological questions. To 

assess whether our findings are broadly applicable, we performed a broad computational 

survey of available gene expression data.

Since both gene covariances and principal values are fundamental properties of the 

biological systems under study, these quantities may be analyzed using the wealth of 

microarray datasets available, leveraging a larger collection of gene expression datasets as 

compared to mRNA-seq (see Figure S5A for analyses of several mRNA-seq datasets). We 

selected 352 gene expression datasets from the Gene Expression Omnibus (Edgar, et al., 

2002) spanning three species (yeast: 20 datasets, mouse: 106 datasets, and human: 226 

datasets) that each contained at least 20 samples and were performed on the Affymetrix 

platform.

Despite the differences between these datasets in terms of species and collection conditions, 

they all possessed favorable principal value distributions reflecting an effective low 

dimensionality. For instance, on average the first principal value was roughly twice as large 

as the second principal value, and together the first five principal values explained a 

significant majority of the variance, suggesting that these datasets contain a few, dominant 

principal components (Figure 5A, left panel). By shuffling these datasets to reorder the 

sample labels for each gene, we again found that these principal components emerge from 

gene-gene covariance.

We related this pattern of dominant principal components to the ability to recover biological 

information with shallow mRNA-seq in these datasets. To generate synthetic mRNA-seq 

data from these microarray datasets, we applied a probabilistic model to simulate mRNA-

seq at a given read depth (see Experimental Procedures). We found that with only 60,000 

reads per sample, 84% of the 352 datasets have ≤20% error in their first principal 

component. This translates into an average of almost 1000% read depth savings to recover 

the first principal component with an acceptable PCA error tolerance of 20% (Figure 5A 

right panel). By applying GSEA to the first principal component of each of the 352 datasets 

at low (100,000 reads per sample) and high-read depths (10 million reads per sample), we 

found that >60% of gene set enrichments were retained with only 1% of the reads (Figure 

5B and 5C). This analysis demonstrates that biological information was also retained at low 

depth.

Collectively, our analyses demonstrate that the success of low-coverage sequencing relies on 

a few dominant transcriptional programs. We also show that many gene expression datasets 
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contain such noise-resistant programs as determined by PCA and identified them with 

dominant dimensions in the dataset. Futhermore, low-dimensionality and noise-robustness 

are properties of the gene expression datasets themselves and exist independent of the choice 

of analysis technique. Therefore, unsupervised learning methods other than PCA would 

reach similar conclusions, an expectation we verified using Non-negative Matrix 

Factorization (Figure S5B).

The Read Depth Calculator: A quantitative framework for selecting optimal mRNA-seq read 
depth and number of biological samples

The optimal choice of read depth in an mRNA-seq experiment is of widespread practical 

relevance, therefore we developed a Read Depth Calculator that can provide quantitative 

guidelines for shallow mRNA-seq experimental design. Having pinpointed the factors that 

determine the applicability of shallow mRNA-seq, we applied this understanding to 

determine the read depth and number of biological samples to profile when designing an 

experiment. To do so, we simplified the principal component error described by Equation 1 

by assuming that the principal values of mRNA-seq data are “well-separated”, i.e. that ratio 

between consecutive principal values λi+1/λi is small (as defined in Supplemental 

Information Section 2.1), an assumption justified by our large-scale microarray survey (See 

Figures S5C,D). These assumptions enable us to provide simple guidelines for making 

important experimental decisions, for example choosing read depth, N:

(2)

where n is the number of biological samples, κ is a constant that can be estimated from 

existing data. (See Supplemental Information Section 2.1 for a derivation of this equation 

and its limitations). This relationship can be understood intuitively. First, Equation 2 states 

that the principal component error decreases with read depth, a consequence of the well-

known fact that the Signal-to-Noise ratio of a Poisson random variable is proportional to 

. The read depth also depends on λi which comes from the λi-λj term of Equation 1. 

Finally, the influence of the sample number n on read depth follows from the definition of 

covariance as an average over samples. (Figure S5E shows that n is approximately 

statistically uncorrelated with principal values across the microarray datasets.)

Equation 2 has implications for optimizing the tradeoff between read depth and sample 

number in single cell mRNA-seq experiments. As principal component error depends on the 

product of read depth and number of samples, error in mRNA-seq analyses can be reduced 

equivalently in two ways, by either increasing the total number of profiled cells or the 

transcript coverage. To illustrate this point, we computationally determined the error in the 

first principal component of the single cell mouse brain data from Zeisel et al. as a function 

of cell number. Consistent with Equation 2, our calculations show that increasing the 

number of profiled cells reduces error in the first principal component (Figure 6A). 

Furthermore, we show that with the Zeisel et al data, multiple different experimental 

configurations with the same total number of transcripts can yield the same principal 

component error. For example, 100,000 transcripts divided between either 50 or 400 cells 
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both yield approximately a 20% principal component error. This result is of particular 

relevance in single cell experiments because transcript depth per cell is currently limited by 

a ~20% mRNA capture efficiency, and so cannot be easily increased (Shalek, et al., 2014). 

In such cases, limited sequencing resources might be best used to sequence more cells at low 

depth rather than allocating sequencing resources to oversampling a few thousand unique 

transcripts.

Experimentalists can use the Read Depth Calculator to predict requirements for read depth 

or sample number in high throughput transcriptional profiling given their desired accuracy 

based on the statistics of principal value separation in our global survey. Figure 6B shows 

the reads required for desired accuracies and an assumed principal value for a human 

transcriptional experiment with 100 samples (typical values for the first five principal values 

for human are indicated in dashed lines). As an illustration, a hypothetical experiment with a 

typical first principal value of 1.4×10−5 (median principal value from the 226 human 

microarray datasets) and 100 samples where 80% PCA accuracy is tolerable requires less 

than 5,000 reads per experiment or less than 500,000 reads in total, occupying less than 

0.125% of a single sequencing lane in the Illumina HiSeq 4000.

The predictions from this analytically derived Read Depth Calculator are demonstrably 

accurate. We compared the analytically predicted number of reads required for 80% PCA 

accuracy in the first five transcriptional programs to the value determined through simulated 

shallow mRNA-seq for 226 microarray and 4 mRNA-seq human datasets. We determined κ 

empirically by fitting 50% of the datasets. Cross-validation with the remaining 50% of the 

datasets showed remarkable agreement between the analytical predictions and 

computationally determined values. In these calculations, the analytically predicted number 

of reads required to reach 80% accuracy deviates from the depth required in simulation by 

less than 10% (Figure 6C). The Read Depth Calculator is available online (http://

thomsonlab.github.io/html/formula.html).

Finally, while we use the first principal component for illustration, Equation 2 can be applied 

to any principal component, including the trailing principal components. Recent work 

discusses a statistical method to identify those principal components that are likely to be 

informative, and this work can be used in conjunction with Equation 2 to pinpoint the 

relevant principal components and the sequencing parameters needed to estimate them 

satisfactorily (Klein et al., 2015).

Discussion

Single cell transcriptional profiling is a technology that holds the promise of unlocking the 

inner workings of cells and uncovering the roots of their individuality (Klein et al. 2015; 

Macosko et al. 2015). We show that for many applications that rely on the determination of 

transcriptional programs, biological insights can be recapitulated at a fraction of the widely 

proposed high read depths. Our results are based on a rigorous mathematical framework that 

quantifies the tradeoff between read depth and accuracy of transcriptional program 

identification. Our analytical results pinpoint gene-gene covariance, a ubiquitous biological 

properties, as the key feature that enables uncompromised performance of unsupervised 
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gene expression analysis at low read depth. The same mathematical framework also leads to 

practical methods to determine the optimal read depth and sample number for the design of 

mRNA-seq experiments.

Given the principal values that we observe in the human microarray datasets, our analysis 

suggests that one can profile tens of thousands of samples, as opposed to dozens, while still 

being able to accurately identify transcriptional programs. At this scale, researchers can 

perform entire chemical or genetic knockout screens or profile all ~1,000 cells in an entire 

C. elegans, 40 times over, in a single 400,000,000 read lane on the Illumina HiSeq 4000. 

Because shallow mRNA-based screens would provide information at the level of 

transcriptional programs and not individual genes, complementing these experiments by 

careful profiling of specific genes with targeted mRNA-seq (Fan, et al., 2015) or samples of 

interest with conventional deep sequencing would provide a more complete picture of the 

relevant biology.

Fundamentally, our results rely on a natural property of gene expression data: its effective 

“low-dimensionality.” We observed that gene expression datasets often have principal values 

that span orders of magnitude independently of the measurement platform, and that this 

property is responsible for the noise tolerance of early principal components. These leading, 

noise-robust principal components are effectively a small number of “dimensions” that 

dominate the biological phenomena under investigation. These insights are consistent with 

previous observations that were made following the advent of microarray technology (Eisen 

et al., 1998; Segal et al., 2003; Bergmann, et al., 2003), proposing that low dimensionality 

arises from extensive covariation in gene expression. We suggest that the covariances and 

principal values in gene expression are determined by the architectural properties of the 

underlying transcriptional networks, such as the co-regulation of genes, and therefore it is 

the biological system itself that confers noise tolerance in shallow mRNA-seq 

measurements. Related work in neuroscience has explored the implications of hierarchical 

network architecture for learning the dominant dimensions of data (Saxe, et al., 2013; 

Hinton et al., 2006).

Discovering and exploiting low-dimensionality to reduce uncertainty in measurements is at 

the heart of modern signal processing techniques (Donoho 2006; Candès, et al., 2006). 

These methods first found success in imaging applications, where low dimensionality arises 

from the statistics and redundancies of natural images, enabling most images to be 

accurately represented by a small number of wavelets or other basis functions. Our results 

suggest that shallow mRNA-seq is similarly enabled by an inherent low-dimensionality in 

gene expression datasets that emerges from groups of covarying genes. Just as only a few 

wavelets are needed to represent most images, only a few groups of transcriptional programs 

seem to be necessary to produce a coarse-grained representation of transcriptional state.

We believe that the measurement of many diverse biological systems could benefit from the 

identification and analysis of hidden low-dimensional representations. For instance, 

proteome quantification, protein-protein interactions, and human genetic variant data all 

contain high levels of correlations, suggesting these datasets may all be effectively low 

dimensional. We anticipate new modes of biological inquiry as advances from signal 
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processing are integrated into biological data analysis and as the underlying structural 

features of biological networks are exploited for large scale measurements.

Experimental Procedures

Simulated shallow sequencing through down-sampling of reads

Transcriptional data sets were obtained from the Gene Expression Omnibus (Zeisel et al. 

was from www.linnarssonlab.org). mRNA_seq read counts were normalized by the total 

number of reads in the sample. For each read depth, we model the sequencing noise with a 

multinomial distribution. The Zeisel et al. data was sampled without replacement because of 

the unique molecular identifiers (See Supplemental Experimental Procedures).

Finding genes significantly associated with a principal component

We first generated a null-distribution of gene loadings from the principal components of a 

shuffled, transcript-count matrix. p-values were computed with respect to this distribution; 

averages over 15 replicates are reported.

Gene Set Enrichment Analysis

Gene Set Enrichment Analysis was performed with 1370 gene lists from MSigDB 

(Subramanian et al. 2005). The loadings of each principal component were collected in a 

distribution and loadings within 2 standard deviations from the mean of this distribution 

were considered for analysis. We applied a hypergeometric test with significance p-values 

cutoff of 10−4.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. A mathematical model reveals factors determining the performance of shallow mRNA-
seq
(A) mRNA-seq throughput as a function of sequencing depth per sample for a typical 

sequencing capacity of 200 million reads.

(B) Unsupervised learning techniques are used to identify transcriptional programs. We ask 

when and why shallow mRNA-seq can accurately identify transcriptional programs.

(C) Decreasing sequencing depth adds measurement noise to the transcriptional programs 

identified by principal component analysis. Our approach reveals that dominant programs, 

defined as those that explain relatively large variances in the data, are tolerant to 

measurement noise.
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Figure 2. Transcriptional states of mouse tissues are distinguishable at low read coverage
(A) Principal component error as a function of read depth for selected principal components 

for the Shen et al. data. For first three principal components, 1% of the traditional read depth 

is sufficient for achieving >80% accuracy. Improvements in error exhibit diminishing returns 

as read depth is increased. Less dominant transcription programs (principal components 8 

and 15 shown) are more sensitive to sequencing noise.

(B) Variance explained by transcriptional program (blue) and differences between principal 

values (green) of the Shen et al. data. The leading, dominant transcriptional programs have 

principal values that are well-separated from later principal values suggesting that these 

should be more robust to measurement noise.

(C) Gene Set Enrichment significance for the top ten terms of principal component two (top) 

and three (bottom) as a function of read depth. 32,000 reads are sufficient to recover all top 

ten terms in the first three principal components. (Analysis for first principal component 

shown in Figure S1D and S1E.)

(D) Projection of a subset of the Shen et al. tissue data onto principal components two and 

three. The ellipses represent uncertainty at specific reads depths. Similar tissues lie close 

together. Transcriptional program two separates neural tissues from non-neural tissues while 

transcriptional program three distinguishes tissues involved in haematopoiesis from other 

tissues. This is consistent with the GSEA of these transcriptional programs in (C).
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Figure 3. Transcriptional states of single cells in the mouse brain are distinguishable at low 
transcript coverage
(A) Principal component error as a function of read depth for selected principal components 

for the Zeisel et al. data.

(B) Accuracy of cell type classification as a function of transcripts per cell. Accuracy 

plateaus with increasing transcript coverage. At 1000 transcripts per cell, all three cell types 

can be distinguished with low error. At 100 transcripts per cell, pyramidal cells cannot be 

distinguished from each other, while oligodendrocytes remain distinct.

(C Left) Covariance matrix of genes with high absolute loadings in the first principal 

component. The genes with the 100 highest positive and 100 lowest negative loadings are 

displayed.

(C Middle) First principal component is enriched for genes indicative of oligodendrocytes 

and neurons.

(C Right) Genes significance as a function of transcript count for the first principal 

component.

(D) True and false detection rates as a function of transcript count for genes significantly 

associated with the first three principal components. Below 100 transcripts per cell, false 

positives are common.
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Figure 4. Modularity of gene expression enables accurate, low depth transcriptional program 
identification
(A) Variance explained and covariance matrix for increasing gene expression covariance in a 

model.

(B) Variance explained by different principal components for the Zeisel et al. data set. 

(Middle) Covariance matrix shows large modules of covarying genes. (Bottom) Dominant 

transcriptional programs are robust to low-coverage profiling as predicted by model. 

Shuffling the dataset destroys the modular structure, resulting in noise-sensitive 

transcriptional programs. For the shuffled data, 4250 transcripts are required for 80% 

accuracy of the first three principal components, whereas 340 transcripts suffices for the 

original dataset.
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Figure 5. Gene expression survey of 352 public datasets reveals broad tolerance of bioinformatics 
analysis to shallow profiling
(A, left) Variance explained by the first five transcriptional programs of 352 published yeast, 

mouse, and human microarray datasets. Shuffling microarray datasets removes gene-gene 

covariance and destroys the relative dominance of the leading transcriptional programs.

(A, right) Read depth required to recover with 80% accuracy the first five principal 

components of the 352 datasets. Removing gene expression covariance from the data 

requires a median of ~10 times more reads to achieve the same accuracy.

(B) Accuracy of Gene Set Enrichment Analysis of the human microarray datasets at low 

read depth (100,000 reads, i.e. 1% deep depth). Reactome pathway database gene sets are 

correctly identified (blue) or not identified (yellow) at low read depth (false positives in red). 

~80% of gene sets can be correctly recovered at 100,000 reads.

(C) Accuracy of Gene Set Enrichment Analysis as a function of read-depth.
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Figure 6. Mathematical framework provides a Read Depth Calculator and guidelines for shallow 
mRNA-seq experimental design
(A) Error in the first principal component of the Zeisel et al. dataset for varying cell number 

and read-depth. Black circles denote a fixed number of total transcripts (100,000). Error can 

be reduced by either increasing transcript coverage or the number of cells profiled.

(B) Number of reads required (color) to achieve a desired error (y-axis) for a given principal 

value (x-axis). Typical principal values (dashed black vertical lines) are the medians across 

the 352 gene expression datasets.

(C) Error of the Read Depth Calculator (Equation 2) across 176 gene expression datasets 

used for validation (out of 352 total). The calculator predicts the number of reads to achieve 

80% PCA accuracy in each dataset (colored dots). The predicted values closely agree with 

simulated results, with the median error <10% for the first five transcriptional programs.
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