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Abstract. The human alphacoronaviruses HCoV-NL63 and HCoV-229E are commonly associated with upper respi-
ratory tract infections (URTI). Information on their molecular epidemiology and evolutionary dynamics in the tropical
region of southeast Asia however is limited. Here, we analyzed the phylogenetic, temporal distribution, population his-
tory, and clinical manifestations among patients infected with HCoV-NL63 and HCoV-229E. Nasopharyngeal swabs
were collected from 2,060 consenting adults presented with acute URTI symptoms in Kuala Lumpur, Malaysia,
between 2012 and 2013. The presence of HCoV-NL63 and HCoV-229E was detected using multiplex polymerase chain
reaction (PCR). The spike glycoprotein, nucleocapsid, and 1a genes were sequenced for phylogenetic reconstruction
and Bayesian coalescent inference. A total of 68/2,060 (3.3%) subjects were positive for human alphacoronavirus;
HCoV-NL63 and HCoV-229E were detected in 45 (2.2%) and 23 (1.1%) patients, respectively. A peak in the number
of HCoV-NL63 infections was recorded between June and October 2012. Phylogenetic inference revealed that 62.8%
of HCoV-NL63 infections belonged to genotype B, 37.2% was genotype C, while all HCoV-229E sequences were clus-
tered within group 4. Molecular dating analysis indicated that the origin of HCoV-NL63 was dated to 1921, before it
diverged into genotype A (1975), genotype B (1996), and genotype C (2003). The root of the HCoV-229E tree was
dated to 1955, before it diverged into groups 1–4 between the 1970s and 1990s. The study described the seasonality,
molecular diversity, and evolutionary dynamics of human alphacoronavirus infections in a tropical region.

INTRODUCTION

Human coronaviruses were first reported in the mid-1960s
and are known to be associated with acute upper respiratory
tract infections (URTI) or the common cold.1–3 According to
the International Committee for Taxonomy of Viruses, human
coronavirus NL63 (HCoV-NL63) and 229E (HCoV-229E) belong
to the alphacoronavirus genus, a member of the Coronaviridae
family. Coronaviruses are positive-strand RNA viruses with
the largest genome of approximately 27–31 kb in size.4 In pre-
vious studies, analysis of the spike (S) glycoprotein, nucleo-
capsid (N), and 1a genes of HCoV-NL63 and HCoV-229E
revealed evidence of genetic recombination, genetic drift, and
positive selection events as part of the evolution of the virus.5,6

Phylogenetically, HCoV-NL63 and HCoV-229E are more closely
related to each other than to any other human coronavirus.7

HCoV-NL63 and HCoV-229E account for about 5% of all
acute URTI,7–9 and in some cases, a small proportion of infec-
tions are associated with hospital admission.10,11 URTI symp-
toms such as cough and sore throat are often observed in
patients infected with either HCoV-NL63 or HCoV-229E.12,13

The prevalence of HCoV-NL63 varies from one study to
another; however, in most temperate and tropical countries, it
appears to peak around September–April, whereas HCoV-229E
is usually detected at low rates throughout the year.14–16 In
spite of the clinical importance of HCoV infections,17 the
prevalence, seasonality, clinical, and phylogenetic characteris-
tics of HCoVs remain mostly unreported from the tropical
region of southeast Asia. On the basis of the S, N, and 1a
genes of the HCoV-NL63 and HCoV-229E sequences from

Malaysia and also worldwide, we describe the genetic history
and phylodynamic profiles of both human alphacoronaviruses
using a set of phylogenetic tools.

MATERIALS AND METHODS

Ethics statement. The study was approved by the Univer-
sity of Malaya Medical Ethics Committee (MEC890.1). Stan-
dard, multilingual consent forms permitted by the Medical
Ethics Committee were used. Written consent was obtained
from all study participants.
Clinical specimens. A total of 2,060 consenting outpatients

who presented with acute URTI symptoms were recruited at
the Primary Care Clinic of University Malaya Medical Center
in Kuala Lumpur, Malaysia, between March 2012 and Febru-
ary 2013. Demographic data such as age, gender, and ethnicity
were acquired before the collection of nasopharyngeal swabs.
The severity of the URTI symptoms (sneezing, nasal dis-
charge, nasal congestion, headache, sore throat, voice hoarse-
ness, muscle ache, and cough) was graded according to criteria
described earlier.18–21 The nasopharyngeal swabs were trans-
ferred to the laboratory in universal transport media and
stored at −80°C.
Molecular detection of HCoV-NL63 and HCoV-229E.

Extraction of total nucleic acids from the nasopharyngeal
swabs was carried out using the magnetic bead–based proto-
cols applied in the NucliSENS easyMAG automated nucleic
acid extraction system (BioMérieux, Marcy I’Etoile, France).22,23

The presence of respiratory viruses in specimens was examined
using the xTAG Respiratory Virus Panel FAST multiplex
reverse transcriptase polymerase chain reaction (RT-PCR)
assay (Luminex Molecular Diagnostics, Toronto, Canada),
which can identify HCoV-NL63, HCoV-229E, HCoV-OC43,
HCoV-HKU1, and other respiratory viruses and subtypes.24
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Genetic analysis of HCoV-NL63 and HCoV-229E. Gene
fragment sequencing of the S (S1 domain), complete N, and
partial 1a (nsp3) genes was performed for HCoV-NL63 and
HCoV-229E specimens. The S1 is a highly variable receptor-
binding domain, whereas the N and nsp3 are conserved
regions within the coronavirus genome, and these three
regions are therefore efficiently used for genotyping.5,6 Viral
RNA was reverse transcribed into complementary DNA
(cDNA) using the SuperScript III kit (Invitrogen, Carlsbad,
CA) with random hexamers (Applied Biosystems, Carlsbad,
CA). The partial S gene (S1 domain) (HCoV-NL63: 1,383 nt
[20,413–21,796] and HCoV-229E: 855 nt [20,819–21,674]),
complete N gene (HCoV-NL63: 1,133 nt [26,133–27,266] and
HCoV-229E: 1,330 nt [25,673–27,003]), and partial 1a (nsp3)
gene (HCoV-NL63: 781 nt [5,811–6,592] and HCoV-229E:
766 nt [5,898–6,664]) were amplified through PCR using 10 μM
of newly designed or previously published primers listed in
Table 1. The PCR mixture (25 μL) contained cDNA, PCR
buffer (10 mM Tris-HCl [pH 8.3], 50 mM KCl, 3 mM MgCl,
and 0.01% gelatin), 100 μM (each) deoxynucleoside triphos-
phates, Hi-Spec additive and 4 U/μL BIO-X-ACT Short
DNA polymerase (BioLine, London, United Kingdom). The
cycling conditions were as follows: initial denaturation at 95°C
for 5 minutes followed by 40 cycles of 94°C for 1 minute,
54.5°C for 1 minute, 72°C for 1 minute, and a final extension
at 72°C for 10 minutes. PCR reactions were performed in a
C1000 Touch automated thermal cycler (Bio-Rad, Hercules,
CA). Nested/semi-nested PCR was performed if necessary,
under the same cycling conditions at 30 cycles. Purified PCR
products were sequenced using the ABI PRISM 3730XL DNA
Analyzer (Applied Biosystems). The nucleotide sequences
were codon aligned with relevant complete and partial HCoV-
NL63 and HCoV-229E reference sequences retrieved from
the GenBank.5,6,28–31

Maximum clade credibility (MCC) trees for the partial S
(S1 domain), complete N, and partial 1a (nsp3) genes were
reconstructed in BEAST (version 1.7).32 MCC trees were pro-
duced using a relaxed molecular clock, assuming uncorrelated
lognormal distribution under the general time-reversible

nucleotide substitution model with a proportion of invariant
sites (GTR+I) and a constant coalescent/exponential tree
model. The Markov chain Monte Carlo run was set at 6 × 106

steps long sampled every 10,000 state. The trees were anno-
tated using Tree Annotator program included in the BEAST
package, after a 10% burn-in, and visualized in FigTree (ver-
sion 1.3.1).33 The evolutionary history and divergence time (in
calendar year) for the HCoV-NL63 and HCoV-229E geno-
types were also assessed. Themean divergence time and the 95%
highest posterior density regions were evaluated. The best-
fitting model was determined by the Bayes factor using mar-
ginal likelihood analysis implemented in Tracer (version 1.5).32

The substitution rate of 3.3 × 10−4 substitutions/site/year for
the S gene of human alphacoronavirus estimated previously
was used for the divergence time inference.5

Maximum likelihood (ML) phylogenetic trees were also
reconstructed for the three regions in the phylogenetic analysis
using parsimony (PAUP 4.0) software,34 with a Hasegawa–
Kishino–Yano nucleotide substitution model plus discrete gamma
categories. The statistical robustness and reliability of the
branching orders were evaluated by a bootstrap analysis of
1,000 replicates. To investigate the genetic relatedness among
the HCoV-NL63 and HCoV-229E genotypes, inter-genotype
pairwise nucleotide distances were estimated for the S gene
using MEGA 5.1.35 Such analysis was not implemented for
the N and 1a genes due to their high genetic invariability
across HCoV-NL63 and HCoV-229E genotypes.5,6

Statistical analysis. All categorical variables were analyzed
using the two-tailed Fisher’s exact test/χ2 test by the Statistical
Package for the Social Sciences (release 16.0; IBM Corp.,
Chicago, IL). P values < 0.05 were considered significant.
Nucleotide sequences. HCoV-NL63 and HCoV-229E nucle-

otide sequences produced in the study have been deposited
in GenBank under the accession nos. KT359730-KT359913.

RESULTS AND DISCUSSION

Detection of HCoV-NL63 and HCoV-229E in nasopharyn-
geal swabs. In the current cross-sectional study, a total of

TABLE 1
Polymerase chain reaction primers for HCoV-NL63 and HCoV-229E

Target gene HCoV Primer Location* Sequence (5′–3′) Reference

Spike (S) NL63 SP1F 20,390–20,412 Forward: TGAGTTTGATTAAGAGTGGTAGG 25

SP2F 20,397–20,418 Forward (nested): GATTAAGAGTGGTAGGTTGTTG 25

SP1R 21,809–21,828 Reverse: CAAACTGCAAGTGCTCACAC 25

SP2R 21,797–21,816 Reverse (nested): GCTCACACTGCAACTTTTCA 25

229E LPS1 20,732–20,751 Forward: AATAATTGGTTCCTTCTAAC 26

JH1 20,797–20,818 Forward (nested): TTTGTTGCTTAATTGCTTATGG 26

LPR 21,710–21,728 Reverse: AACATACACTGCCAAATTT This study
JH2 21,675–21,694 Reverse (nested): TTTGCCAAAAGAAAAAGGGC 26

Nucleocapsid (N) NL63
and 229E

αN-F 26,102–26,127 (NL63) Forward: ARRTTGCTTCATTTWWTCTAA This study
25,652–25,672 (229E)

αN-Fn 26,112–26,132 Forward (nested): ATTTWWTCTAAACTAAACRAA This study
NL63 NL-NR 27,278–27,299 Reverse: ATAATAAACAKTCAACTGGAAT This study

NL-NRn 27,267–27,287 Reverse (nested): CAACTGGAATTACAAAACAAT This study
229E E-NR 27,046–27,063 Reverse: GATCCTTGTCAAGCCAAA This study

E-NRn 26,882–26,900 Reverse (nested): AAAATTCCAACTAAAGCCT This study
1a NL63 SS5852-5Pf 5,778–5,798 Forward: CTTTTGATAACGGTCACTATG 27

P3E2-5Pf 5,789–5,810 Forward (semi-nested): GGTCACTATGTAGTTTATGATG 27

NL-1aR 6,593–6,616 Reverse: CTCATTACATAAAACATCRAACGG This study
229E E-1aF 5,865–5,585 Forward: CTGTTGAYAAAGGTCATTATA This study

E-1aFn 5,876–5,897 Forward (semi-nested): GGTCATTATACTGTTTATGAYA This study
E-1aR 6,665–6,688 Reverse: TTCATCACAAATAACATCAAATGG This study

*Nucleotide location was determined based on the HCoV-NL63 (NC_005831) and HCoV-229E (NC_002645) reference sequences.
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2,060 nasopharyngeal swab specimens collected from Kuala
Lumpur, Malaysia, throughout a 12-month study period
(March 2012 to February 2013), were screened for the pres-
ence of HCoV-NL63 and HCoV-229E using the multiplex
RT-PCR method, as an alternative approach to other detec-
tion methods such as cell culture.36 Human alphacoronavirus
was identified in 68 (3.3%) subjects; HCoV-NL63 and
HCoV-229E were detected in 45/2,060 (2.2%) and 23/2,060
(1.1%) patients, respectively. These findings are consistent
with the global average prevalence of human alphacorona-
virus, which ranges between 1% and 10%, with HCoV-229E
generally detected at lower rates than HCoV-NL63.8–10,27,37–40

In contrast to an earlier study,41 no coinfection of alpha-
and betacoronavirus (HCoV-OC43 and HCoV-HKU1) was
observed within an individual. Age, gender, and ethnicity of
the patients were summarized in Table 2. A peak in the num-
ber of HCoV-NL63 infections was recorded for the period
between June and October 2012, although the number of
patients with URTI symptoms screened during those months

was relatively low (Figure 1). This pattern of virus preva-
lence corroborates with that observed in neighboring country
Thailand, in which a peak of HCoV-NL63 incidence was
recorded in September.14 In contrast, studies from temperate
regions commonly reported a higher prevalence of HCoV-
NL63 during winter seasons.7–9,42 However, the number of
HCoV-229E infections detected in Malaysia was low, with no
significant peak observed throughout the year, similar to
other studies reported worldwide.14,38,43 It is important to note
that the study was performed in a relatively short duration,
therefore limiting the epidemiological and disease trend com-
parison with reports from other countries.
Phylogenetic analysis of the S, N, and 1a genes. A total of

42/45 (93.3%) partial S (S1 domain) and 43/45 (95.6%) of
each complete N and partial 1a (nsp3) genes were success-
fully sequenced from HCoV-NL63 specimens. Amplification
of these genes was difficult for two xTAG-positive HCoV-
NL63 specimens, possibly due to their low viral copy number.
Phylogenetic analysis of HCoV-NL63 (Figure 2 and Sup-
plemental Figure 1) showed that 27 subjects (27/43, 62.8%)
in the study belonged to genotype B (supported by a poste-
rior probability of 1.0 and bootstrap value of 100% at the
internal nodes of the MCC and ML trees of the S gene,
respectively, with an intra-group pairwise genetic distance of
0.6% ± 0.1%) together with previously reported sequences
from the United States, Europe, and Asia.5,25,28,29 Another
16 subjects (16/43, 37.2%) were found to be grouped under
genotype C (supported by a posterior probability of 1.0 and
bootstrap value of 67% at the internal nodes of the MCC
and ML trees of the S gene, respectively, with an intra-group
pairwise genetic distance of 0.2% ± 0.1%) with recently
described global sequences.25,28,29 Discordance in phylo-
genetic clustering among the S, N, and 1a genes of the HCoV-
NL63 Malaysian sequences had been observed (Supplemental
Figure 1). On the basis of the S (S1domain) gene analysis,
26 Malaysian strains (26/42; 61.9%) belong to genotype B
while another 16 Malaysian strains (16/42; 38.1%) were clas-
sified within genotype C. In contrast, sequences of the three
HCoV-NL63 genotypes (A, B, and C) appear to be inter-
mingled in the N and 1a phylogenetic trees. Such discor-
dance was similarly reported in earlier studies where it was

TABLE 2
Demographic data of 68 adult outpatients infected with human

alphacoronavirus in Kuala Lumpur, Malaysia, 2012–2013
Factor HCoV-NL63 (N = 45) HCoV-229E (N = 23) P value

Gender 0.80
Male 25 (55.6%) 12 (52.2%)
Female 20 (44.4%) 11 (47.8%)

Age 0.45
< 40 13 (28.9%) 7 (30.4%)
40–60 10 (22.2%) 8 (34.8%)
> 60 22 (48.9%) 8 (34.8%)

Symptoms 0.99
Sneezing 42 (93.3%) 20 (87.0%)
Nasal discharge 38 (84.4%) 19 (82.6%)
Nasal congestion 29 (64.4%) 15 (65.2%)
Headache 23 (51.1%) 13 (56.5%)
Sore throat 32 (68.9%) 14 (60.9%)
Hoarseness of voice 35 (77.8%) 15 (65.2%)
Muscle ache 27 (60.0%) 16 (69.6%)
Cough 43 (95.6%) 20 (87.0%)

Ethnicity 0.08
Malay 11 (24.5%) 5 (21.8%)
Chinese 24 (53.3%) 7 (30.4%)
Indian 10 (22.2%) 11 (47.8%)

FIGURE 1. Annual distribution of HCoV-NL63 and HCoV-229E among adults with acute upper respiratory tract infections in Kuala Lumpur,
Malaysia. The total number of nasopharyngeal swabs screened and the monthly distribution of HCoV-NL63 and HCoV-229E between March
2012 and February 2013 were presented.
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confirmed that such phylogenetic pattern was resulted from
multiple recombination events along the HCoV-NL63 genome,
in addition to the fact that the S1 region sequenced in this
study is considered the most variable along the genome, while

the N and 1a (nsp3) genes are too conserved.5 To estimate the
genetic diversity between HCoV-NL63 genotypes A, B, and C,
inter-genotype pairwise genetic distance was assessed for the S
gene (Table 3). Genetic distances between genotypes A versus B

FIGURE 2. Maximum clade credibility tree of HCoV-NL63. Spike gene (S1 domain) sequences (1,383 nucleotides) were analyzed under the
relaxed molecular clock with a GTR+I substitution model and a constant size coalescent model implemented in BEAST. Posterior probability
values and the estimation of the time of the most recent common ancestors with 95% highest posterior density were indicated on major nodes.
The HCoV-NL63 sequences obtained in this study were color coded and HCoV-NL63 genotypes A–C were indicated; green = genotype A,
blue = genotype B, and red = genotype C. The recombinant genotype is indicated by purple color. The sampling site for each sequence was indi-
cated by codes for the representation of countries. Country codes are as follows; MY = Malaysia; US = United States; JP = Japan; NL = Netherlands;
CN = China.
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and B versus C were high (more than 5.0%), compared with
that between genotypes A versus C, which was at 2.1%. This
is consistent with the phylogenetic tree topology in which
genotypes A and C were more closely related and probably
shared a common ancestor.
At least one gene (S, N, and/or 1a) was successfully

sequenced from 23 positively tested HCoV-229E specimens
(16, 18, and 22 of HCoV-229E S, N, and 1a genes, respec-
tively). Phylogenetic analysis revealed that all of the HCoV-
229E sequences obtained in this study were classified with
group 4, which includes isolates that have been globally cir-
culating since 2001 (Figure 3 and Supplemental Figure 2).6,30,31

The group was supported by a posterior probability of 1.0 and

bootstrap value of 100% at the internal nodes of the MCC
and ML trees of the S gene, respectively, with an intra-group
pairwise genetic distance of 0.3% ± 0.1%. Such phylogenetic
data were comparable to those obtained from the N tree,
resulted from the hot substitution spots in the S1 and N
regions of the HCoV-229E genome.30 The four HCoV-229E
groups could not be clearly defined within the 1a gene tree
because of the limited number of reference sequences avail-
able in the public database (Supplemental Figure 2). Inter-
genotype pairwise genetic distance was generally low (below
5.0%) in the S gene among groups 1–4 (Table 3).
Estimation of divergence times. The molecular clock anal-

ysis of HCoV-NL63 and HCoV-229E was performed using the
coalescent-based Bayesian relaxed molecular clock under
the constant and exponential tree models (Figures 2 and 3).
The mean evolutionary rates for the S gene of HCoV-NL63
and HCoV-229E were newly estimated based on the con-
stant tree model at 4.3 × 10−4 (2.3–6.7 × 10−4) and 3.9 × 10−4

(1.3–6.4 × 10−4) substitutions/site/year, respectively. These
results were similar to the previously reported substitution
rate of the alphacoronavirus S gene (3.3 × 10−4 substitutions/
site/year).5 The evolutionary analysis indicated that the time
of the most recent common ancestor (tMRCA) of HCoV-
NL63 was dated back to the 1920s, while the estimated
divergence time of genotype A was dated to 1975, followed
by genotype B around 1996 and genotype C in 2003
(Figure 2). Furthermore, the divergence time of HCoV-229E

TABLE 3
The genetic diversity among alphacoronavirus genotypes in the

spike gene
HCoV Genetic distance

NL63 genotype A genotype B genotype C
genotype A - 0.8† 0.5
genotype B 7.6* - 0.6
genotype C 2.1 6.7 -

229E group 1 group 2 group 3 group 4
group 1 - 0.4 0.6 0.7
group 2 1.5 - 0.3 0.4
group 3 2.5 1.2 - 0.3
group 4 3.5 2.6 1.5 -

*Pairwise genetic distances are expressed in percentage (%) of nucleotide difference.
†Standard error estimates of the mean genetic distances are shown in the upper diagonal.

FIGURE 3. Maximum clade credibility tree of HCoV-229E. Spike gene (S1 domain) sequences (855 nucleotides) were analyzed under the
relaxed molecular clock with a GTR+I substitution model and a constant size coalescent model implemented in BEAST. Posterior probability
values and the estimation of the time to the most recent common ancestors with 95% highest posterior density were indicated on the major
nodes. The HCoV-229E sequences obtained in this study were color coded and the HCoV-229E groups 1–4 were indicated green = genotype 1,
red = genotype 2, blue = genotype 3, and purple = genotype 4. The sampling site for each sequence was indicated by codes for the representa-
tion of countries. Country codes are as follows; MY = Malaysia; US = United States; JP = Japan; NL = Netherlands; CN = China; AU = Australia;
IT = Italy.
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(Figure 3) was estimated around 1955 while the tMRCA of
group 1 diverged in 1976, followed by that of group 2 in 1981,
group 3 in 1989, and group 4 in 1996. The appearance of
groups 1–4 in a timely ordered manner would give strength to
the earlier reported hypothesis that positive selection and
genetic drift play a major role in the evolution of HCoV-
229E.6,30 To the best of our knowledge, this is the first study
that reported the divergence times of human alphacoronavirus
genotypes. In addition, the most recently reported HCoV-
229E strains (between 2001 and 2013) from major parts of the
world belong to group 4. In accordance with earlier studies,
genotype replacement is evident within HCoV-229E, although
sampling bias may also influence the results.6,30 Bayes factor
analysis showed insignificant differences (Bayes factor less
than 3.0) between the constant and exponential coalescent
models of demographic analysis, in which the divergence
times estimated using the constant coalescent tree model
were similar to those calculated using the exponential model
(Supplemental Table 1).
Clinical symptoms assessment. Clinical findings of the

URTI symptoms (sneezing, nasal discharge, nasal congestion,
headache, sore throat, hoarseness of voice, muscle ache, and
cough) and their severity levels (none, moderate, and severe)
were analyzed using the two-tailed Fisher’s exact test. The asso-
ciation between symptom severity and HCoV-NL63/HCoV-
229E infection was insignificant (P values > 0.05) (Supplemental
Table 2). In line with previous clinical studies,10,44,45 the
majority of patients infected with HCoV-NL63 and HCoV-
229E presented with at least one respiratory symptom that
was moderately severe.
In summary, this study provides insight into the phylogeny

and evolution of the HCoV-NL63 and HCoV-2293E geno-
types. Genetic characterization of human alphacoronavirus
isolates currently circulating in Malaysia indicates the circu-
lation of globally prevalent genotypes in the tropical region
of southeast Asia. This study has detailed the genetic history
of HCoV-NL63 and HCoV-229E genotypes. Since alpha-
coronavirus evolve through recombination, positive selection,
and genetic drift events, continuous molecular surveillance of
human alphacoronavirus is warranted to keep track on the
evolution of the virus in southeast Asia.
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