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ABSTRACT
Helicobacter pylori have been shown to influence physiological regulation of metabolic hormones
involved in food intake, energy expenditure and body mass. It has been proposed that inducing H.
pylori-induced gastric atrophy damages hormone-producing endocrine cells localized in gastric
mucosal layers and therefore alter their concentrations. In a recent study, we provided additional
proof in mice under controlled conditions that H. pylori and gut microbiota indeed affects
circulating metabolic gut hormones and energy homeostasis. In this addendum, we presented data
from follow-up investigations that demonstrated H. pylori and gut microbiota-associated
modulation of metabolic gut hormones was independent and precedes H. pylori-induced
histopathological changes in the gut of H. pylori-infected mice. Thus, H. pylori-associated
argumentation of energy homeostasis is not caused by injury to endocrine cells in gastric mucosa.
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Introduction

The human gastrointestinal (GI) tract consists of an
upper (mouth, esophagus, stomach, duodenum, jeju-
num and ileum) and a lower part (cecum, colon, rec-
tum and anus).1,2 It has one of the most complex
microbial ecosystems.3 Composition of GI microbiota
can be modified by physiological changes, such as
aging4 and pregnancy.5 Several factors that can con-
tribute to these modifications include: immunological
or infectious diseases,6 antibiotic treatment and
metabolites. Furthermore, the GI microbiota is
involved in diverse normal host functions, including
energy harvest and storage from the diet4 develop-
ment and regulation of the gut-associated mucosal
immune system,6 regulation of the central nervous
system modulating brain development and behavior,7

protection against colonization by pathogens8 and
detoxification of xenobiotics and carcinogens.

Unlike the oral cavity, stomach and colon, a few
studies have suggested that the esophagus, is either

sterile or includes only a few transient bacteria origi-
nating from the oropharynx by a swallowing process
or from the stomach by gastrooesophageal reflux.9

Nevertheless, several pathogenic microorganisms,
such as Candida albicans, Cryptococcus or Herpesvi-
rus, can infect the esophagus.10 In the stomach, Heli-
cobacter pylori has the ability to survive in the
extremely acidic environment by secreting urease
which converts urea to ammonia.11 More than 50% of
the world population is infected by this pathogenic
bacterium12 which can cause a range of gastric dis-
eases such as peptic ulcers, gastric cancers, and
mucosa-associated lymphoid tissue (MALT) lym-
phoma.13,14 Recently, non-Helicobacter species repre-
senting 3 main bacterial phyla (Firmicutes,
Proteobacteria and Actinobacteria) were isolated from
human gastric biopsies of patients with symptoms
involving the gastroduodenal tract indicating that H.
pylori is not the only bacterium that can be found in
the acidic environment of the stomach.12 Among these

CONTACT Jamuna Vadivelu jamuna@ummc.edu.my

Addendum to: Khosravi Y, Seow SW, Amoyo AA, Chiow KH, Tan TL, Wong WY, Poh QH, Sentosa IM, Bunte RM, Pettersson S, et al. Helicobacter pylori infection can
affect energy modulating hormones and body weight in germ free mice. Sci Rep 2015; 5:8731; PMID: 25736205; http://dx.doi.org/10.1038/srep08731.
© 2016 Taylor & Francis Group, LLC

GUT MICROBES
2016, VOL. 7, NO. 1, 48–53
http://dx.doi.org/10.1080/19490976.2015.1119990

http://dx.doi.org/10.1080/19490976.2015.1119990


non-Helicobacter species, Streptococcus species
(S. mitis, S. parasanguinis and S. anginosus) were most
frequently isolated. These organisms are commonly
found in the human oral cavity and were also found to
be present in the lower gut.15 In-vitro experiments
have shown that bile acids can transform H. pylori to
the viable but non-culturable (VBNC) coccoidal
form.16 Therefore, it is possible that in the bile-laden,
anaerobic environment of the lower GI tract, H. pylori
might exist in the VBNC state.17 The interaction
between H. pylori and other microbiota of the GI
(including S. mitis) can also lead to H. pylori convert-
ing to the VBNC form.18

H. pylori affecting gut hormones and energy
homeostasis

Leptin and ghrelin are 2 important hormones that
influence on energy homeostasis in humans.19 The
effect of leptin on energy homeostasis is opposite to
that of ghrelin; leptin induces weight loss by suppres-
sion of food consumption, while ghrelin functions as
an appetite-stimulatory signal.20 H. pylori, which
infects the human stomach and interacts with host tis-
sues,21 may affect the regulation of hormones that are
involved in energy homeostasis, such as ghrelin and
leptin.19 However, effects of H. pylori infection on the
expression of ghrelin and leptin in hosts are contro-
versial.20,22,23 Tatsuguchi et al. demonstrated that
ghrelin-positive cells in the gastric mucosa were signif-
icantly lower in H. pylori-infected adult patients than
for healthy controls with an inverse correlation
between ghrelin immunoreactivity and inflammation/
activity grade.22 Likewise, Isomoto et al.24 reported on
the relationship between degree of H. pylori-associated
gastritis and lower plasma ghrelin levels in-infected
adult patients.24 Furthermore, a recent study on com-
parison between H. pylori-infected and non-infected
children demonstrated that both the serum ghrelin
and leptin concentrations were significantly reduced
in uninfected children.25 Tatsuguchi et al. proposed
that by inducing gastric atrophy, H. pylori damages
ghrelin-producing endocrine cells localized in gastric
mucosal layers and therefore alter their concentra-
tions.22 Consistently, Francois et al. reported that cir-
culating meal-associated ghrelin and leptin levels
increase after successful H. pylori eradication collabo-
rated by an increase in body mass index (BMI) in
these subjects.20 Host genetics, diet, lifestyle and other

confounding factors may influence the outcome of
these studies using human subjects: as such, there is a
need for in vivo studies conducted under controlled
conditions.

In a study using a germ-free mouse model, H.
pylori-induced carcinogenesis was shown to be
delayed in the absence of the microbiota suggesting
that microbiota plays an important role in H. pylori-
associated pathogenesis.26 More recently, Heijtz et al.
highlighted the potential importance of gut microbiota
for normal brain development during early stages of
life in mice.7 In this study, mice were found to display
increased motor activity and reduced anxiety in the
absence of gut microbiota as a result of altered
expression of genes involved in second messenger
pathways and synaptic long-term potentiation in brain
regions implicated in motor control and anxiety-like
behavior.

To investigate the role of gut microbiota and H.
pylori in energy homeostasis, the same C57BL/6 spe-
cific pathogen-free (SPF) and germ-free (GF) mouse
models previously used by Heijtz et al.7 were adopted
by Khosravi et al.27 to which this addendum relates.
Following from the study of Heijtz et al.7 Khosravi
et al. explored the effects of gut microbiota and H.
pylori on homeostasis of metabolic hormones of the
gut-brain axis and circulating cytokines/ chemokines
during early development.27 In this study, 4 weeks old
C57BL/6 SPF with normal gut microbiota and GF
mice without normal gut microbiota were assigned
into control (uninfected) and test (H. pylori-infected)
groups. SPF and GF mice in the test group were
infected with mice-adapted H. pylori strain 298 for 2
weeks, 2 months and 4 months. There is no simple
answer on making age comparisons between mice and
humans. It was estimated that a 1-month-old mouse
is equivalent to a 12.5-year-old human adolescent
while a mouse of 3–6 months old is comparable to a
mature adult human of 20–30 y old.28 Although mice
are generally sexually mature by 35 days, maturational
growth continues for most biological processes and
structures until about 3 months of age. H. pylori infec-
tion is often acquired during childhood.29 In develop-
ing countries, such as India, Saudi Arabia and
Vietnam, approximately 80% of the population is
infected by the age of 20.30 Even in developed coun-
tries, such as South Korea, USA, France, Belgium and
Finland, it was estimated that 10–12% of children
aged 3–19 y old were infected.30
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Plasma leptin, insulin and total peptide YY (PYY)
were elevated in H. pylori-infected SPF (SPFH) mice
compared to non-infected SPF mice suggested that H.
pylori infection altered the host metabolism. However,
growth curves of SPF and SPFH mice remained the
same. Similarly, acylated (active) ghrelin and PYY
were elevated in GF mice infected with H. pylori
(GFH) compared to non-infected GF mice. Ironically,
GFH mice suffered significant weight loss relative to
GF mice. Our results in mice confirmed that H. pylori
and gut microbiota, singly and in combination, influ-
ence homeostasis of metabolic hormones of the gut-
brain axis, which affects body weight. In contrast to
study involving patients, which lifestyle, diet, environ-
ment and host genetic differences can be major con-
founding factors, mice study was carried out under
controlled conditions.

Furthermore, plasma eotaxin-1, which plays a role
in both inflammation and neurogenesis, was elevated
in SPFH mice compared to SPF, GF and GFH mice.
Increased eotaxin-1 level in blood plasma has been
associated with aging in mice and humans.31 It has
also been demonstrated that exposing young mice to
eotaxin-1 or the blood plasma of older mice decreased
their neurogenesis and cognitive performance in
behavioral tasks, which are dependent on neurogene-
sis in the hippocampus.31 Interestingly, H. pylori
infection alone in GFH mice suppressed circulating
eotaxin-1 level. Therefore, it is possible that H. pylori
exposure during early developmental stages will have
long-term implication on brain development.

Metabolic gut hormones changes precede
pathological changes

In addition, histology and immunohistochemistry
(IHC) were performed on mice tissues from the stom-
ach, small intestine and colon. Histopathological
examination of hematoxylin and eosin (H&E) stained
samples evaluated by a veterinary pathologist (RBM)
revealed mildly-moderately dilated gastric crypts in 2
of the 5 16-weeks H. pylori-infected GF mice, which
were also present in one of the 5 uninfected 16-weeks
control GF mice. In the infected group, dilated crypts
were seen in one animal in the fundic stomach and in
the other in the pyloric stomach. In the control mice,
dilated crypts were seen in the pyloric stomach. The
dilated crypts did not contain any inflammatory cells.

In summary, these dilated gastric crypts are not
uncommon in mice and are within normal limits.

H. pylori infection can affect neuronal expressions
in the stomach of mice, which may explain the dys-
pepsia symptoms in H. pylori-infected patients. H.
pylori-infected mice were shown to have enhanced
neuronal expressions of substance P (SP), c-fos, vaso-
active intestinal polypeptide (VIP) and calcitonin
gene-related peptide expressions (CGRP) in their
stomach.32,33 H. pylori cytotoxin-associated gene (cag)
pathogenicity island, which is associated with cancer
risk, cag, encodes for a secretion system that trans-
ports effectors into host cells leading to aberrant acti-
vation of b-catenin.34 b-catenin affects oncogenesis in
conjunction with peroxisome proliferator-activated
receptor (PPAR)d.35 The expression of 6 biomarkers
(SP, c-fos, VIP, CGRP, PPARd and b-catenin) in mice
gastric tissue samples were assessed by IHC.36 Heat-
induced epitope retrieval in 10 mM citrate buffer (pH
6.0) was used on paraffin-embedded sections in this
study.37 Goat polyclonal anti-SP (NC-18; sc-9758),
rabbit polyclonal anti-c-fos (sc-52), rabbit polyclonal
anti-VIP (H-95; sc-20727), rabbit polyclonal anti-
CGRP (H-48; sc-28920), rabbit polyclonal anti-PPARd
(H-74; sc-7197) and rabbit polyclonal anti-b-catenin
(H-102; sc-7199) at 1:50 dilutions were used as pri-
mary antibodies. Donkey anti-goat IgG, F(ab’)2-HRP
(sc-3851) and goat anti-rabbit IgG F(ab’)2-HRP (sc-
3837) at 1:100 dilutions were used as secondary anti-
bodies. Primary and secondary antibodies used were
from Santa Cruz Biotechnology, Inc.. Normal donkey
serum (Santa Cruz) was used for blocking. Labeled
StreptAvidin Biotin (LSAB) kit (DAKO) was used for
detection. Secondary antibody only control was per-
formed using the same procedure, with PBS substitut-
ing for primary antibodies. For immunostaining of
SP, c-fos, VIP and CGRP-expressing neurons in the
mouse stomach, cells with cytoplasm or nuclei show-
ing brown-yellow to brown-black were considered
positive.32,33 As for PPARd, epithelial cells were evalu-
ated in the epithelium of antral mucosa.35 For b-cate-
nin immunostaining, epithelial cells from well-
oriented representative gastric glands were scored.34

The intensity of positive staining was categorized as
follow: 0, negative; 1, mild (brown-yellow); 2, moder-
ate (brown); 3, severe (brown-black). For semi-quanti-
tative analysis of each sample, 100 cells were counted
by a single blinded observer and the percentage of
positive cells was multiplied by the intensity score.
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Comparing all 6 biomarkers between 16-weeks SPF
and GF mice, more cells were stained positive in GF
mice for c-fos, VIP, CGRP, PPARd and b-catenin,
regardless of H. pylori infection. VIP and b-catenin
also appeared more abundant in SPFH and GFH mice
compared to SPF and GF mice respectively. However,
due to the small number of animals in this study and
heterogeneity of their distribution in mice stomach,
the differences in all 6 biomarkers did not achieved
statistical significant. These results are in contrast with
multiple studies,32,33,34 in which expression of these 6
proteins were found to be up-regulated post-infection
with H. pylori in mice models. This discrepancy may
be due to the genetic diversity of H. pylori strains used
and the duration of infection in mice. Nevertheless,
data from this study also showed that H. pylori-
induced changes in metabolic hormones of the gut-
brain axis in mice preceded any observable histopath-
ological changes in the mice stomach. Thus, it is
unlikely that H. pylori-induced damage to hormone-
producing endocrine cells in the gastric mucosal layers
were responsible for the augmentation of these meta-
bolic hormones during early stages of H. pylori infec-
tion. However, that does not rule out the possibility
that gastric mucosal damage or inflammation induced
by H. pylori during later stages of infection may fur-
ther augment metabolic hormonal balance and energy
homeostasis.

Conclusion

This study demonstrated that H. pylori and gut micro-
biota, singly and in combination, influence homeosta-
sis of metabolic hormones of the gut-brain axis
(ghrelin, leptin, insulin and peptide YY), which affects
body weight, under controlled conditions in mice.
Furthermore, the augmentation of gut hormones by
H. pylori precedes and is independent of histopatho-
logical changes associated with infection by the bacte-
rium during early stages of H. pylori infection.
Further investigations are necessary to ascertain the
long-term impact of the augmented gut hormone pro-
file on health and disease.

Abbreviations
BMI Body mass index
CGRP Calcitonin gene-related peptide
GF Germ-free
GI Gastrointestinal
H. pylori Helicobacter pylori
HIER Heat induced epitope retrieval

IHC Immunohistochemistry
LSAB Substance P, C-fos, Labeled streptavidin biotin
PIER proteolytic induced epitope retrieval
PPARb b-catenin, peroxisome proliferator-activated receptor b
SPF Specific pathogen-free
VBNC Viable but non-culturable
VIP Vasoactive intestinal peptide.
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