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ABSTRACT
Microbiota has been shown to promote tolerogenic differentiation of T lymphocytes. It remains
unclear to what extent microbiota triggers de novo re-programming or amplify pre-existing
plasticity intrinsic to T cells. In a study with mouse models to track the clonal fate of CD4 and CD8 T
cells, we discovered that CD8 T cells converted to MHC class I-restricted CD4 T cells without regard
to selfness of their antigen specificity. In mesenteric lymph nodes (MLN), CD8 T cells converted to
CD4+Foxp3+ regulatory T (Treg) cells which were enriched in the large intestine lamina propria (LILP)
and suppressed chemical- or immune-mediated inflammatory damage. In germ-free conditions, the
converted CD4 populations were present in MLN, but absent in LILP. Therefore, an intrinsic plasticity
in the host was amplified by the gut microbiota, leading to selfless tolerance induction in the
intestinal mucosa. The findings may be relevant to HIV infection, cancer and autoimmune disorders.
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Harmony between host adaptive immune
system and microbiota (“friendly” bacteria)

A symbiosis between the gut microbiota and the host
requires a harmonious relationship between the adap-
tive immune system and the microbiota. In exchange
for refuge and nutrients, microbial symbionts offer a
number of advantages to their host, including essential
vitamins to the host and metabolic assistance. The
microbiome can also protect against colonization or
invasion of the host by pathogenic bacteria through
occupation of available gut niches or production of
toxins that target their pathogenic counterparts.1,2

Vertebrate animals are equipped with a large reper-
toire of lymphocytes with fine specificities, which have
evolved to combat harmful infectious microbes.
Recent studies have gathered a substantial body of evi-
dence for the mutualistic relationship between the
adaptive immune system and the “friendly” micro-
biota. Microbiota can boost adaptive immune
responses against infectious agents.3,4 On the other
hand, adaptive immunity can regulate the diversity of
the microbiota. 5,6 Gut microbiota is instrumental in
shaping the adaptive immune repertoire. For instance,
segmented filamentous bacteria in the small intestine

are known to induce Th17 cells.7 In the colon, micro-
biota can induce CD4+Foxp3+ regulatory T (Treg) cells
to promote peripheral tolerance.8 Therefore, under-
standing the immunological basis of the mutualistic
relationship between host adaptive immune system
and gut microbiota will provide insight into various
types of immune-mediated diseases in humans and
potential novel strategies for therapeutic and preven-
tive interventions.

Dilemma of “selfhood”-based tolerance: How to
tolerate “friends” if “friends” look like “enemies”

Immune tolerance induction is largely characterized
by discrimination of self-antigens in the host against
nonself-antigens in foreign microbes. In the adaptive
immune system, tolerance is achieved by clonal selec-
tion of lymphocytes with fine specificities. In the
innate immune system, the discrimination against
harmful microbes is based on molecular pattern rec-
ognition of microbial agents.9 How, then, does the
immune system recognize the microbiota, which share
most molecular patterns with harmful microbes?
Studies have documented peripheral generation of
Treg cells specific to the bacteria in the gut
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microbiota.10 However, one might argue that although
overall tolerance to the gut microbiota is necessary for
preservation of their symbiotic presence, specific toler-
ance to a broad range of bacteria can be harmful due
to the minimal difference between pathogenic bacteria
and their microbiota. Given this dilemma, how does
the immune system tolerate the microbiome even
though these “friendly” microbes appear immunologi-
cally like the harmful infectious microbes?

Evidence for selfless tolerance induction at the
interface with gut microbiota

We explored how T lymphocytes, major players of the
adaptive immune system, tolerate the microbiome in
the gut. We followed the clonal fate of CD4 and CD8
T cells in vivo, using some of the commonly used T-
cell receptor (TCR)-transgenic models. We chose T
cell clones (OT1 and OTII) that recognize a nonself-
antigen. In our studies, the animal models harboring
those T cell clones did not carry the cognate antigens.
We also chose 2 clones (BDC2.5 and 8.3) that recog-
nize a self-antigen that is present mainly in a gut-distal
organ (the pancreas) rather than in the gut.11-14 These
TCR transgenic models were bred onto the recombi-
nation activating gene (Rag)-deficient background 15

to create mouse models with a single clone of T cells.
We made a number of surprising findings from these
models.16

First, we discovered the presence of CD4 T cell
populations in Rag-deficient OT1 mice, a commonly
used model which has been assumed to harbor a
monoclonal repertoire of CD8 T cells. The converted
CD4 T cells were particularly enriched in the gut-asso-
ciated environment and expressed the same clonotypic
TCR as in OT1 CD8 T cells. Indeed, they recognized
the MHC Class I (MHCI)-restricted SIINFEKL pep-
tide of the OT1 TCR. The CD8-to-CD4 lineage con-
version was also found in the other CD8 clone we
analyzed, 8.3. Using a lineage-tracking model we
determined that mature peripheral CD8 T cells from a
natural polyclonal repertoire could also convert to
CD4 T cells, thus establishing the generality of CD8-
to-CD4 lineage conversion in the periphery.

Second, the converted CD4 T cells were highly
enriched in the LILP, with the MHCI-restricted
CD4+Foxp3+ Treg (CI-Treg) accounting for the vast
majority of CD4 T cells. Interestingly, in such a steady
state of CD4 versus CD8 imbalance, we did not detect

conversion from the CD4 lineage to CD8 T cells. Fur-
thermore, we did not detect gut-associated generation
of CD4+Foxp3+ T cells from BDC2.5 and OTII CD4 T
cell clones,16 even though the potential of the conven-
tional CD4 T cells to convert to the CD4+Foxp3+ Treg

cell lineage has been shown in pharmacological
interventions.17

Third, the process of cross-differentiation to CI-
Treg cells required the MLN. Surgical removal of the
MLN at 2 weeks of age eliminated the cross-differenti-
ation of CD8 T cells to CI-Treg cells. Of note, the con-
verted CD4+Foxp3¡ T cells were still detectable in the
animals which had their MLN removed at 2 weeks of
age. Technical limits in survival surgeries precluded us
from determining whether or not removing the MLN
of the animals at an earlier age would completely elim-
inate CD8-to-CD4 lineage conversion, or if the con-
version from the CD8 lineage to CD4+Foxp3¡ cells
does not require the MLN.

Fourth, despite the TCR recognition of cognate
antigens presented by MHCI, cross-differentiation
from the CD8 lineage to CD4 T cells required MHC
Class II (MHCII). However, we did not detect any
pre-requisite of MHCII-based thymic selection, or
“mis-selection,” of the CD8 T cells that would be
needed to potentiate the peripheral conversion from
the CD8 lineage to CD4 T cells.

Lastly, the CD8-to-CD4 lineage conversion
occurred regardless of the types of diet and housing
facilities we tested. Indeed, the cross-differentiation
from the CD8 T cell lineage to CD4 T cells occurred
even in the absence of microbiota. As illustrated in
Figure. 1, in germ-free conditions, the converted CD4
T cells were present in the MLN, but absent in the
LILP.

These data, collectively, suggest that there is a host-
intrinsic plasticity in the CD8 lineage for cross-differ-
entiation to CI-Treg cells. Microbiota is not the original
trigger for CD8-to-CD4 lineage conversion, but they
may play a critical role in attracting and expanding
the converted population in the LILP to facilitate
mucosal tolerance induction (Fig. 1).16

Since bacterial lipopolysaccharides (LPS) exist in
abundance, and are even suspected to be present in
the sterile feed in germ-free conditions, we examined
if signals from LPS could be the trigger for the CD8
lineage to cross-differentiate to CD4 T cells. Given
that the Toll-like receptor 4 (TLR4) is the mammalian
cell receptor for LPS,18 we crossed TLR4 knockout
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mutations into the OT1 mouse model on the Rag-defi-
cient background. As shown in Figure. 2A-B, TLR4-
deficiencies did not diminish the percentages and total
numbers of CD4+ T cells or the CD4+Foxp3+ Treg sub-
set in the MLN or LILP. Therefore, TLR4 was not
required for conversion from the CD8 T cell lineage to
CD4 T cells, nor was it required for the homing and
expansion of the converted population in the LILP. It
remains to be determined if and how other types of
bacterial components or metabolites from gut
microbes play a role in this novel pathway of T cell
differentiation and tolerance induction in the intesti-
nal mucosa. For example, short-chain fatty acids were
shown to promote the population size and function of
colonic Treg cells through G protein–coupled recep-
tors.19 These metabolites could similarly expand the
CI-Treg cell population in the LILP.

If not microbiota, what else distinguishes the gut
environment?

The germ-free experiment clearly demonstrated that
microorganisms were not required as an original

trigger of the CD8-to-CD4 lineage conversion. What
else then is unique in the gut-associated environment,
especially in the MLN? We tested a few commercially
available diets for the animals, and did not detect sub-
stantial differences.16 Nevertheless, we could not
exclude the role of food antigens since we do not have
a model to test the effect of its absence. However, we
did not detect a substantial population of converted
CD4 T cells in the small intestine lamina propria. This
suggests that it is unlikely the food antigens are caus-
ing the conversion, as food antigens are mostly found
in the small intestine,20 whereas the converted CD4 T
cells were found primarily in the large intestine.16

Could the cytokine milieu in the gut-associated
environment be involved in cross-differentiation from
the CD8 lineage to CD4 T cells? TGFb is the usual
suspect. Indeed, it has been well recognized for its role
in the conversion of conventional CD4 T cells into
CD4 Treg cells.

21 We reported in our study that block-
ing TGFb signaling in T cells did not prevent the
CD8-to-CD4 cross-differentiation.16 The role of other
cytokines has yet to be tested. Perhaps, anatomic and /
or physiological characteristics in the gut-associated

Figure 1. Intrinsic plasticity of CD8 T cell lineage amplified by microbiota. A hypothetical model is presented to show the plasticity of
the CD8 T cell lineage spontaneously converting to CD4 T cells in the periphery. In this model, the presence of the gut microbiota is not
required to trigger the original generation of CD4+Foxp3+ CI-Treg cells from CD8 T cells. However, the gut microbiota greatly amplifies
the converted population, especially in the LILP. The yet-to-be-identified, host-intrinsic mechanisms initiate the conversion from the
CD8 lineage to CD4 T cells including CD4+Foxp3+ T cells. The gut microbiota, or more likely their metabolites, may promote the homing
and expansion of the converted population in the LILP. The enrichment of CI-Treg cells in the LILP suggests that food antigens are
unlikely involved since they are present primarily in the small intestine. The converted CD4 CI-Treg cells may lead to the creation of a
“friendly zone” at the interface of the adaptive immune system and the gut microbiota that facilitates immune tolerance induction in a
“selfless” mode.
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environment 20 also play an instrumental role for the
host-intrinsic plasticity of the CD8 T cell lineage. Of
note, previous studies showed that in the MLN, both
dendritic cells and stromal cells presented antigens to
stimulate OT1 cell responses.22 Recent studies have
also demonstrated that lymph node stromal cells not
only express MHCI molecules, but can also express
MHCII molecules and thus play a role in CD4 T cell-
mediated immunity vs. tolerance.23-26

Functions in physiological niches of gut mucosa
and cell transfer settings for protection from
colitis

To examine the function of CI-Treg cells in their physi-
ological niches in LILP, we resorted to a genetic
approach to test the impact of their absence. We com-
pared Rag-deficient OT1 mice with or without a null-
mutation of the Foxp3 gene. If one assumes Rag-

deficient OT1 mice indeed harbor a monoclonal rep-
ertoire of CD8 T cells as generally thought, and minor
populations of CD4 T cells in the model are mere
“noise” and biologically non-consequential, then the
Foxp3 null mutation should not have any effect. After
all, Foxp3 expression in mice is restricted to the
CD4+Foxp3+ Treg cell lineage. Foxp3 mutant Rag-defi-
cient OT1 mice were apparently healthy. However, an
age-associated accumulation of activated CD8 T cells
did occur in the immune system. When the animals
were challenged with a chemical—dextran sodium sul-
fate, which induces inflammatory damage to the
colon—the Foxp3 mutant animals developed mori-
bund inflammatory pathology in the intestine even
after the inflammatory trigger was discontinued,
whereas the Foxp3 wildtype Rag-deficient OT1 mice
recovered from the colitis. It remains unknown how
exactly the CI-Treg cells facilitate the repair of intesti-
nal tissue from inflammatory destruction. Along this

Figure 2. TLR4, the mammalian cell receptor for LPS, one of the most abundant products of microbial agents, is not required for gut-
associated cross-differentiation from the CD8 lineage to CD4 T cells. OT1CRago mice were crossed with the TLR4 knockout line to gener-
ate TLR4-deficient OT1CRago mice and controls. A) Representative flow cytometry plots of OT1CRagoTLR4C/C (n D 3), OT1CRagoTLR4+/o

(n D 4), and OT1+RagoTLR4o/o (n D 4) mice analyzed at 3-5 weeks of age. Numbers in each plot represent the percentage of the gated
population. B) Summary of CD4C and CD4CFoxp3C T cell percentages and counts. Each data point represents one animal (mean §
SEM; no statistical significance was detected among the groups).
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line, it should be noted that a previous study showed
that CD4 Treg cells in the muscle could induce tissue
repair by secreting amphiregulin.27

We also tested the potential of CI-Treg cells in adop-
tive cell transfer settings. Consistent with the observa-
tions from the Foxp3 mutant Rag-deficient OT1
model, adoptively transferred CI-Treg cells suppressed
homeostatic activation of CD8 T cells. Importantly,
CI-Treg cells isolated from Rag-deficient OT1 mice
suppressed autoimmune colitis induced by polyclonal
CD8 T cells, even in the absence of the cognate anti-
gen for the specific OT1 CI-Treg cells. They were sup-
pressive even in a setting and dose in which standard
CD4+Foxp3+ Treg cells from C57BL/6 mice were not
effective.16 Therefore, future studies are warranted to
test whether CI-Treg cells are indeed more potent than
standard MHCII-restricted CD4 Treg cells in various
settings of autoimmune or inflammatory pathology.

Implications to other conditions of immune-
related disorders

Treg cells need to be activated for functioning. Presum-
ably, Treg cells which recognize antigens presented by
MHCI are more likely to encounter their antigens,
given the ubiquitous expression of MHCI on all nucle-
ated cells, as opposed to the more restricted expression
of MHCII on antigen-presenting cells. In vivo, Treg

cells can suppress autoimmune damage through a
number of mechanisms, including contact-dependent
interaction with pathogenic T cells.28 It is conceivable,
then, that MHCI-based interaction would further
facilitate the interaction of Treg cells with their targets.
Furthermore, the likelihood of MHCI-based antigenic
recognition would lead to a higher probability of
memory cell formation, which may perpetuate the
potency of Treg cells’ suppressive activities.

29-31

The overall suppressive nature of the gut-associated
environment is shared in a pathological setting, the
tumor microenvironment. It too presents a challenge
to immunological discrimination based on self and
nonself. On one hand, tumors present an immunopri-
vileged self that can suppress potent autoimmune
damage.32-34 On the other hand, the genome instabil-
ities of tumor cells also produce mutations that gener-
ate potential neoantigens.35 It would be interesting to
examine whether conversion from CD8 T cells to
CD4 CI-Treg cells occurs in the tumor microenviron-
ment, not only in gastrointestinal cancer, but also in

cancer in general, especially in settings of adoptive
CD8 T cell therapies.

One of the striking findings from our studies is that
the 8.3 clone of the CD8 lineage exhibited conversion
to CD4 T cells in the gut-associated environment,
rather than in the draining lymph node of the pan-
creas, where the specific self-antigen of the 8.3 clone is
expressed. This finding suggests a selfless mode of tol-
erance induction in the gut environment that can pro-
tect gut-distal organs from autoimmune damage. A
particularly interesting result is that the conversion
appeared to depend on the genetic background. It was
absent in the autoimmune-prone NOD genetic back-
ground, but occurred on the NOD/B6 mixed back-
ground. Our preliminary tests found that this was not
due to an association with the MHC locus of NOD,
but a yet-to-be-identified genetic element(s) not
linked to theMHC locus.16

Perhaps, the most obvious implication of these
findings is to HIV infection. In this setting, CD4 T
cells are depleted, leaving an imbalance of CD8 versus
CD4 lineage analogous to that in the Rag-deficient
OT1 model. Of note, CD4 T cells are severely depleted
in the gut-associated lymphoid tissue (GALT) in
HIV-infected patients, even though some of these
individuals have relatively normal CD4 T cell frequen-
cies in the peripheral blood. Effective long term antire-
troviral therapies (9 years) did not completely restore
the CD4 T cell population in the GALT.36,37 Then
would one expect the conversion from the CD8 lineage
to CD4 T cells and an enrichment of potent CI-Treg

cells in the LILP? Could those converted CD4 T cells
become a new target for HIV infection? The availability
of MHC-tetramer reagents and matched clinical sam-
ples can help future studies examine the potential exis-
tence of MHCI-restricted CD4 T cells in the gut-
associated environment in settings of HIV infection.
However, it may not be feasible to determine the origin
of such cells, if they are detected, until the successful
development of an in vitro organ culture model and /
or a humanized mouse model that enables lineage trac-
ing of human CD8 T cell development.

MHC class I-restricted CD4 T cells in humans

The existence of MHCI-restricted CD4 T cells at the
clonal and population levels in healthy humans was
discovered by Strassman and Bach more than 30 years
ago.38 Later studies implicated this type of cell in
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cancer and autoimmune diseases.39-45 In human anky-
losing spondylitis, its strong association with HLA-
B2746,47 contrasts with the MHCII association of most
autoimmune diseases. HLA-B27-restricted cells in the
patients were found in both CD8 and CD4 line-
ages.45,48 As in studies of other types of human cells, it
is difficult to pinpoint the origin of MHCI-restricted
CD4 T cells in humans, e.g., from peripheral conver-
sion, or due to “mis-selection” by MHCII in the thy-
mus. In the mouse model, we showed strong evidence
that CD8-to-CD4 cross-differentiation was not due to
“imprinting” by thymic MHCII.16 Rather, it was gen-
erated in the periphery in the gut-associated environ-
ment, especially the MLN.

Although it is not feasible to determine the origin of
the MHCI-restricted CD4 T cell clones in humans, the
interventions based on CI-Treg cells, and for that mat-
ter, MHCI-restricted CD4 T helper cells, may hold
major potential for clinical translation. The gap of
knowledge presents a substantial obstacle, though. For
example, in human inflammatory bowel diseases
(IBD) and other disorders, if and how CI-Treg cells are
involved awaits tools for effective detection of this
type of cells. For that purpose, the molecular signature
of CI-Treg cells need to be uncovered. Their antigen
specificity needs to be determined, so new MHCI-tet-
ramer reagents can be designed to identify and isolate
those cells. Efforts have been made to engineer MHC
class-I restricted CD4 Treg cells,49,50 but it is not
known how adding an exogenous MHCI-restricted
TCR to the native MHCII-restricted TCR in the same
CD4 T cell may confound the antigen specificity of
the T cell. Future studies with animal models are
needed to understand the cellular and molecular sig-
nals that trigger the spontaneous conversion from the
CD8 T cell lineage to CD4 T cell clones in the gut-
associated environment. The knowledge from those
studies will be useful for designing strategies to reli-
ably and efficiently generate human CD4 CI-Treg cells
as well as MHCI-restricted cytotoxic and helper CD4
T cells in vitro, for potential applications in cell
therapies.

Overall, the finding of CD8-to-CD4 lineage plastic-
ity and the major role of the gut microbiota in amplifi-
cation of this host-intrinsic plasticity may offer new
potential interventions to IBD and autoimmune dis-
eases in general. The potential of CD8-to-CD4 T cell
lineage conversion also has critical implications to
HIV infection and cancer immunotherapies.
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CI-Treg MHC class I (MHCI)-restricted CD4+Foxp3+ regulatory T cells
LILP large intestine lamina propria
MLN mesenteric lymph nodes
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