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Abstract

The most successful protein structure prediction methods to date have been template-based 

modeling (TBM) or homology modeling, which predicts protein structure based on experimental 

structures. These high accuracy predictions sometimes retain structural errors due to incorrect 

templates or a lack of accurate templates in the case of low sequence similarity, making these 

structures inadequate in drug-design studies or molecular dynamics simulations. We have 

developed a new physics based approach to the protein refinement problem by mimicking the 

mechanism of chaperons that rehabilitate misfolded proteins. The template structure is unfolded 

by selectively (targeted) pulling on different portions of the protein using the geometric based 

technique FRODA, and then refolded using hierarchically restrained replica exchange molecular 

dynamics simulations (hr-REMD). FRODA unfolding is used to create a diverse set of topologies 

for surveying near native-like structures from a template and to provide a set of persistent contacts 

to be employed during re-folding. We have tested our approach on 13 previous CASP targets and 

observed that this method of folding an ensemble of partially unfolded structures, through the 

hierarchical addition of contact restraints (i.e., first local and then nonlocal interactions), leads to a 

refolding of the structure along with refinement in most cases (12/13). Although this approach 

yields refined models through advancement in sampling, the task of blind selection of the best 

refined models still needs to be solved. Overall, the method can be useful for improved sampling 

for low resolution models where certain of the portions of the structure are incorrectly modeled.
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Introduction

Currently, template based modeling (TBM) is the most successful protein structure 

prediction method, leveraging the volume and variety of structures in the Protein Data 
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Bank.1,2 These methods often reliably capture the correct topologies for small proteins, and 

can achieve high accuracy predictions in high-homology cases. Much of this progress has 

come from improvements in template libraries and in methods for identifying templates,3 yet 

it remains a major challenge to refine predicted structures beyond the best template 

available.4 The so-called refinement problem has drawn much attention through the biannual 

CASP (Critical Assessment of Techniques for Protein Structure Prediction) competition.2 

CASP results show than when target success is compared against target difficulty recent 

improvements have, in fact, been slow.5 In the case of membrane proteins, homology 

predictions become even more challenging due to the low number of experimentally 

determined membrane structures (approximately 2500 membrane structures within the 

Protein Data Bank) as compared to globular proteins, leading to poor templates or no 

homology hits.

Physical models, now, offer a natural marriage with bioinformatics based techniques; the 

latter can drastically narrow the conformational landscape while physics-based methods add 

template-free refinement that, in principle, offers high transferability to novel folds, new 

sequences, and even artificial proteins. Molecular dynamics (MD) studies have found that 

structural stabilities and approximate conformational free energies (force fields + implicit 

solvation models) can correctly discriminate native structures from decoy structures.6–10 

MD simulations have also successfully refined bioinformatics models provided they were 

long enough (100ns or more) to permit adequate sampling.8,11–13 Advancements in 

computational power and forcefield accuracy make it possible to observe reversible folding 

and unfolding in more than 400 events across MD simulations of 12 proteins.14 It is now 

possible to reproduce both the structures and folding thermodynamics of a variety of small 

proteins and peptides using physics-based approaches.15–29 Moreover, refinement protocols 

have also seen improvement using enhanced sampling methods such as multicanonical 

techniques3 or replica exchange molecular dynamics (REMD),30–33 where multiple copies 

of a system are simulated in tandem across a spectrum of temperatures. The addition of 

energetic restraints to lock into place high-confidence substructures that further narrow the 

conformational search space has also significantly increased refinement efficiency and 

accuracy.3,15,18–23,30,33–38 It is very exciting to see that such approaches utilizing physics-

based forcefields and restrained all-atom explicit water MD are better than other heuristic 

approaches in increasing the accuracy of server predicted template models. In the last two 

CASP refinement competitions (CASP11 and CASP10), the physics methods were shown to 

produce the best results.36, 39, 40

Recent CASP results have been promising, however there still exists a significant challenge 

when the structures targeted for refinement differ dramatically (are poorly predicted) from 

the native state, particularly when secondary structures are misfolded.8,11,13,41,42 In these 

cases, the major barrier lies in sampling a protein's highly rugged energy landscapes. The 

predominant question is “how does one adequately sample this furrowed conformational 

space while avoiding local energetic minima to reach the native structure?” Here we develop 

a new synergistic method, which addresses the problem of sampling rugged conformational 

landscapes to find the native state, uniting state-of-the-art techniques from geometric 

simulation and advanced REMD algorithms. Our refinement method mimics the mechanism 
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of a chaperone that rehabilitates misfolded proteins by causing them to unfold partially and 

subsequently re-fold into the native structure.

Thus, inspired by the nature of protein chaperones, we produce locally unfolded regions of 

the target protein (i.e., partially unfolded protein conformations) by pulling the two terminal 

ends of the protein in different directions using a geometric based simulation called 

FRODA.43,44 This unfolding step has two important functions. First, it enables the 

determination of actual native contacts by analyzing the persistent contacts throughout the 

unfolding trajectory. Second, it decreases the degrees of freedom sampled, thereby 

increasing the speed of refining misfolded parts when the correct native contacts are used as 

restraints. Partially unfolded conformations are then simultaneously refolded and refined 

using a physics-based refinement protocol called hierarchically restrained replica exchange 

molecular dynamics (hr-REMD).23,43,45 We have tested this method on 13 structures from 

the CASP9 and CASP10 refinement target sets. Among these cases, our approach refined 12 

of the 13 targets with an average decrease in RMSD 0.51Å (ranging from a decrease of 

−1.42Å to a decrease of −0.16Å) and an average increase of 2.14 in GDT-TS.

Methods

Unfolding by FRODA

Proteins targeted for refinement are first unfolded using the Framework Rigidity Optimized 

Dynamics Algorithm (FRODA), used to create a topologically diverse ensemble of partially 

unfolded structures. Here, the template structure is first coarse-grained using a graph-

theoretical algorithm known as the pebble game, implemented within the FIRST program,46 

which uses covalent bond information to decompose the protein into rigid units, keeping 

covalent bond lengths and non-torsional covalent angles fixed. These rigid units are 

comprised of a minimum of three atoms which can be shared amongst adjacent units and 

include constraints from higher-order covalent bonds, such as peptide bonds or double 

bonds. As such, a single amino acid can be decomposed into multiple rigid units.

The strain within the protein is evaluated using an energetic function made up of harmonic 

constraints,

(1)

where Esh is the energy of shared constraints, Elt is the energy of half-harmonic “less than” 

constraints and Egt is the energy of half-harmonic “greater than” constraints.

(2)

(3)
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(4)

Shared constraints are used to prevent any separation of rigid units with shared atoms, and 

Δx is the separation between the rigid units. The spring constant kst is calibrated such that 

distances between rigid units that share atoms are never greater than 0.02Å.

Greater than constraints model steric interactions and are used to enforce a minimum 

distance between atoms, x − x0. Here, the ki′s are the Ramachandran spring constant (krm) 

and the torsional angle (ktr) spring constant. The associated Ramachandran harmonic 

potential is chosen to reproduce the barrier height associated with Oi−1 – Cβ barrier clash in 

the Ramachandran plot of alanine dipeptide44 while the torsional angle harmonic potential is 

calibrated to match the anti/gauche barrier of n-butane.47

Less than constraints model hydrogen bonds, salt bridges and hydrophobic interactions and 

can be broken during the unfolding process. Hydrogen bonds and salt bridges are defined to 

be those bonds that have an energy < −1.0 kcal/mol according to a modified Mayo 

potential.45 The kj spring constants (kh and ksb) are calibrated to model transition molecular 

dynamics pathways.48 Each of these less than constraints has a maximum load they can bear, 

beyond which they are removed, where the default extension being is set as 0.15Å to prevent 

distortion of the protein structures. The values for all spring constants used here can be 

found in prior work from de Graff et. al.43

Before unfolding a structure, the backbone atoms of both the C and N-terminal residues 

must be assigned a new set of atomic coordinates which correspond to an extension of their 

original spatial separation; that is, increasing the protein’s end-to-end Euclidean distance. 

While an optimal unfolding distance will vary from protein to protein, some generalizations 

can be made. A fully unfolded protein N amino acids long would have a total end-to-end 

distance of roughly 3.8 · N Å; structures unfolded to this extent provide no useful 

information regarding contact analysis and would require complete refolding in any 

molecular dynamics simulation before refinement would even be possible, akin to having 

performed a structural prediction. However, we have found that even when using projected 

end-to-end separation distances of 1 · N Å, a large portion of the conformations generated by 

FRODA are unfolded to an extent such that they retain less than 50% of the original 

structure’s contacts, making much of the unfolding ensemble of little use for subsequent 

refinement. For this work, rfinal, the distances used to generate unfolded state were 

automated, evaluated empirically using the expression

(5)

where rinitial is the original Euclidean separation between C-terminal and N-terminal 

backbone atoms and Nnon is the number of amino acids not part of any secondary structure. 

While β-sheet or α-helix residues are not counted when calculating rfinal, they are able to 

unfold just as any other region of the protein, subject to the harmonic constraints mentioned 

previously.
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Using rfinal, the backbone atoms of the terminal residues are assigned a new projected set of 

Cartesian coordinates. Unfolding then proceeds as follows: a random move of 0.05Å is 

proposed and is subsequently accepted if the RMSD between the current atomic coordinates 

and final projected atomic coordinates decreases. The structure is then relaxed, resulting in 

an equilibrium strain distribution. If any of the constraints exceed the maximum extension, 

they are removed. The extension is set to 0.15Å to prevent distortion of the protein 

structures. During each step new hydrogen bonds and hydrophobic interactions can form, 

allowing for non-native intermediate interactions. Newly formed hydrogen bonds are 

identified as bonds between two atoms (hydrogen and a hydrogen acceptor) of an energy 

less than −1.0kcal/mol according to a modified Mayo potential. Likewise, the new 

hydrophobic interactions are added between two nonpolar carbon or sulfur atoms of 

hydrophobic residues that are separated by no more than 3.9Å. Unfolding proceeds until the 

backbone atoms of the initially targeted residues reach their assigned, final Cartesian 

coordinates.

The unfolding trajectory is then clustered using k-means clustering and the high confidence 

contacts (i.e., contacts that are in 90% or more of all the snapshots in the unfolding 

trajectory) are identified. A contact between two residues is defined when the Euclidean 

distance between their centroids is within 8Å. Clustered structures containing less than 50% 

of the original target’s contacts are discarded. Using unfolding distances calculated from 

equation 5, we find that there are generally few structures close to or below this threshold 

(See Figure S1).

Hierarchically Restrained Replica Exchange Molecular Dynamics with Reservoir

The partially unfolded structures are then relaxed and make up the initial seed structures and 

reservoir structures for the hierarchically restrained replica exchange molecular dynamics 

simulation (hr-REMD). All reservoir structures are coupled to an infinite temperature replica 

where a structure from the reservoir can be swapped into the highest replica during the 

REMD run. The infinite temperature is simply a means to ensure an adequate acceptance 

rate of exchange between the reservoir and the highest temperature replica during REMD. 

Although this leads to non-Boltzmann statistics, the periodic exchanges between the 

randomly chosen conformations from the reservoir and the highest temperature replica, in a 

manner of J-walking, can increase the conformational sampling and r-REMD converges 

more rapidly than REMD.49 The simulation includes replicas that range in temperature from 

270K to 450K, using the AMBER forcefield50 (ff99SB) with the General Born Surface Area 

(GB5)51 implicit solvent model and a surface tension of 0.5kcal/mol•Å2. For the target 

structures used in this work, the total number of replicas per simulation ranged between 20 

to 35, depending on sequence length. A swap between replicas is attempted every 

picosecond and a molecular dynamics time step of 2fs is used. The number of replicas is set 

in order to optimize the likelihood of two replicas contiguous in temperature swapping 

structures to approximately 50%. The exact number or replicas is determined depending on 

the chain length using an empirical formula. The temperature of the replicas is exponentially 

distributed between the minimum and maximum temperature of 270K and 450K, 

respectively. We apply the restraints hierarchically where local contacts, contacts 5 or fewer 

residues apart within the sequence, are added as harmonic NMR distance restraints (0.5kcal/
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mol• Å2) and the structures are simulated for 2ns. This allows for the formation of correct 

secondary structures. For the last 3ns, non-local contacts, contacts greater than 5 residues 

apart within the sequence, are added into the simulation. Once the 5ns REMD simulation is 

completed, the final nanosecond of the lowest eight replicas are clustered and scored by 

RMSD from the target structure and DFIRE52 score. Structures with a low RMSD and high 

DFIRE score are selected as refined structures, a scoring method originally used by the Feig 

group.20, 21 Figure 1 illustrates the workflow.

Results

Refinement simulations were carried out for a selection of CASP9 and CASP10 refinement 

targets provided from bioinformatics-based methods. Each target was unfolded using 

FRODA followed by 5ns REMD in which the first 2ns included only local restraints 

(restraints that have 5 or less residue sequential separation) followed by 3ns using both local 

and non-local contacts. The conformations sampled for each target were then clustered and 

scored to find a refined structure. All discussions of particular targets presented in this 

section refer to the best refined model produced from our protocol.

We used several metrics commonly employed in some of the recent CASP competition to 

assess the quality of the refined structures from our approach; the root-mean square 

deviation (RMSD), global distance test (GDT-TS),53,54 MolProbity55 and DSSP.56 While 

RMSD is a metric that captures the deviations of the entire structure's backbone, GDT-TS 

characterizes to what extent the fraction of high quality parts have improved or worsened 

while not capturing the low quality parts. For example, if a small region of a chain had a 

very high RMSD with respect to the experimental structure, a significant refinement over 

this region would have a greater impact on RMSD improvement than GDT-TS improvement. 

However, RMSD is a metric that typically increases with chain length while GDT-TS is 

given as a percentage. As a result, GDT-TS is widely used when comparing refinement or 

prediction methods across different proteins in CASP evaluations. The other two criteria 

used for evaluation are MolProbity, which measures the steriochemical quality of a structure, 

and DSSP, which captures the secondary structure composition. DSSP can be particularly 

important to include in evaluations, as large changes to secondary structure can go unnoticed 

when referring only to metrics related to backbone accuracy. To generate our listed DSSP 

scores, we identify amino acids as being part of an alpha helix, a beta sheet, or neither 

through DSSP tools. With these three classifications we compare the secondary structure 

designations of our models to that of the native conformation on a residue-to-residue basis. 

The overlap between the two is represented as a percentage.

In reporting our results, we first identified the structure with the lowest RMSD from the 

target structure among clustered structures, taken as the most refined conformation, and then 

further evaluated in terms of GDT-TS, MolProbity and DSSP. In total, we have 12/13 

structures refined based on RMSD, 8 of which also showed GDT-TS improvement. We also 

report 10/13 of our best structures improved MolProbity score and 8/13 increased in DSSP.

Although the improvement in RMSD generally coincides with improvement in GDT-TS as 

well, we also observe some cases where RMSD values improve while GDT-TS worsens. 
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This is likely due to the nature of our protocol. The unfolding process allows for large 

structural changes to take place. Subsequently, during refolding by REMD there can be a 

negative impact on the spatial alignment of certain secondary structural motifs as compared 

to the experimental structure, especially in cases where an insufficient amount of long-range 

contacts have been captured. One demonstrative example of this effect is in the structure of 

TR661. Here we find marginal improvement in RMSD (−0.16 Å from target) and a 

significant decrease in GDT-TS (−11.74). Upon further analysis, we find that our structure 

has refined by correcting a significantly misaligned portion of the large α-helix of residues 

167–182 at the C-terminus (Figure 2-a). The improvement towards the native structure of 

this helix results in a large conformational change over a small region, which inevitably has 

significant effects on the re-arrangement of surrounding regions, causing small deviations to 

backbone alignment. For the case of TR661, we performed iterative REMD runs where the 

clustered structures of the previous 5ns simulation were used as initial structures for 

subsequent REMD runs, along with the new restraints obtained from the consensus 

contacts,. As shown in Figure 2-b, GDT-TS further improved from 66 to 70 and RMSD also 

improved to 2.5Å from original RMSD of 2.78Å. The re-refinement procedure is a method 

to address the increase in RMSD and decrease in GDT; theoretically this iterative 

implementation of our protocol could be generalized to any target. However, it is possible 

that non-native contacts can be extracted and added to the simulation using this iterative 

technique. More testing over multiple targets will be necessary to see if multiple iterations 

eventually cause a decrease in overall structural refinement. Additionally, within the bounds 

of a CASP competition refinement deadline, this would require a significant increase in 

computational resources and may not be feasible, particularly with larger targets.

The partial unfolding and refolding in our approach allows us to make significant refinement 

in the secondary structure, including the formation or extension of β−sheets and the 

formation of α−helices. In the case of TR557 we were able to form a α-helical turn that was 

completely absent from the target structure by correctly unfolding a misformed hairpin. The 

refinement of this target highlights the importance of using multiple criteria to evaluate a 

structure. We have only a small improvement in the overall backbone alignment of this 

protein, shown with a GDT-TS improvement of 1.40. However, as mentioned previously, 

refinement of one particularly poorly predicted region of a protein will have a much more 

significant impact on RMSD and here we find an RMSD improvement of 1.42Å from an 

original RMSD of 4.06Å. Quantitatively, we are able to distinguish this as an accurate 

secondary structure formation from a general backbone misalignment correction by 

including the DSSP score, which shows that our refined target has a 16.8% higher secondary 

structure accuracy when compared to the experimental structure. Unfortunately, just as the 

geometric unfolding of structures presents the opportunity to make significant improvements 

to the secondary structures of a protein, it can also allow for the opposite to take place as 

seen in the case of TR624. This structure was another one of the three in which RMSD 

improved but GDT-TS did not and, in this particular case, coincided with a large decrease in 

DSSP. Here we unfolded a large portion of an antiparallel beta sheet in which the connecting 

loop and nearby regions of the sheets near the loop were largely misaligned relative to the 

experimental conformation. The unfolding process gave us the opportunity to re-align this 
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region of the protein during REMD, largely responsible for the overall RMSD improvement, 

but did not accurately reform the correct regions of the original beta sheet.

Finally, we have been able to refine poor resolution structures with a high RMSD from the 

experimental structure, which are, in general, much more challenging for refinement due to 

the lack of information. Among the four cases (TR557, TR568, TR624 and TR705) where 

the RMSD is larger than 4Å (Figure 3), our method successfully refined all four in terms of 

RMSD and three out of the four in GDT-TS. For instance, TR568 had a starting RMSD of 

6.15Å which was decreased to 5.33Å and showed a GDT-TS increase of 2.84 and a DSSP 

score improvement of 5% and TR705, starting with a 4.71Å RMSD was refined to 3.83 with 

a GDT-TS increase of 5.73 and a 2.3% DSSP score improvement.

Failed cases are often a result of incorrect restraints or sampling issues related to the chain 

size or solvation model. The drifting of structures further from the native state during 

simulation is likely a result of force field inaccuracies. The addition of residue-residue 

contacts is an attempt to circumvent these inherent inaccuracies. The number of replicas 

needed for a simulation over a given temperature range increase as the square root of the 

number of degrees of freedom. In addition, larger proteins have more accessible 

conformations. These two factors likely contribute towards increasing the simulation time 

needed to adequately refold and sample conformations of larger proteins. This is was found 

to be true for example in the case of TR661, a structure with a complex topologies and a 

longer folding time than many of the other targets. An insufficient number of restraints will 

allow the structure to drift and cause an increase in the sampling time necessary for 

refinement. Non-native contacts (i.e. contacts not found in the experimental structure) are 

more problematic as they can lock regions of the protein into incorrect conformations that 

prevent the sampling of more native-like conformations.

Non-native contacts were a prominent issue regarding the refinement of TR569, in which the 

most poorly predicted portion of the protein was a loop region (residues 50–60). The 

inclusion of non-native contacts was further compounded by issues in using implicit 

solvation when attempting to refine loops, previously reported by Chen and Brooks57 

making refinement of this loop of the protein particularly difficult. In an effort to evaluate 

the magnitude of these additive effects we performed a 2ns REMD simulation using the 

clusters from our initial 5ns simulation of TR569 as seeds and included native contacts 

between residues 50–63 as restraints in addition to our original contacts. Here we were able 

to reduce the RMSD to 2.52Å and increase GDT-TS by 5.06, compared to an RMSD of 

2.70Å and a change in GDT-TS of −0.63 from our best cluster of our original REMD 

simulation. Capturing a high number of native contacts while minimizing non-native 

contacts becomes increasingly more important in the refinement of targets that are already 

very close to the native conformation (RMSD < 2Å).

One of the structures we were unable to refine, TR689 (Figure 4), had multiple challenges in 

that it was a large structure (234 residues) with a very low RMSD (1.8Å). In this case, we 

were unable to accurately sample the conformational space to allow for refinement within 

the limit of a 5ns simulation largely due to the size of the protein. Additionally, the inclusion 

of contacts not found in the experimental structure will have an even greater impact for such 
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highly resolved targets. This proved to be a particularly challenging structure, as only four 

groups competing in CASP10 were able to refine the target, with a maximum GDT-TS 

increase of 1.4. Other specifics can lead to failed cases, such as dimer-dimer interactions 

which our refinement process does not inherently capture. TR754 contains a zinc ion which 

effects the conformation of the experimental structure and as a result greatly increased the 

difficulty of refinement (Figure 4). During CASP10 only two groups were able to 

successfully refine this structure, with a maximum GDT-TS improvement of 0.73. Overall, 

based on our results, we observe that our current refinement approach can be useful for 

small to medium sized proteins (i.e., those with 100–200 residues) with misaligned parts.

Discussion

Does Reservoir REMD with hierarchical restraints enable the partially unfolded regions of 
the protein to refold correctly?

REMD allows for enhanced conformational sampling and accelerated convergence to the 

native structure, a method first used for protein structure refinement by Chen and Brooks, 

where they restrained parts of the protein likely thought to be native.15 In REMD, multiple 

structures (or replicas) are simultaneously and independently simulated at different 

temperatures and, at set intervals during the simulation, allowed to exchange structures with 

their nearest temperature neighbor. The advantage over traditional molecular dynamic 

simulations is twofold. Performing multiple simulations of a structure over varying 

temperatures enables a significant amount of parallelization thereby greatly increasing the 

computational efficiency in thoroughly sampling the conformational space. Additionally, the 

temperature exchange between replicas (generally governed by a Monte Carlo-type 

algorithm) constitutes a random walk in temperature space, reducing the probability of the 

simulated structures becoming trapped in local energy minima. The structures with the 

lowest free energy will generally be found in the lower temperature replicas and, given 

sufficient sampling, be represented by a large percentage clusters of the conformations 

explored at these lower temperatures.

Restraining native regions of the protein is critical in refinement using physics-based 

forcefields during REMD. The Shaw Group14 and Feig Group21 have both extensively tried 

refinement without any harmonic restraints and found that structures drift considerably with 

little to no improvement. The addition of residue-residue contacts35, 36 has the potential 

advantage of locking the structure close to the native state, preventing the structure from 

drifting away from the native, and reducing the degrees of freedom that are needed to be 

sampled. This lowers the computational time necessary, but can also limit the extent to 

which a protein can be refined when n-native contacts are introduced.

We use a similar approach of adding restraints to REMD simulations for structural 

refinement with two additional features, the first of which being the hierarchical application 

of residue-residue restraints. The list of contacts to be used as restraints for a particular 

target is generated by clustering the unfolding trajectory and identifying high confidence 

contacts, those found in at least 90% of the unfolding trajectory. We assume that these 

contacts are largely those found in the experimental structure, which was shown to be true 

for most targets with an average of 70% of these restraints being native with an upper range 
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of 85% and a lower range of 60%. Initially, only local contacts are used as restraints during 

the first part of the simulation with non-local contacts being added later. The hierarchal 

application of contacts used in our methodology gradually decreases the degrees of freedom 

of the system as the simulation progresses, allowing for more efficient sampling and a more 

computationally manageable search for the native state. Figure 5 shows that T0311 

converges faster towards the correct experimental structure when restraints are added 

hierarchically compared to conventional refinement in which all restraints are added 

simultaneously for a given REMD simulation. Additionally, restraining the local interactions 

first allows for local refinement (secondary structure) to occur before global refinement 

(tertiary structure).

Our second feature is the use of a reservoir of structures coupled to the highest temperature 

replica, which has been shown to enhance sampling.30,49 The structures in the reservoir are 

comprised of structures clustered from the full unfolding trajectory. Incorporating a large 

amount of partially unfolded structures allows our simulation to explore a topologically 

diverse set of conformations which, in turn, allows for more efficient sampling, particularly 

if different conformations exist in the reservoir that are near the native state.

We partially unfold the target structure by pulling the two terminal ends of the protein in 

opposite directions, a process with several advantages. First, it enables us to unfold regions 

of the protein that were previously misfolded due to incorrect homology alignment. Second, 

beginning a REMD simulation with areas of the protein already unfolded accelerates the 

convergence of the simulation to more native-like folds by reducing the number of 

conformational changes the structure must sample to correctly refold these misfolded 

regions. Finally, through the consensus contacts that exist in all partially unfolded structures 

from our unfolding trajectory, we are able to obtain high confidence native contacts. For 

example, the model TR557 has the C-terminal end as a β-strand, a region, which actually 

exists as a α−helix in the experimental structure. When we unfold the target structure with 

the incorrect C-terminal hairpin using FRODA, the C-terminal beta strand part unfolds first. 

When we refold using the consensus contacts of the unfolded ensemble we observe it turns 

into the correct helical structure leading to a major improvement (−1.42Å). While FRODA is 

not currently accurate enough to consistently unfold only the misfolded regions of a protein, 

interesting applications arise when the portion of the structure in need of refinement can be 

reliably identified. When this information is available, unfolding and, subsequently, 

refinement can be made significantly more accurate. In these cases one can lock additional 

degrees of freedom in place for the rest of the structure and only sample degrees of freedom 

from the misfolded portions of the protein, greatly increasing the sampling efficiency of a 

simulation and potential for refinement.

In order to compare how much each feature of our methodology helps us during the refining 

process, we performed several tests. First, as a control set, we use only the target TR557 as 

the initial structure and the contacts of the target are used as restraints, applied all at once, as 

in conventional REMD. In Figure 6-a, where all RMSD values below 4.06Å represent 

structural improvements, we see that with this protocol less than 1% of the structures are 

refined, and the refinement is minimal for the improved structures. This is likely caused by 

two factors. First, having all the contacts of the target locks the structure into the original 

Kumar et al. Page 10

Proteins. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



target's conformation. The simulations cannot widely sample configuration closer to the 

native state. Thus, the simulation is not able to rapidly unfold and refold the C-terminal end 

of the chain. Additionally, the sampling will not be as extensive with only multiple copies of 

the target structure used as replicas for each simulation temperature. By partially unfolding 

the chain and gathering the unfolding consensus contacts we do not restrain the n-native β-

strand configuration of the C-terminal end. The simulations with the initial structures whose 

C-terminal end completely unfolded enables fast and effective exploration of the 

conformational space of this region. We then explicitly tested the effect of including partially 

unfolded structures as replica structures, as opposed to multiple copies of the original target. 

Here we again used TR557 as a seed structure, this time adding restraints extracted from the 

unfolding trajectory hierarchically. Consistent with the observation in Figure 6-b this leads 

to a much faster convergence, not allowing the structure to drift further away from the native 

conformation. However, only 2% of the clustered structures produced at the end of the 5ns 

simulation are refined, indicating that the sampling is not as robust as compared to our 

method shown in Figure 6-c, where we use the structures with partially unfolded C-terminal 

end as initial seeds along with the contact restraints, leading to 70% of all clustered 

structures showing an RMSD improvement.

Are empirical energy scores useful in blind selection?

In our earlier approach for the blind selection of refined targets, we chose the top 5 most 

populated structures in the lowest temperature replica as refined candidates. The nature of 

REMD, in which temperature switching of structures obeying a Boltzmann distribution, 

eventually leads to the structure with the lowest free energy residing in the lowest 

temperature replica assuming the force field is sufficiently accurate. The largest populated 

cluster of the lowest replica is expected to be the lowest free energy structure, and therefore, 

closest to the native state. However, we have found 5ns REMD simulations, as presented 

here, are not long enough to reach this type of convergence. When we extended the runs of 

TR557 up to 25ns with 30 replicas giving a total of 750ns, we did indeed find the highest 

percentage populated cluster to be a refined structure with a RMSD of 2.8Å compared to 

original target of 4.06Å.

Achieving this level of convergence of REMD runs requires a significant amount of 

computational power and time. To circumvent this barrier, we turn to the common strategy 

of heuristic energy functions in conjunction with the RMSD from the initial target (iRMSD) 

to blindly select the best refined models among hundreds of clustered structures. First, the 

lowest eight temperature replicas are clustered and their iRMSDs and corresponding DFIRE 

energies are computed. We sort these structures based on their iRMSD and discard those 

with a very high deviation, based on the assumption that the structures with large deviations 

in iRMSD from the target have also drifted significantly from the native structure. While we 

find this to typically be true, it is not always a direct relationship; occasionally we pass over 

more highly refined models that exist at higher iRMSD values (Figure 7).

Within this subset of structures (i.e., low iRMSD), we then select the top five (as this is the 

number of structures that can be submitted to CASP per target in the refinement category) 

with the lowest DFIRE scores as potentially refined models. Our performance as related to 
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our top five selected structures can be found in Tables 1 and 2. This selection criterion works 

the majority of the time, where we find RMSD improvements in 12/13 structures, 7 of which 

also show GDT-TS improvement. However, this procedure does not select the most refined 

model (see Table 1). The blind scoring and selection of putative structures remains one of 

the largest challenges in protein structural refinement; when evaluating only our “model 1” 

(the model with the lowest iRMSD amongst the top five selected structures with lowest 

DFIRE scores) we find RMSD and GDT improvements in 8/13 and 5/13 of these structures, 

respectively. While it is generally safe to select a structure with a low DFIRE score, there 

often exists more accurate models with higher DFIRE that this protocol will overlook 

(Figure 8-a). This may be related to the fact that DFIRE is parameterized for residue-residue 

interactions and, as a result, does not necessarily differentiate the best improvements in 

backbone alignment. In the case of TR624 the trend is more pronounced, where the lower 

DFIRE score is directly correlated to a lower native RMSD (Figure 8-b), but for TR557 

DFIRE would be a poor standalone evaluation metric for distinguishing native from non-

native conformations, which indicates that there are some inherent limitations towards this 

type of heuristic approach. The combination of backbone deviations from the target structure 

with energetic scoring as a selection method is used by several other groups.20,21

Conclusion

We have presented a method for refinement using fast geometric-based FRODA simulations 

for unfolding proteins to form a set of initial partially putative structures that forms a 

reservoir for a hierarchically restrained replica exchange molecular dynamics (hr-REMD) 

simulation.

The use of a reservoir and addition of hierarchical contacts leads to refolding of the structure 

along with a refinement in most cases (12/13) and this method is currently suitable for small 

to medium size proteins; particularly for low resolution models where certain parts are 

considered to be modeled incorrectly. Current methods can make small but consistent 

improvements on template structures for shorter chain lengths. The future of refinement 

methods lay in creating more global improvements to structure.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Flowchart of refinement protocol. Refinement begins with geometric unfolding, followed by 

seed structures and contact list generation, hr-REMD and finishing with the clustering of the 

simulation trajectories.
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Figure 2. 
Overlay of native structure (PDB code: 4FCZ), CASP model structure TR661 and refined 

structure in wheat, blue and yellow aligned using PyMol58. Left side shows large 

improvement in terminal helix from the model structure along with misalignments of other 

regions. Right side shows improvements of misaligned regions with iterative hr-REMD 

simulations.
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Figure 3. 
Improvements for starting models with an RMSD of 4 Å or greater. Left side shows starting 

model in green, right side shows refined structure colored by root mean square fluctuations. 

All structures superimposed onto the native (wheat) using PyMOL58. PDB codes of native 

structure, top to bottom: 4FTD, 2KYY, 3N6Y, 3NRL.
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Figure 4. 
Two of our failed cases for refinement with starting models in green, refined structures 

colored by R.M.S, fluctuations and native structures in wheat aligned using PyMol.58 TR689 

(Native PDB code: 4FVS) had an extremely low starting RMSD making further refinement 

challenging. TR754 (Native PDB code: 2LV9) contains zinc ions, an interaction that our 

methodology is unable to capture. TR754 was a particular challenge for all CASP 9 

participants.
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Figure 5. 
Comparison of RMSD as a function of simulation time between standard REMD (a) and hr-

REMD (b) for CASP model structure T0311 (best predicted structure). hr-REMD shows a 

faster convergence to a lower RMSD over traditional REMD
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Figure 6. 
Distribution of clustered structures after three different approaches using REMD for starting 

model TR557. All structures under 4.06 Å RMSD (i.e. original RMSD of the target) are 

improved. Traditional REMD is in pink (a), REMD with restraints added hierarchically in 

yellow (b) and hr-REMD in blue (c). Best models of each method superimposed on native 

structure (PDB code: 2KYY) in wheat.
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Figure 7. 
Boxplot of RMSD to starting model vs. RMSD to native conformation of refined structures. 

Generally, structures that have not changed significantly from the starting model will be 

lower in RMSD to the experimental structure, but only to an approximation.
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Figure 8. 
Boxplot of DFIRE values vs. RMSD to native conformation of refined structures. Lower 

DFIRE generally indicates a more stable model, likely closer to the native conformation, but 

this trend is not constant amongst all proteins.
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