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Abstract

Multi-armed bandit problems (MABPs) are a special type of optimal control problem well suited 

to model resource allocation under uncertainty in a wide variety of contexts. Since the first 

publication of the optimal solution of the classic MABP by a dynamic index rule, the bandit 

literature quickly diversified and emerged as an active research topic. Across this literature, the use 

of bandit models to optimally design clinical trials became a typical motivating application, yet 

little of the resulting theory has ever been used in the actual design and analysis of clinical trials. 

To this end, we review two MABP decision-theoretic approaches to the optimal allocation of 

treatments in a clinical trial: the infinite-horizon Bayesian Bernoulli MABP and the finite-horizon 

variant. These models possess distinct theoretical properties and lead to separate allocation rules in 

a clinical trial design context. We evaluate their performance compared to other allocation rules, 

including fixed randomization. Our results indicate that bandit approaches offer significant 

advantages, in terms of assigning more patients to better treatments, and severe limitations, in 

terms of their resulting statistical power. We propose a novel bandit-based patient allocation rule 

that overcomes the issue of low power, thus removing a potential barrier for their use in practice.
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1 INTRODUCTION

Randomized controlled trials have become the gold-standard approach in clinical research 

over the last 60 years. Fixing the probability of being assigned to each arm for its duration, it 

removes (asymptotically) any systematic differences between patients on different arms with 

respect to all known or unknown confounders. The frequentist operating characteristics of 

the standard approach (e.g., the type-I error rate and power) are well understood, and the 
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size of the trial can easily be chosen in advance to fix these at any level the practitioner 

desires. However, while it is important for a clinical trial to be adequately powered to detect 

a significant difference at its conclusion, the well-being of patients during the study itself 

must not be forgotten.

MABPs are an idealized mathematical decision framework for deciding how to optimally 

allocate a resource among a number of competing uses, given that such allocation is to be 

done sequentially and under randomly evolving conditions. In its simplest version, the 

resource is work which can further be devoted to only one use at a time. The uses are treated 

as independent “projects” with a binary outcome which develop following Markov rules. 

Their roots can be traced back to work produced by Thompson (1933), which was later 

continued and developed in Robbins (1952), Bellman (1956), and finally Gittins and Jones 

(1974). Although their scope is much more general, the most common scenario chosen to 

motivate this methodology is that of a clinical trial which has the aim of balancing two 

separate goals:

• To correctly identify the best treatment (exploration or learning).

• To treat patients as effectively as possible during the trial (exploitation or 
earning).

One might think that these two goals are naturally complementary, but this is not the case. 

Correctly identifying the best treatment requires some patients to be assigned to all 

treatments, and therefore the former acts to limit the latter.

Despite this apparent near-perfect fit between a real-world problem and a mathematical 

theory, the MABP has yet to be applied to an actual clinical trial. Such a state of affairs was 

pointed out early on by Peter Armitage in a paper reflecting upon the use in practice of 

theoretical models to derive optimal solutions for problems in clinical trials:

Either the theoreticians have got hold of the wrong problem, or the practising 

triallists have shown a culpable lack of awareness of relevant theoretical 

developments, or both. In any case, the situation does not reflect particularly well 

on the statistical community (Armitage, 1985, page 15).

A very similar picture is described two decades later in Palmer (2002) when discussing and 

advocating for the use of “learn-as-you-go” designs as a means of alleviating many problems 

faced by those involved with clinical trials today. More recently, Don Berry—a leading 

proponent of the use of Bayesian methods to develop innovative adaptive clinical trials—

also highlighted the resistance to the use of bandit theoretical results:

But if you want to actually use the result then people will attack your assumptions. 

Bandit problems are good examples. An explicit assumption is the goal to treat 

patients effectively, in the trial as well as out. That is controversial (…) (Stangl, 

Inoue and Irony, 2012).

In view of this, a broad goal of this article is to contribute to setting the ground for change 

by reviewing a concrete area of theoretical bandit results, in order to facilitate their 

application in practice. The layout of the paper is as follows: In Section 2 we first recount 

the basic elements of the Bayesian Bernoulli MABP. In Section 3 we focus on the infinite-
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horizon case, presenting its solution in terms of an index rule—whose optimality was first 

proved by Gittins and Jones over 30 years ago. In Section 4 we review the finite horizon 

variant by reformulating it as an equivalent infinite-horizon restless MABP, which further 

provides a means to compute the index rule for the original problem. In Section 5 we 

compare, via simulation, the performance of the MABP approaches to existing methods of 

response adaptive allocation (including standard randomization) in several clinical trial 

settings. These results motivate the proposal of a composite method, that combines bandit-

based allocation for the experimental treatment arms with standard randomization for the 

control arm. We conclude in Section 6 with a discussion of the existing barriers to the 

implementation of bandit-based rules for the design of clinical trials and point to future 

research.

2 THE BAYESIAN BERNOULLI MULTI-ARMED BANDIT PROBLEM

The Bayesian Bernoulli K-armed bandit problem corresponds to a MABP in which only one 

arm can be worked on at a time t , and work on arm k = 1, …, K represents drawing a 

sample observation from a Bernoulli population Yk,t with unknown parameter pk, “earning” 

the observed value yk,t as a reward (i.e., either 0 or 1). In a clinical trial context, each arm 

represents a treatment with an unknown success rate. The Bayesian feature is introduced by 

letting each parameter pk have a Beta prior with parameters sk,0 and fk,0 such that 

 before the first sample observation is drawn (i.e., at t = 0). After having 

observed  successes and  failures, with  for any t ≥ 1, the 

posterior density is a Beta distribution with parameters 

Formally, the Bernoulli Bayesian MABP is defined by letting each arm k be a discrete-time 

Markov Control Process (MCP) with the following elements:

(a) The state space: 

 which 

represents all the possible two-dimensional vectors of information on the 

unknown parameter pk at time t . We denote the available information on 

treatment k at time t as xk,t = (sk,0 + Sk,t, fk,0 + Fk,t) and the initial prior as xk,0 

= (sk,0, fk,0). In a clinical trial context, the random vector (Sk,t, Fk,t) represents 

the number of successful and unsuccessful patient outcomes (e.g., response to 

treatment, remission of tumor, etc.).

(b) The action set k is a binary set representing the action of drawing a sample 

observation from population k at time t (ak,t = 1) or not (ak,t = 0). In a clinical 

context, the action variable stands for the choice of assigning patient t to 

treatment arm k or not.

(c) The Markovian transition law Pk(xk,t+1|xk,t, ak) describing the evolution of the 

information state variable in population k from time t to t + 1 is given by
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(2.1)

for any xk,t ∈ k,t and where w.p. stands for “with probability.”

(d) The expected rewards and resource consumption functions are

(2.2)

for t = 0, 1, …, T − 1, where, in accordance to (2.1), a reward (i.e., a treatment 

success) in arm k arises only if that arm is worked on and with a probability 

given by the posterior predictive mean of pk at time t and resource 

consumption is restricted by the fact that (at most) one treatment can be 

allocated to every patient in the trial, that is,  for all t.

A rule is required to operate the resulting MCP, indicating which action to take for each of 

the K arms, for every possible combination of information states and at every time t, until 

the final horizon T. Such a rule forms a sequence of actions {ak,t }, which depends on the 

information available up to time t, that is, on {xk,t}, and it is known as a policy within the 

Markov Decision Processes literature. To complete the specification of this multi-armed 

bandit model as an optimal control model, the problem’s objective function must be 

selected. Given an objective function and a time horizon, a multi-armed bandit optimal 

control problem is mathematically summarized as the problem of finding a feasible policy, 

π, in ∏ (the set of all the feasible policies given the resource constraint) that optimizes the 

selected performance objective.

The performance objective in the Bayesian Bernoulli MABP is to maximize the Expected 

Total Discounted (ETD) number of successes after T observations, letting 0 ≤ d < 1 be the 

discount factor. Then, the corresponding bandit optimization problem is to find a discount-

optimal policy such that

(2.3)

where  is the initial joint state, Eπ [⋅] denotes expectation under policy π and transition 

probability rule (2.1),  is the optimal expected total discounted value function 
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conditional on the initial joint state being equal to  (for any possible joint initial state), and 

where, given the resource constraint, the family of admissible feasible policies Π contains 

the sampling rules π for which it holds that  for all t.

A generic MABP formally consists of K discrete-time MCPs with their elements defined in 

more generality, that is, (a) the state space: a Borel space, (b) the binary action set, (c) the 

Markovian transition law: a stochastic kernel on the state space given each action and (d) a 

reward function and a work consumption function: two measurable functions. As before, the 

MABP is to find a policy that optimizes a given performance criterion, for example, it 

maximizes the ETD net rewards.

Robbins (1952) proposed an alternative version of the Bayesian Bernoulli MABP problem 

by considering the average regret after allocating T sample observations [for a large T and 

for any given and unknown . For the Bayesian Bernoulli MABP, the total regret ρ is 

defined as

(2.4)

A form of asymptotic optimality can be defined for sampling rules π in terms of (2.4) if it 

holds that for any , . A necessary condition for a rule to attain this 

property is to sample each of the K populations infinitely often, that is, to continue to sample 

from (possibly) suboptimal arms for every t < ∞. In other words, asymptotically optimal 

rules have a strictly positive probability of allocating a patient to every arm at any point of 

the trial. Of course, within the set of asymptotically optimal policies secondary criteria may 

be defined and considered (see, e.g., Lai and Robbins, 1985). As it will be illustrated in 

Section 5, objectives in terms of (2.3) or (2.4) give rise to sampling rules with distinct 

statistical properties. Asymptotically optimal rules, that is, in terms of (2.4), maximize the 

learning about the best treatment, provided it exists, while the rules that are optimal in terms 

of (2.3) maximize the mean number of total successes in the trial.

3 THE INFINITE-HORIZON CASE: A CLASSIC MABP

We now review the solution giving the optimal policy to optimization problem (2.3) in the 

infinite-horizon setting by letting T = ∞. In general, as MABPs are a special class of MCPs, 

the traditional technique to address them is via a dynamic programming (DP) approach. 

Thus, the solution to (2.3), according to Bellman’s principle of optimality (Bellman, 1952), 

is such that for every t = 0, 1, … the following DP equation holds:
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(3.1)

where e1, e2 respectively denote the unit vectors (1, 0) and (0, 1). Under the assumptions 

defining the Bayesian Bernoulli MABP, the theory for discounted MCPs ensures the 

existence of an optimal solution to (3.1) and also the monotone convergence of the value 

functions . Therefore, equation (3.1) can be approximately solved iteratively using a 

backward induction algorithm.

Unfortunately, as shown in Figure 1, such a DP technique suffers from a severe 

computational burden, which is particularly well illustrated in the classic MABP where the 

size of the state space grows with the truncation horizon T. To illustrate this fact, consider 

the case of K treatments with an initial uniform prior distribution (i.e., ) and 

truncation horizon to initialize the algorithm equal to T. The total number of individual 

calculations [i.e., the number of successive evaluations of  required to 

find an approximate optimal solution by means of the DP algorithm equals 

. The precision of such an approximation depends on d, for example, if 

d ≤ 0.9 values to four-figure accuracy are calculated for T ≥ 100. Therefore, considering the 

problem with K = 3 and d = 0.9 (and hence T ≥ 100) makes the intractability of the 

problem’s optimal policy become evident. (For a more detailed discussion see the 

Appendix.)

3.1 The Gittins Index Theorem

The computational cost of the DP algorithm to solve equation (3.1) is significantly smaller 

than the cost of a complete enumeration the set of feasible policies ∏ (i.e., the brute force 
strategy), yet it is still not enough to make the solution of the problem applicable for most 

real world scenarios, with more than 2 treatment arms. For this reason the problem gained 

the reputation of being extremely hard to solve soon after being formulated for the first time, 

becoming a paradigmatic problem to describe the exploration versus exploitation dilemma 

characteristic of any data-based learning process.

Such a state of affairs explains why the solution first obtained by Gittins and Jones (1974) 

constitutes such a landmark event in the bandit literature. The Index theorem states that if 

problem P is an infinite-horizon MABP with each of its K composing MCPs having (1) a 

finite action set k, (2) a finite or infinite numerable state space k, (3) a Markovian 

transition law under the passive action ak,t = 0 (i.e., the passive dynamics) such that
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(3.2)

for any  is an indicator variable for the event that the state 

variable value at time  equals the state variable value of state t : xk, and (4) the set of 

feasible polices П contains all polices π such that for all t

(3.3)

then there exists a real-valued index function , which recovers the optimal solution to 

such a MABP when the objective function is defined under a ETD criterion, as in (2.3). Such 

a function is defined as follows:

(3.4)

where the expectation is computed with respect to the corresponding Markovian (active) 

transition law , and τ is a stopping time. Specifically, the optimal policy π* for 

problem P is to work on the bandit process with the highest index value, breaking ties 

randomly. Note that the stopping time τ is past-measurable, that is, it is based on the 

information available at each decision stage only. Observe also that the index is defined as 

the ratio of the ETD reward up to τ active steps to the ETD cost up to τ active steps.

MABPs whose dynamics are restricted as in (3.2) (namely, those in which passive projects 

remain frozen in their states) are referred to in the specialized literature as classic MABPs 

and the name Gittins index is used for the function (3.4). The Index theorem’s significant 

impact derives from the possibility of using such a result to break the curse of 

dimensionality by decomposing the optimal solution to a K -armed MABP in terms of its 

independent parts, which are remarkably more tractable than the original problem as shown 

in Figure 1. The number of individual calculations required to solve problem (3.1) using the 

Index theorem is of order , which no longer explodes with the truncation 

horizon T. Further, it is completely independent of K, which means that a single index table 

suffices for all possible trials, therefore reducing the computing requirements appreciably. 

(For more details, see the Appendix.)

Such computational savings are particularly well illustrated in the Bayesian Bernoulli 

MABP where the Gittins index (3.4) is given by
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(3.5)

where 

Calculations of the indices (3.5) have been reported in brief tables as in Gittins (1979) and 

Robinson (1982). Improvements to the efficiency of this computing the index have since 

been proposed by Katehakis and Veinott (1985), Katehakis and Derman (1986). Moreover, 

since the publication of Gittins’ first proof of the optimality result of the index policy for a 

classic MABP in Gittins and Jones (1974), there have been alternative proofs, each offering 

complementary insights and interpretations. Among them, the proofs by Whittle (1980), 

Varaiya, Walrand and Buyukkoc (1985), Weber (1992) and Bertsimas and Niño-Mora (1996) 

stand out.

To elaborate a little more on the use of the Gittins index for solving a K -armed Bayesian 

Bernoulli MABP in a clinical trial context, we have included some values of the Gittins 

index in Table 1 and Figure 2. These values correspond to a particular instance in which the 

initial prior for every arm is uniform, the discount factor is d = 0.99, the index precision is of 

4 digits and we have truncated the search of the best stopping time to T = 750. The choice of 

d = 0.99 is a widely used value in the related bandit literature. In our example, since 0.99750 

< 10−3, patients treated after this time yield an almost zero expected discounted reward and 

are hence ignored.

The Gittins index policy assigns a number to every treatment (from an extended version of 

Table 1) based on the values of sk,t and fk,t observed, and then prioritizes sampling the one 

with the highest value. Thus, provided that we adjust for each treatment prior, the same table 

can be used for making the allocation decision of all treatments in a trial. Furthermore, the 

number of treatments need not be prespecified in advance and new treatments may be 

seamlessly introduced part way through the trial as well (see Whittle, 1981). To give a 

concrete example, suppose that all treatments start with a common uniform prior, then all 

initial states are equal to xk,0 = (1, 1) with a corresponding Gittins index value of 0.8699 for 

all of them. Yet, if a treatment k has a beta prior with parameters (1, 2) and another treatment 

k′ has a prior with parameters (2, 1), their respective initial states are xk,0 = (1, 2) and 

, and their associated index values respectively are 0.7005, 0.9102. The same 

reasoning applies for the case in which priors combine with data so as to have xk,1 = (1, 2) 

and .

The underlined values in Table 1 describe situations in which the learning element plays a 

key role. Consider two treatments with the same posterior mean of success 2/4 = 4/8 = 1/2. 

According to the indices denoted by the single line, the treatment with the smallest number 

of observations is preferred: 0.7844 > 0.6952. Moreover, consider the case in which the 

posterior means of success suggest the superiority of one over the other: 2/5 = 0.4 < 6/12 = 
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0.5, yet their indices denoted by the double-underline suggest the opposite, 0.6726 > 0.6504, 

again prioritizing the least observed population.

Gittins and Wang (1992) define the learning component of the index as the difference 

between the index value and the expected immediate reward, which for the general Bayesian 

Bernoulli MABP is given by . This posterior probability is the current 

belief that a treatment k is successful and it can be used for making patient allocation 

decisions in a myopic way, that is, exploiting the available information without taking into 

account the possible future learning. Consider, for instance, the case where xk,0 = (1, 1) for 

all k. In that case, the learning component before making any treatment allocation decision 

is thus (0.8699 − 0.5) = 0.3699. As the number of observations of a bandit increases, the 

learning part of the indices decreases.

4 THE FINITE HORIZON CASE: A RESTLESS MABP

Of course, clinical trials are not run with infinite resources or patients. Rather, one usually 

attempts to recruit the minimum number of patients to achieve a pre-determined power. 

Thus, we now consider the optimization problem defined in (2.3) for a finite value of T . 

Indeed, a solution could in theory be obtained via DP, but it is impractical in large-scale 

scenarios for reasons already stated. Moreover, the Index theorem does not apply to this 

case, thus, the Gittins index function as defined for the infinite-horizon variant does not exist 

(Berry and Fristedt, 1985). In the infinite-horizon problem, at any t there is always an 

infinite number of possible sample observations to be drawn from any of the populations. 

This is no longer the case in a finite-horizon problem, and the value of a sampling history 

(sk,t, fk,t) is not the same when the sampling process is about to start than when it is about to 

end. The finite-horizon problem analysis is thus more complex, because these transient 

effects must be considered for the characterization of the optimal policy. In what follows we 

summarize how to derive an index function analogous to Gittins’ rule for the finite-horizon 

Bayesian Bernoulli MABP based on an equivalent reformulation of it as an infinite-horizon 

Restless MABP, as it was done in Niño-Mora (2005). In the equivalent model the 

information state is augmented, adding the number of remaining sample observations that 

can be drawn from the K populations. Hence, the MCP has the following modified elements:

(a) An augmented state space  given by the union of the set , where 

, and an absorbing state {E}, representing the end of the 

sampling process. Thus,  is a three-dimensional vector 

combining the information on the treatment (prior and observed) and the 

number of remaining patients to allocate until the end of the trial.

(b) The same as in Section 2.

(c) A transition law  for every  such that 0 ≤ t ≤ T − 1:
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(4.1)

 and E under both actions, lead to E with probability one.

(d) The one-period expected rewards and resource consumption functions are 

defined as in (2.2) for t = 0, 1, …, T − 1, while the states E and  both yield 

0 reward and work consumption.

The objective in the resulting bandit optimization problem is also to find a discount-optimal 

policy that maximizes the ETD rewards.

4.1 Restless MABPs and the Whittle Index

In this equivalent version the horizon is infinite (a fiction introduced by forcing every arm of 

the MABP to remain in state E after the period T ), nonetheless, the Index theorem does not 

apply to it because its dynamics do not fulfil condition (3.2). The inclusion of the number of 

remaining observations to allocate as a state variable causes inactive arms to evolve 

regardless of the selected action, and this particular feature makes the augmented MABP 

restless.

In the seminal work by Whittle (1988), this particular extension to the MABP dynamics was 

first proposed and the name restless was introduced to refer to this class of problems. 

Whittle deployed a Lagrangian relaxation and decomposition approach to derive an index 

function, analogous to the one Gittins had proposed to solve the classic case, which has 

become known as the Whittle index.

One of the main implications of Whittle’s work is the realization that the existence of such 

an index function is not guaranteed for every restless MABP. Moreover, even in those cases 

in which it exists, the index rule does not necessarily recover the optimal solution to the 

original MABP (as it does in the classic case), being thus a heuristic rule. Whittle further 

conjectured that the index policy for the restless variant enjoys a form of asymptotic 

optimality (in terms of the ETD rewards achieved), a property later established by Weber 

and Weiss (1990) under certain conditions. Typically, the resulting heuristic has been found 

to be nearly optimal in various models.

4.2 Indexability of Finite-Horizon Classic MABP

In general, establishing the existence of an index function for a restless MABP (i.e., showing 

its indexability) and computing it is a tedious task. In some cases, the sufficient indexability 

conditions (SIC) introduced by Niño-Mora (2001) can be applied for both purposes.
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The restless bandit reformulation of finite-horizon classic MABPs, as defined in Section 2, 

is always indexable. Such a property can either be shown by means of the SIC approach or 

simply using the seminal result in Bellman (1956), by which the monotonicity of the optimal 

policies can be ensured, allowing to focus attention on a nested family of stopping times.

Moreover, the fact that in this restless MABP reformulation the part of the augmented state 

that continues to evolve under ak,t = 0, that is, T − t , does so in the exact same way that 

under ak,t = 1 allows computation of the Whittle index as a modified version of the Gittins 

index, in which the search of the optimal stopping time in (3.4) is truncated to be less than or 

equal to the number of remaining observations to allocate (at each decision period) (see 

Proposition 3.1 in Niño-Mora, 2011). Hence, the Whittle index for the finite-horizon 

Bayesian Bernoulli MABP is

(4.2)

where the expectation is computed with respect to the corresponding Markovian (active) 

transition law  and τ is a stopping time.

Table 2, Table 3 and Table 4 include some values of the Whittle indices for instances in 

which, as before, the initial prior is uniform for all the arms and the index precision is of 4 

digits, but the discount factor is d = 1, the sampling horizon is set to be T = 180, and the 

number of remaining observations is respectively allowed to be T − t = 80, T − t = 40 and T 
− t = 1. Again, the Whittle index rule assigns a number from these tables to every treatment, 

based on the values of sk,0 + sk,t and fk,0 + fk,t and on the number of remaining periods T − 

t , and then prioritizes sampling the one with the highest value.

It follows from the above tables that the learning element of this index decreases as T − t 
decreases. In the limit, when T − t = 1 the Whittle index is exactly the posterior mean of 

success (which corresponds to the myopic allocation rule that results from using current 

belief as an index). On the contrary, as T − t → ∞, the Whittle index tends to approximate 

the Gittins index. Hence, for a given information vector, the relative importance of exploring 

(or learning) vs. exploiting (or being myopic) varies significantly over time in a finite-

horizon problem as opposed to the infinite-horizon case in which this balance remains 

constant in time depending solely on the sampling history. Notice that the computational 

cost of a single Whittle index table is, at most, the same as for a Gittins index one; however, 

solving a finite horizon MABP using the Whittle rule has significantly higher computational 

cost than the infinite-horizon case, because the Whittle indices must be computed at every 

time point t.

This evolution of the learning vs. earning trade-off is depicted graphically in Figure 3 and 

causes the decisions in each of the highlighted situations of Table 1 to change over time 

when considered for a finite-horizon problem. In Table 2 with T − t = 80 both decisions 
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coincide with the ones described for Table 1, while in Table 3, in which T − t = 40, the 

decision for the second example has changed, and in Table 4, in which T − t = 1, the 

decisions in both cases are different.

5 SIMULATION STUDY

In this section we evaluate the performance of a range of patient allocation rules in a clinical 

trial context, including the bandit-based solutions of Section 3 and Section 4. We focus on 

the following: statistical power (1 − β); type-I error rate (α); expected proportion of patients 

in the trial assigned to the best treatment (p*); expected number of patient successes (ENS); 

and, for the two-arm case, bias in the maximum likelihood estimate of treatment effect 

associated with each decision rule. Specifically, we investigate the following patient 

allocation procedures:

• Fixed Randomized design (FR): uses an equal, fixed probability to allocate 

patients to each arm throughout the trial.

• Current Belief (CB): allocates each patient to the treatment with the 

highest mean posterior probability of success.

• Thompson Sampling (TS): randomizes each patient to a treatment k with a 

probability that is proportional to the posterior probability that treatment k 
is the best given the data. In the simulations we shall use the allocation 

probabilities defined as

(5.1)

where c is a tuning parameter defined as  and t and T are the current 

and maximum sample size respectively. See, for example, Thall and 

Wathen (2007).

• Gittins index (GI) and Whittle index (WI): respectively use the 

corresponding index functions defined by formulae (3.5) and (4.2).

• Upper Confidence Bound index (UCB): developed by Auer, Cesa-Bianchi 

and Fischer (2002), takes into account not only the posterior mean but also 

its variability by allocating the next patient to the treatment with the 

highest value of an index, calculated as follows: 

Semi-Randomized (Asymptotically Optimal) Bandit Approaches. In addition, we consider a 

randomized class of index-based bandit patient allocation procedures based on a simple 

modification first suggested in Bather (1981). The key idea is to add small perturbations to 

Villar et al. Page 12

Stat Sci. Author manuscript; available in PMC 2016 May 04.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



the index value corresponding to the observed data at each stage, obtaining a new set of 

indices in which the (deterministic) index-based part captures the importance of the 

exploitation based on the accumulated information and the (random) perturbation part 

captures the learning element. Formally, these rules are defined as follows:

(5.2)

where  is the index value associated to the prior and observed data on 

arm k by time t , Zt is an i.i.d. positive and unbounded random variable, and 

 is a sequence of strictly positive constants tending to 0 as 

 tends to ∞. The interest in this class of rules is due to their asymptotic 

optimality, that is, property (2.4) discussed in Section 2, specifically on assessing how their 

performance compares to the index rules that are optimal (or nearly optimal) in terms of the 

ETD objective (2.3). Notice that rules defined by (5.2) have a decreasing, though strictly 

positive, probability of allocating patients to every arm at any point of the trial. In other 

words, rules (5.2) are such that most of the patients are allocated sequentially to the current 

best arm (according to the criteria given by the index value), while some patients are 

allocated all the other of the treatment arms.

For the simulations included in this paper we let Zt(K) be an exponential random variable 

with parameter  and define two additional 

approaches:

• Randomized Belief index (RBI) design: makes the sampling decisions 

between the populations based on an index computed setting 

 in (5.2).

• Randomized Gittins index (RGI) design: first suggested in Glazebrook 

(1980), makes the sampling decisions between the populations based on 

the index computed setting 

 in (5.2)

For every design, ties are broken at random and in every simulated scenario we let 

 for all k.

Design Scenarios. We implement all of the above methods in several K-arm trial design 

settings. In each case, trials are made up of K −1 experimental treatments and one control 

treatment. The control group (and its associated quantities) is always denoted by the 

subscript 0 and the experimental treatment groups by 1, …, K − 1. We first consider the case 

K = 2. To compare the two treatments, we consider the following hypothesis: H0 : p0 ≥ p1, 

with the type-I error rate calculated at p0 = p1 = 0.3 and the power to reject H0 calculated at 

H1 : p0 = 0.3; p1 = 0.5. We set the size of the trial to be T = 148 to ensure that FR will attain 

at least 80% power when rejecting H0 with a one-sided 5% type-I error rate. We then 

evaluate the performances of these designs by simulating 104 repetitions of the trials under 
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each hypothesis and comparing the resulting operating characteristics of the trials. 

Hypothesis testing is performed using a normal cutoff value (when appropriate) and using an 

adjusted Fisher’s exact test for comparing two binomial distributions, where the adjustment 

chooses the cutoff value to achieve a 5% type-I error.

For the K -arm design settings we shall consider the following hypothesis: H0 : p0 ≥ pi for i 
= 1, …, K −1 with the family-wise error rate calculated at p0 = p1 = ⋯ = pK−1 = 0.3. We use 

the Bonferroni correction method to account for multiple testing and therefore ensure that 

the family-wise error rate is less than or equal to 5%, that is, all hypotheses whose p-values 

pk are such that  are rejected. Additionally, when there are multiple experimental 

treatments, we shall define the statistical power as the probability of the trial ending with the 

conclusion that a truly effective treatment is effective.

5.1 Two-Arm Trial Setting Simulations

Table 5 shows the results for K = 2 under both hypotheses and for each proposed allocation 

rule. The randomized and semi-randomized response-adaptive procedures (i.e., TS, UCB, 

RBI and RGI) exhibit a slightly inferior power level than a FR design; however, they have an 

advantage in terms of ENS over a FR design. On the other hand, the three deterministic 

index-based approaches (i.e., CB, WI and GI) have the best performance in terms of ENS, 

yet result in power values which are far below the required values. In the most extreme case, 

for the CB and WI rules, the power is approximately 3.5 times smaller than with a FR 

design.

Adaptive rules have their power reduced because they induce correlation among treatment 

assignments; however, for the deterministic index policies this effect is the most severe 

because they permanently skew treatment allocation toward a treatment as soon as one 

exhibits a certain advantage over the other arms.

To illustrate the above point, let n0 and n1 be the number of patients allocated to treatment 0 

and 1 respectively, then for the results in Table 5 it holds that ECB(n0) = 31.60, ECB(n1) = 

116.40, EWI(n0) = 16.49, EWI(n1) = 131.51 and EGI(n0) = 19.06, EGI(n1) = 128.94. 

Moreover, this implies that the required “superiority” does not need to be a statistically 

significant difference of the size included in the alternative hypothesis as suggested by the 

following values: 

 and 

.

The results in Table 5 illustrate the natural tension between the two opposing goals of 

maximizing the statistical power to detect significant treatment effects (using FR) and 

maximizing the health of the patients in the trial (using GI). The optimality property inherent 

in the GI design produces an average gain in successfully treated patients of 11 (an 

improvement of 18.62% over the FR design). This is only 4 fewer patients on average than 

the theoretical upper bound (calculated as T × p1 = 74) achievable if all patients were 

assigned to the best treatment from the start. It is worth noting that the asymptotically 

optimal index approaches [w.r.t. (2.4)] improve on the statistical power of the index designs 
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(around 76%–78% for a 5% type-I error rate) at the expense of attaining an inferior value of 

ENS (around 5 fewer successes on average compared to the bandit-based rules). Yet, these 

rules significantly improve on the value of ENS attained by a FR design, naturally striking a 

better balance in the patient health/power trade-off.

From Table 5 one can see that the three index-based rules significantly improve on the 

average number of successes in the trial by increasing the allocation toward the superior 

treatment based on the observed data. This acts to reduce the power to detect significant 

treatment effect. Another factor at play is bias: index-based rules induce a negative bias in 

the treatment effect estimates of each arm, the magnitude of this bias is largest for inferior 

treatments (for which less patients are assigned to than superior treatments). When the 

control is inferior to the experimental treatment, this induces a positive bias in the estimated 

benefit of the experimental treatment over the control. This is shown in Figure 4. A heuristic 

explanation for this is as follows. The index-based rules select a “superior” treatment before 

the trial is over based on the accumulated data. This implies that if a treatment performs 

worse than its true average, that is, worse for a certain number of consecutive patients, then 

the treatment will not be assigned further patients. The treatment’s estimate then has no 

chance to regress up toward the true value. Conversely, if a treatment performs better than its 

true average, the index-based rules all assign further patients to receive it, and its estimate 

then has the scope to regress down toward its true value. This negative bias of the unselected 

arms is observed for all dynamic allocation rules, and is the most extreme for the CB 

method.

The final observation refers to the fact that although all the index-based rules fail to achieve 

the required level of power to detect the true superior treatment, they tend to correctly skew 

patient allocation toward the best treatment within the trial, when it exists. For the 

simulation reported in Table 5 we have computed the probability that each rule makes the 

wrong choice (i.e., stops allocating patients to the experimental treatment). These values are 

as follows: 0.1730, 0.0307, 0.0035 for the CB, WI and GI methods respectively.

5.2 Multi-Arm Trial Setting

We now present results for a K = 4 setting. First, we consider the case of a trial with T = 423 

patients. As before, we set the size of the trial to ensure that a FR design results in at least 

80% power to detect an effective treatment for a family-wise error rate of less than 5%. 

Results for this case are depicted in Table 6. The Whittle index approach is omitted because 

for T roughly larger than 150 its performance is near identical to that attained by the Gittins 

index but with a significantly higher computational cost.

In this setting, the randomized and semi-randomized adaptive rules (i.e., TS, UCB, RBI, 

RGI) exhibit an advantage over a FR both in the achieved power and in ENS. The reason for 

that is that these rules continue to allocate patients to all arms while they skew allocation to 

the best performing arm, hence, ensuring that by the end of the design the control arm will 

have a similar number of observations than with FR while the best arm will have a larger 

number. Among these rules, TS and UCB exhibit the best balance between power-ENS 

which achieve the 80% power increasing ENS in approximately 23 over a FR design. The 

deterministic index-based rules CB and GI increase this advantage in ENS over a FR design 
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by roughly 36 and 50, respectively. However, a severe reduction is again observed in the 

power values of these designs. On the other hand, the probability that each of these rules 

makes a wrong choice (i.e., it does not skew the allocation toward the best experimental 

treatment) is 0.2691 and 0.0051, respectively, for the CB and GI.

5.3 The Controlled Gittins Index Approach

To overcome the severe loss of statistical power of the Gittins index, we introduce, for the 

multi-arm trial setting only, a composite design in which the allocation to the control 

treatment is done in such a way that one in every K patients is allocated to the control group 

while the allocation of the remaining patients among the experimental treatments is done 

using the Gittins index rule. We refer to this design as the controlled Gittins (CG) approach.

Based on the simulation results, CG manages to solve the trade-off quite successfully, in the 

sense that it achieves more than 80% power, while it achieves a mean number of successes 

very close to the one achieved by the CB rule and with a third of the variability that CB 

exhibits in expected number of patient successes.

5.4 Multi-Arm Trial in a Rare Disease Setting

Finally, we imagine a rare disease setting, where the number of patients in the trial is a high 

proportion of all patients with the condition, but is not enough to guarantee reasonable 

power to detect a treatment effect of a meaningful size. In such a context, the idea of 

prioritizing patient benefit over hypothesis testing is likely to raise less controversy than in a 

common disease context (Wang and Arnold, 2002). We therefore simulate a four-arm trial as 

before but where the size of the trial is T = 80. Given that the size of the trial implies a very 

small number of observations per arm, Table 7 only includes the results of the tests using 

Fisher’s exact test and Fisher’s adjusted exact test (in this case, adjusted to attain the same 

type-I error as the other methods). Also, to make the scenario more general, we have 

considered that under the alternative hypothesis the parameters are such that H1 : pk = 0.3 

+ 0.1 × k, k = 0, 1, 2, 3.

The FR approach exhibits a 30% power and attains an ENS value of 36. Table 7 shows the 

results attained for each of the designs considered. Under the alternative hypotheses, the GI 

and WI designs achieve an ENS gain over the FR design of 6 patients. Again, the CG rule 

exhibits an advantage over FR both in the achieved power and in the ENS (which in the case 

of this small population equals the advantage achieved by TS or UCB). Its ENS is less than 

10 below the theoretical upper bound of 48. An important feature to highlight is that the 

Whittle rule does not significantly differ from the Gittins rule as it could be expected, given 

the trial (and hence its horizon) is small. These results illustrate how the GI and WI start 

skewing patient allocation toward the best arm (when it exists) earlier than other adaptive 

designs, therefore explaining their advantage in terms of p* for small T over all of them.

6 DISCUSSION

Multi-armed bandit problems have emerged as the archetypal model for approaching 

learning problems while addressing the dilemma of exploration versus exploitation. 

Although it has long been used as the motivating example, they have yet to find any real 
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application in clinical trials. After reviewing the theory of the Bernoulli MABP approach, 

and the Gittins and Whittle indices in particular, we have attempted to illustrate their utility 

compared to other methods of patient allocation in several multi-arm clinical trial contexts.

Our results in Section 5 show that the Gittins and Whittle index-based allocation methods 

perform extremely well when judged solely on patient outcomes, compared to the traditional 

fixed randomization approach. The two indexes have distinct theoretical properties, yet in 

our simulations any differences in their performances were negligible, with both designs 

being close to each other and the best possible scenario in terms of patient benefit. Since it 

only needs to be calculated once before the trial starts, the Gittins index may naturally be 

preferred.

The Gittins index, therefore, represents an extremely simple—yet near optimal—rule for 

allocating patients to treatments within the finite horizon of a real clinical trial. Furthermore, 

since the index is independent of the number of treatments, it can seamlessly incorporate the 

addition of new arms in a trial, by balancing the need to learn about the new treatment with 

the need to exploit existing knowledge on others. The issue of adding treatment arms is 

present in today’s cutting-edge clinical trials. For example, this facet has been built into the 

I-SPY 2 trial investigating tumour-specific treatments for breast cancer from the start 

(Barker et al., 2009). It is also now being considered in the multi-arm multi-stage 

STAMPEDE trial into treatments for prostate cancer as an unplanned protocol amendment, 

due to a new agent becoming available (Sydes et al., 2009; Wason et al., 2012).

Gittins indices and analogous optimality results have been derived for endpoints other than 

binary. Therefore, the analysis and conclusions of this work naturally extend to the 

multinomial distribution (Glazebrook, 1978), normally distributed processes with known 

variance (Jones, 1970) and with unknown variance (Jones, 1975), and exponentially 

distributed populations (Do Amaral, 1985; Gittins, Glazebrook and Weber, 2011).

Unfortunately, the frequentist properties of designs that utilize index-based rules can 

certainly be questioned; both the Gittins and Whittle index approaches required an 

adjustment of the Fisher’s exact test in order to attain type-I error control, produced biased 

estimates and, most importantly, had very low power to detect a treatment difference at the 

end of the trial. Since this latter issue greatly reduces their practical appeal, we proposed a 

simple modification that acted to stabilize the numbers of patients allocated to the control 

arm. This greatly increased their power while seemingly avoiding any unwanted type-I error 

inflation above the nominal level. This principle is not without precedence, indeed, Trippa et 

al. (2012) have recently proposed a Bayesian adaptive design in the oncology setting for 

which protecting the control group allocation is also an integral part. Further research is 

needed to see whether statistical tests can be developed for bandit-based designs with well-

controlled type-I error rates and also if bias-adjusted estimation is possible.

There are of course other obvious limitations to the use of index-based approaches in 

practice. A patient’s response to treatment needs to be known before the next patient is 

recruited, since the subsequent allocation decision depends on it. This will only be true in a 

small number of clinical contexts, for example, in early phase trials where the outcome is 
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quick to evaluate or for trials where the recruitment rate may be slow (e.g., some rare disease 

settings). MABPs rely on this simplifying assumption for the sake of ensuring both 

tractability and optimality, and can not claim these special properties without making 

additional assumptions (see, e.g., Caro and Yoo, 2010). It would be interesting to see, 

however, if index-based approaches could be successfully applied in the more general 

settings where patient outcomes are observed in groups at a finite number of interim 

analyses, such as in a multi-arm multi-stage trial (Magirr, Jaki and Whitehead, 2012; Wason 

and Jaki, 2012). Further research is needed to address this question.

A different limitation to the use of bandit strategies is found in the fact that the approach 

leads to deterministic strategies. Randomization naturally protects designs against many 

possible sources of bias, for example, patient drift unbalancing treatment arms (Tang et al., 

2010) or unscrupulous trial sponsors cherry-picking patients (FDA, 2006). Of course, while 

these are serious concerns, they could also be leveled at any other deterministic allocation 

rule, such as play-the-winner. Further research is needed to introduce randomization to 

bandit strategies and also to determine some general conditions under which arms are 

selected or dropped when using the index rules.

Further supporting materials for this paper, including programs to calculate extended tables 

of the Gittins and Whittle indexes, can be found at http://www.mrc-bsu.cam.ac.uk/software/

miscellaneous-software/.
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APPENDIX: INDEX COMPUTATION

There is a vast literature on the efficient computation of the Gittins indices. In Beale (1979), 

Varaiya, Walrand and Buyukkoc (1985) and Chen and Katehakis (1986), among others, 

algorithms for computing the Gittins indices for the infinite-horizon classic MABP with a 

finite state space are provided. The computational cost for all of them (in terms of its 

running time as a function of the number of states N) is N3 + (N2). The algorithm for 

computing the Gittins indices in such a case achieving the lowest time complexity, 2/3N3 + 

(N2), was provided by Niño-Mora (2007). For MABP with an infinite state space, such as 

the Bayesian Bernoulli MABP in Section 3, the indices can be computed using any of the 

above algorithms but confining attention to some finite set of states, which will eventually 

determine the precision of their calculation. For the finite-horizon classic MABP, as 

reviewed in Section 4, an efficient exact computation method based on a recursive adaptive-

greedy algorithm is provided in Niño-Mora (2011).

In what follows we examine in more detail the so-called calibration method for the 

approximate index computation in the Bayesian Bernoulli MABP, both for the infinite- 

(Gittins index) and finite-horizon case (Whittle index). There are many reasons for focusing 

on this approach, not least because it was the algorithm used for computing the values 
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presented in this paper. It also sheds light on the interpretation of the resulting index values, 

by connecting the Gittins index approach to the work in Bellman (1956), and has long been 

the preferred computational method.

The Calibration Method

Bellman (1956) studied an infinite random sampling problem involving two binomial 

distributions: one with a known success rate and the other one with an unknown rate but 

with a Beta prior. Bellman’s key contribution was to show that the solution to the problem of 

determining the sequence of choices that maximize the ETD number of successes exists, is 

unique and, moreover, is expressible in terms of an index function which depends only on 

the total observed number of successes s and failures f of the unknown process.

Gittins and Jones (1974) used that result and showed that the optimal rule for an infinite-

horizon MABP can also be expressed in terms of an index function for each of the K 
Bernoulli populations and based on their observed sampling histories (s, f ). Such an index 

function is given by the value p ∈ [0, 1] for which the decision maker is indifferent between 

sampling the next observation from a population with known success rate p or from an 

unknown one with an expected success rate . The calibration method uses DP to 

approximate the Gittins index values based on this idea, as explained in Gittins and Jones 

(1979), and it can be adapted to compute the finite-horizon counterpart, as explained in 

Berry and Fristedt (1985), Chapter 5.

Specifically, this index computation method solves, for a grid of p values (the size of which 

determines the accuracy of the resulting index values approximations), the following DP 

problem:

(A.1)

For the infinite-horizon problem and with 0 ≤ d < 1, the convergence result allows for the 

omission of the subscript t in the optimal value functions in (A.1), letting the reward 

associated to the known arm be . For obtaining a reasonably good initial 

approximation of the optimal value function, the terminal condition on  is 

solved for some values of s and f such that s + f = T − 1, and for a large T and then a 

backward induction algorithm is applied to yield an approximate value for . For 

a fixed p the total number of arithmetic operations to solve (A.1) is 1/2(T − 1)(T − 2), which, 

as stated in Section 3.1, no longer grows exponentially in the horizon of truncation T (nor 

does it grow in the number of arms of the MABP).
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For the finite-horizon variant, the terminal condition is not used for approximating the initial 

point of the backward-induction algorithm and the solution, but for computing the optimal 

value function exactly. The resulting number of operations to compute the Whittle index is 

basically the same as for the Gittins index, yet the total computational cost is significantly 

higher given that the Whittle indices must be computed and stored for every possible t ≤ T 
− 1 and (s, f ). However, notice that an important advantage of the Whittle index over the 

Gittins index is that the discount factor d = 1 can be explicitly considered for the former 

directly adopting an Expected Total objective function, by replacing the term  by T 
− t , using the fact that
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FIG. 1. 
The number of individual computations for an approximation to the optimal rule in a 

particular instance of the Bayesian Bernoulli MABP as a function of T with K = 3 and d = 

0.9 for the Brute force, DP and Gittins index approaches.
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FIG. 2. 
The (approximate) Gittins index values for an information vector of s0+st successes and f0+ft 

failures, where d = 0.99 and T is truncated at T = 750.
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FIG. 3. 
The (approximate) Whittle index values for an information vector of s0 + st successes and f0 

+ ft failures, plotted for T − t ∈ {1, 40, 80} with d = 1 and T = 180.
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FIG. 4. 
Top: The bias in the control treatment estimate as a function of the number of allocated 

patients under H1. Bottom: The bias in the experimental treatment estimate under H1.
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Table 1

The (approximate) Gittins index values for an information vector of s0 + st successes and f0 + ft failures, where 

d = 0.99 and T is truncated at T = 750

f/s 1 2 3 4 5 6

1 0.8699 0.9102 0.9285 0.9395 0.9470 0.9525

2 0.7005 0.7844 0.8268 0.8533 0.8719 0.8857

3 0.5671 0.6726 0.7308 0.7696 0.7973 0.8184

4 0.4701 0.5806 0.6490 0.6952 0.7295 0.7561

5 0.3969 0.5093 0.5798 0.6311 0.6697 0.6998

6 0.3415 0.4509 0.5225 0.5756 0.6172 0.6504
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Table 2

The Whittle index values for an information vector of s0 + st successes and f0 + ft failures, T − t = 80, d = 1 

and where the size of the trial is T = 180

f/s 1 2 3 4 5 6

1 0.8558 0.9002 0.9204 0.9326 0.9409 0.9471

2 0.6803 0.7689 0.8140 0.8423 0.8621 0.8769

3 0.5463 0.6552 0.7158 0.7565 0.7855 0.8077

4 0.4503 0.5630 0.6335 0.6812 0.7167 0.7444

5 0.3786 0.4923 0.5642 0.6169 0.6565 0.6876

6 0.3247 0.4348 0.5073 0.6040 0.6040 0.6380
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Table 3

The Whittle index at T − t = 40

f/s 1 2 3 4 5 6

1 0.8107 0.8698 0.8969 0.9132 0.9244 0.9326

2 0.6199 0.7239 0.7778 0.8120 0.8360 0.8539

3 0.4877 0.6067 0.6753 0.7214 0.7546 0.7802

4 0.3955 0.5157 0.5920 0.6447 0.6837 0.7147

5 0.3297 0.4476 0.5231 0.5802 0.6233 0.6573

6 0.2805 0.3929 0.4690 0.5254 0.571 0.6075

Stat Sci. Author manuscript; available in PMC 2016 May 04.



 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Villar et al. Page 30

Table 4

The Whittle index at T − t = 1

f/s 1 2 3 4 5 6

1 0.5000 0.6667 0.7500 0.8000 0.8333 0.8571

2 0.3333 0.5000 0.6000 0.6667 0.7143 0.7500

3 0.2500 0.4000 0.5000 0.5714 0.6250 0.6667

4 0.2000 0.3333 0.4286 0.5000 0.5556 0.6000

5 0.1667 0.2857 0.3750 0.4444 0.5000 0.5455

6 0.1429 0.2500 0.3333 0.4000 0.4545 0.5000
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Table 5

Comparison of different two-arm trial designs of size T = 148. Fa: Fisher's adjusted test; α: type-I error; 1 − β: 

power; p*: expected proportion of patients in the trial assigned to the best treatment; ENS: expected number of 

patient successes; UB: upper bound

Crit.
value

H0 : p0 = p1 = 0.3 H1 : p0 = 0.3, p1 = 0.5

α p* (s.e.) ENS (s.e.) 1− β p* (s.e.) ENS (s.e.)

FR 1.645 0.052 0.500 (0.04) 44.34 (5.62) 0.809 0.501 (0.04) 59.17 (6.03)

TS 1.645 0.066 0.499 (0.10) 44.39 (5.58) 0.795 0.685 (0.09) 64.85 (6.62)

UCB 1.645 0.062 0.499 (0.10) 44.30 (5.60) 0.799 0.721 (0.07) 66.03 (6.54)

RBI 1.645 0.067 0.502 (0.14) 44.40 (5.57) 0.763 0.737 (0.07) 66.43 (6.54)

RGI 1.645 0.063 0.500 (0.11) 44.40 (5.61) 0.785 0.705 (0.07) 65.46 (6.40)

CB Fa 0.046 0.528 (0.44) 44.34 (5.55) 0.228 0.782 (0.35) 67.75 (12.0)

WI Fa 0.048 0.499 (0.35) 44.37 (5.59) 0.282 0.878 (0.18) 70.73 (8.16)

GI Fa 0.053 0.501 (0.26) 44.41 (5.58) 0.364 0.862 (0.11) 70.21 (7.11)

UB 44.40 (0.00) 1 74.00 (0.00)
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Table 6

Comparison of different four-arm trial designs of size T = 423. Fa: Fisher's adjusted test; α: family-wise type-I 

error; 1 − β: power; p*: expected proportion of patients in the trial assigned to the best treatment; ENS: 

expected number of patient successes; UB: upper bound

Crit.
value

H0 : p0 = pi = 0.3 for i = 1, …, 3 H1 : p0 = pi = 0.3, i = 1, 2, p3 = 0.5

α p* (s.e.) ENS (s.e.) (1 − β) p* (s.e.) ENS (s.e.)

FR 2.128 0.047 0.250 (0.02) 126.86 (9.41) 0.814 0.250 (0.02) 148.03 (9.77)

TS 2.128 0.056 0.251 (0.07) 126.93 (9.47) 0.884 0.529 (0.09) 172.15 (13.0)

UCB 2.128 0.055 0.251 (0.06) 126.97 (9.41) 0.877 0.526 (0.07) 171.70 (11.9)

RBI 2.128 0.049 0.250 (0.03) 126.77 (9.40) 0.846 0.368 (0.04) 158.34 (10.4)

RGI 2.128 0.046 0.250 (0.03) 126.80 (9.36) 0.847 0.358 (0.03) 157.26 (10.3)

CB Fa 0.047 0.269 (0.39) 126.89 (9.61) 0.213 0.677 (0.41) 184.87 (36.8)

GI Fa 0.048 0.248 (0.18) 126.68 (9.40) 0.428 0.831 (0.10) 198.25 (13.7)

CG 2.128 0.034 0.250 (0.02) 127.16 (9.46) 0.925 0.640 (0.08) 182.10 (12.3)

UB 126.90 (0.00) 1 211.50 (0.00)
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Table 7

Comparison of different four-arm trial designs of size T = 80. F: Fisher; α: type-I error; 1 − β: power; p* : 

expected proportion of patients in the trial assigned to the best treatment; ENS: expected number of patient 

successes; UB: upper bound

Crit.
value

H0 : p0 = pi = 0.3 for i = 1, …, 3 H1 : pk = 0.3 + 0.1 × k, k = 0, 1, 2, 3

α p* (s.e.) ENS (s.e.) (1 − β) p* (s.e.) ENS (s.e.)

FR F 0.019 0.251 (0.04) 24.01 (4.07) 0.300 0.250 (0.04) 35.99 (4.41)

TS F 0.013 0.250 (0.07) 24.01 (4.15) 0.246 0.338 (0.08) 38.34 (4.68)

UCB F 0.011 0.252 (0.06) 24.00 (4.12) 0.218 0.362 (0.08) 38.84 (4.71)

RBI F 0.018 0.250 (0.03) 23.97 (4.06) 0.295 0.268 (0.03) 36.52 (4.41)

RGI F 0.017 0.250 (0.02) 24.07 (4.07) 0.298 0.265 (0.03) 36.45 (4.36)

CB Fa 0.017 0.270 (0.30) 23.98 (4.08) 0.056 0.419 (0.38) 40.92 (6.89)

WI Fa 0.015 0.258 (0.22) 23.00 (4.14) 0.101 0.537 (0.31) 42.65 (6.02)

GI Fa 0.000 0.251 (0.13) 23.97 (4.11) 0.002 0.492 (0.21) 41.60 (5.44)

CG Fa 0.015 0.253 (0.13) 24.04 (4.13) 0.349 0.393 (0.16) 38.29 (4.82)

UB 24.00 (0.00) 1 48.00 (0.00)
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