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Presentation of hepatocellular antigens

Arash Grakoui1 and Ian Nicholas Crispe2

The liver is an organ in which antigen-specific T-cell responses manifest a bias toward immune tolerance. This is clearly

seen in the rejection of allogeneic liver transplants, and multiple other phenomena suggest that this effect is more

general. These include tolerance toward antigens introduced via the portal vein, immune failure to several hepatotropic

viruses, the lack of natural liver-stage immunity to malaria parasites, and the frequent metastasis of cancers to the liver.

Here we review the mechanisms by which T cells engage with hepatocellular antigens, the context in which such

encounters occur, and the mechanisms that act to suppress a full T-cell response. While many mechanisms play a role, we

will argue that two important processes are the constraints on the cross-presentation of hepatocellular antigens, and the

induction of negative feedback inhibition driven by interferons. The constant exposure of the liver to microbial products

from the intestine may drive innate immunity, rendering the local environment unfavorable for specific T-cell responses

through this mechanism. Nevertheless, tolerance toward hepatocellular antigens is not monolithic and under specific

circumstances allows both effective immunity and immunopathology.
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According to ancient Babylonians and in the practice of

Mesopotamian medicine, the liver is metaphorically regarded

as the ‘seat of the living soul’ (The Evolution of Modern

Medicine, William Osler). Ritualistic examination of the liver

comprising assessment of its size and position, its color and the

richness of its blood, was routinely interpreted as a measure of

the inner invisible characteristics including emotions as well as

illnesses. So while in the modern English language, the concep-

tualization of abstract emotion over the years has been linked to

the heart, in ancient Babylonia, it all startedwith the liver. Pablo

Neruda’s magnificent ‘Ode to the Liver’ is a modern manifesta-

tion of these ancient insights. Today, we know that the liver is

the major organ responsible for more than 500 different func-

tions; protein, carbohydrate and lipid metabolism, hormone

production, plasma protein synthesis, decomposition of red

blood cells, glycogen storage, bile production and detoxifica-

tion to name a few – symbolically functioning as the organ

responsible for cleansing of the soul.

Anatomically, it is interesting and unique that besides being

the largest internal organ, the liver is traversed by both the

hepatic artery and the portal vein, with the former carrying

oxygen-rich blood from the aorta and the latter bringing in

myriad antigens from the gut, spleen and pancreas and nutri-

ents from the gastrointestinal tract. The hepatic blood exits

from the sinusoids into the central vein where it is drained

into the inferior vena cava. Perhaps in this antigen-rich context,

it is not surprising that evolutionarily the liver has developed a

tolerogenic environment in order to manage the panoply of

antigens and their neo-antigenic metabolites. For tissue preser-

vation, the liver must reduce the risk of immune activation in

response to various oral and self-antigens. Importantly, the

large microbial biomass found in the gut that serves as an

important determinant of intestinal inflammation also directly

influences the development of liver disease.1 In fact, the hypor-

esponsiveness to an oral antigen can be significantly reversed

with the creation of a portal shunt.2 This tolerogenic aspect of

the liver is consistent with the observation that liver allografts,

unlike heart or kidney, can be accepted in various animal and

human transplant settings in the absence of additional

immunosuppression.3,4 Co-transplantation with the liver

allows for protection and acceptance of other organs that

normally would be rejected.5

Hepatic microvessels, known as sinusoids, slow down the

blood flow and allow for the liver’s biochemical functions to

be enacted by specialized cells, the hepatocytes. Hepatocytes

comprise ,60% of hepatic cells and close to 90% of the liver

volume. Liver sinusoidal endothelial cells (LSECs) form a fen-

estrated barrier separating the hepatocytes from direct blood
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flow and the immune cells that reside in the lumen. How does

the liver balance between the need for tolerance to antigens that

are metabolized in the liver and the requirement for immunity

to pathogens that have developed hepatotropic propensity over

the years? Are gut microbial antigens and/or neo-antigens

derived from metabolic byproducts providing danger signals

to induce inflammation? In addition to hepatocytes themselves

controlling many aspects of inflammation, the assistance by

other intrahepatic cells collaborate in managing the overall

functioning of the liver. These nonparenchymal cells include

lymphocytes, Kupffer cells, natural killer (NK) cells, NK-T cells,

and stellate and dendritic cells (DC) that are assigned with

sensing any perturbation in the liver architecture and milieu

(Figure 1). The subject of this review is to delineate how

immune sensing in the liver is shaped by the location, where

the antigen is processed, how it is processed and to explore the

influence of host innate receptors and pathogen subversion

tactics as they act on hepatocytes and nonparenchymal cells

in liver immunity.

ANATOMY OF ANTIGEN PRESENTATION

The presentation of antigens is controlled both by their loca-

tion within the cell and by accessory signals that in turn are

controlled through innate immune recognition mechanisms

that sense pathogen-associated molecular patterns (PAMPs)

such as viral and microbial nucleic acid motifs and distinctive

glycolipids and specific conservedmicrobial proteins. A largely

overlapping set of receptors activates similar signaling path-

ways in response to cellular injury through the recognition of

damage-associated molecular patterns (DAMPs). Some of

these receptors reside on the plasma membrane, for example

Toll-like Receptor (TLR) 2 and TLR4, which recognize compo-

nents of bacterial cell cells; some reside in endosomes, such as

TLR3 and TLR9 that sense structural features of viral and

microbial RNA and DNA respectively; and some are cytoplas-

mic, such as the retinoic acid-inducible–like receptors that

sense viral RNA and the Nod-like receptors that sense bacterial

lipids. Thus, in the liver, immune cell activation can be influ-

enced by the cell in which the antigen is expressed, the cellular

compartments in which it exists, the presence of innate

immune signals that modulate antigen presentation via

PAMPand DAMP receptors, and immune subversionmechan-

isms evolved by the pathogen to disable host defense.

Presentation of antigen to both CD41 and CD81 T cells

depends on antigen processing, which is distinct and par-

titioned in different cellular compartments. Thus, viral capsid

proteins and proteins that are contained within the virion can

gain access to endosomes and to the processing pathway that

degrades antigens and loads their peptides into major histo-

compatibility complex (MHC) class II molecules in a special-

ized compartment termed theMHCclass II compartment. This

route of processing is also open to virally encoded proteins that

are secreted from infected cells, such as hepatitis B surface

antigen in the case of hepatitis B infection. In contrast, non-

structural viral proteins are synthesized only in the infected cell,

and most often in the cytoplasm. These proteins can be

degraded directly by the proteasome and loaded to the MHC

class I molecules via a protein transporter complex, transporter

of antigenic peptides, that traffics them into membrane-bound

compartments. The antigens of nonviral pathogens are also

located in both membrane-bound and cytoplasmic compart-

ments. Thus, the bacterium Listeria monocytogenes is first taken

up by endocytosis, but then disrupts the membrane of the

endosome through the action of an enzyme listeriolysin,6 and

enters the cytoplasm where it both migrates and spreads from

cell to cell by exploiting the host cell cytoskeleton.7 Therefore,

this pathogen evades the classic MHC class II pathway but

Listeria-encoded antigens are available for the classical MHC

class I–processing pathway. While Listeria is a virulent patho-

gen that infects the liver, its intracellular location together with

its strong activation of innate immunity conspire to render it,

in healthy individuals, a potential vaccine vehicle. In fact vac-

cines based on attenuated Listeria organisms can induce effec-

tive anticancer immunity, making them an exciting avenue for

vaccinology and immunotherapy.8–10

Malaria parasites enter hepatocytes by direct invasion of the

cytoplasm, which appears to bemediated by a prior interaction

with Kupffer cells.11,12 Thus, their antigens expressed by the

invasive stage, the sporozoite, are potentially accessible to

the classical MHC class I pathway, but the parasites induce

the formation of a parasitophorous vacuole, the membrane

of which contains both host-encoded and parasite-encoded

proteins. This vacuolar membrane mediates interaction

between the parasite and the infected hepatocyte, but the extent
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Figure 1 Anatomy of antigen presentation in the sinusoid. Plates of
hepatocytes are separated from the blood flowing in the sinusoids by
liver sinusoidal endothelial cells. In the blood space are recirculating
natural killer cells, natural killer T cells, monocytes–macrophages and,
adherent to the endothelial wall, the Kupffer cells. To interact directly
with hepatocytes, CD81 T cells must cross the endothelial barrier and
enter the space of Disse. CD41 T cells also enter this space but cannot
directly interact with hepatocytes. However, they find other interaction
partners such as DCs and stellate cells.
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to which it controls antigen presentation is not understood.

Genetically attenuated malaria parasites that can function as

live vaccines may undergo developmental arrest before they

form a parasitophorous vacuole;13 but late-arresting parasite

variants that undergo partial differentiation within such a

vacuole may also induce sterilizing immunity.14,15

LICENSING THE ANTIGEN-PRESENTING CELLS

Many important liver pathogens infect primarily hepatocytes.

These include the hepatitis viruses (hepatitis A virus [HAV],

hepatitis B virus [HBV], hepatitis C virus [HCV] and other less

common viruses), cytomegalovirus and the globally important

malaria parasite. Since these are intracellular pathogens, host

defense depends primarily on T cells and in all these infections

there is strong evidence that the cytotoxic CD81 T cells are

essential for host defense. To take two among many examples:

depletion of CD81 T cells from HBV-infected chimpanzees

results in a resurgence of viremia16 and similarly abrogates

immunity in mice primed with radiation-attenuated malaria

parasites.17,18 Once fully activated, cytotoxic CD81 T cells

undergo clonal expansion andmay deliver their defensive func-

tion without support from other cell types, but for efficient

primary activation, full effector function, survival andmemory

CD81 T cells and the delivery of memory effector function,

CD81 T cells depend on an interaction with CD41 T cells

termed ‘help’. This interaction is mediated in several ways:

through the direct delivery of supportive CD41 T-cell–derived

cytokines such as interleukin-2 (IL-2);19 through the enhanced

function of specialized antigen-presenting cells (APCs) such as

DCs, a mechanism termed licensing;20,21 and through a direct

interaction between CD41 and CD81 T cells that requires the

expression of CD40 on the CD81 T cells.22

Among these mechanisms, ‘licensing’ is the most efficient

because it can be mediated by sequential interaction of a rare

antigen-specific CD41 T cell and subsequently a rare antigen-

specific CD81 T cell with an APC. Both the licensing inter-

action between the CD41 T cell and the APC, and the licensed

interaction between the APC and the CD81 T cell, depend on

MHC-restricted antigen recognition, and this in turn means

that for licensing to occur, the APC must express both MHC

class I and class II. Among potential liver-resident APC, traf-

ficking DC express both classes of MHC molecules. At a lower

level, so do Kupffer cells and LSECs, but hepatocytes only

express MHC class I. Therefore, hepatocytes cannot be licensed

by CD41 T cells.21 Instead, the full activation of a CD81 T cell

specific for a hepatocellular antigen depends on cross-presenta-

tion by an MHC class I1 II1 cell (Figure 2).

Among liver-resident cells, the large macrophage population

termed Kupffer cells would be an obvious candidate for the

cross-presentation of hepatocellular antigens. However, the bal-

ance of evidence suggests that Kupffer cells are immunosuppres-

sive. Interaction of Kupffer cells with CD81 T cells in vitro

causes proliferation,23 but they also secrete both IL-1024,25 and

the immunosuppressive prostaglandin PGE2,26,27 and in vivo

depletion of Kupffer cells impairs both oral tolerance28 and liver

transplantation tolerance.29 It follows that there is no conflict

between the abundance of Kupffer cells in HCV-infected livers

and the persistence of HCV infection. If Kupffer cells were to be

presenting or cross-presenting HCV-encoded antigens, tol-

erance would be the expected outcome.

The other liver-resident cell type that constitutively expresses

MHC class II is the LSEC. These cells are very active in pinocy-

tosis, sequester virions from the circulation30 and could readily

cross-present both circulating antigens31 and hepatocellular

antigens, whether these are released as soluble protein or in

exosomes.23 Exosomes aremembrane-bound cell fragments that

transport proteins from one cell to another, and they have been

implicated in the transfer of HCV-encoded proteins32 and viral

RNA.33 LSECsmay also cross-present cancer-derived antigens.34

However, the default outcome in the case of antigen presentation

by LSECs is immune tolerance.34–37

These considerations lead to the conclusion that the poten-

tial of liver-resident cells to cross-present hepatocellular anti-

gen does not lead to effective immunity. Instead, both LSECs

and Kupffer cells may cross-present antigens, but the outcome

is not ‘help’ but immune suppression. This raises a fun-

damental biological question: in the context of liver infection,

are the LSECs and the Kupffer cells resistant to licensing

mechanisms that act in other contexts? Or are they licensed,

but in an alternative way that enhances their immunosuppres-

sive potential? Experiments with purified LSECs and Kupffer

cells in vitro have not so far clarified this issue, because there is

no way to determine whether the cells were licensed, or unli-

censed (or delicensed, or alternatively licensed) already at the

time of isolation.
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Figure 2 Pathways of direct and cross-presentation of hepatocellular
antigens. The fenestrated liver sinusoidal endothelium allows (a) direct
presentation of hepatocyte antigens to CD81 T cells, but such antigens
can only engage CD41 T cells after cross-presentation (b) via Kupffer
cells (KC), liver sinusoidal endothelial cells, or myeloid dendritic cells
(DCs), all of which express major histocompatibility complex class II and
can activate CD41 T cells (c). Myeloid DCs can also mediate licensing
(d) in which a CD41 T cell activates an antigen-presenting cell such as
an myeloid DCs, which in turn delivers full activation signals to a CD81T
cell. However, this straightforward model does not explain everything,
as CD41 T cells may also interact with CD81 T cells more directly via
CD40 (e).
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TOLERANCE DESPITE THE PRESENCE OF

DANGER SIGNALS

Adaptive immune responses to pathogens occur in the context

of ongoing innate immunity. The ‘Danger Model’ asserts that

adaptive immunity is triggered by tissue damage,38 and the

current understanding of this process is that injured cells

release DAMPs that engage the same classes of receptors, as

do PAMPs. These receptors engage two major signaling cas-

cades: one via the adapter moleculeMyD88 that activates many

innate immune genes including those encoding Tumor

Necrosis Factor (TNF)-a and IL-1a/b; the other via TRIF

and IRF7 activates Interferon (IFN)-a/b, and thence a large

number of interferon-sensitive genes, many of which encode

antiviral proteins. Both DAMP and PAMP receptors are abun-

dantly expressed by liver cells,39 so it would be expected that the

activation of innate immunity is effective in the liver. The

‘Danger Model’ asserts further that these changes set the scene

for adaptive T-cell immunity through increased expression of

MHC class I and class II molecules, increased expression of co-

stimulatory and intercellular adhesion molecules, and the

switch from basal proteasomes to immunoproteasomes.38,40

All these changes can be driven by IFNs.

However, in the liver there are two confounding factors that

derail this logically appealing model. First, the liver is exposed

to low levels of bacterial products from the intestinal micro-

biota, and these include endotoxin (lipopolysaccharide, LPS)

from gram-negative bacteria. While the level of LPS in the liver

is increased in pathological states including alcohol toxicity, it

is also detectable at baseline.41 Low-level exposure to LPS could

act by inducing LPS tolerance, which is illustrated by experi-

ments in which systemic administration of a low dose of LPS

results in protection from a subsequent challenge with a lethal

dose by modifying the immunobiology of liver cells.42,43 This

process acts by down-regulating innate immune signaling

pathways (Figure 3). Thus, the presence of low-level LPS in

the liver could blunt the innate response to infection. In addi-

tion, documented effects of LPS on isolated liver cells suggest it

may induce immunosuppressive molecules. Thus, exposure of

Kupffer cells to low-dose LPS resulted in the secretion of IL-10,

which in turn could modify the function of LSECs.24,44 In

addition, liver APCs are not functionally mature in the same

way as their counterparts in other organs, as identical treat-

ments results in divergent immune responses.45 This could be

either due to the presence of a large quantity of anti-inflam-

matory cytokines in the liver or cell intrinsic properties that

make these hepatic APCs less immunostimulatory.

A second consideration is the induction of negative feedback

through IFNs. Innate immunity results in the secretion of both

IFN-a/b by many cell types, and IFN-c mostly by lymphocytes

includingNKcells andNK-Tcells.While these IFNs induceMHC

I/II, co-stimulation and the immunoproteasome activation, they

also induce negative feedback inhibition that may result in

immune tolerance. These effects are best documented for IFN-

a/b, which suppressed the CD41 T-cell response to blood-stage

malaria parasites, whilemice lacking IFN-a/b signalingwere rela-
tively resistant.46 Similarly, IFN-a/b suppressed the CD81 T-cell

response in virus infection.47 In LCMV infection in mice, inhibi-

tionof IFN-a/b caused increased IFN-c secretion and an antiviral
effect.48 However, IFN-c may also suppress effective immunity,

for example in pancreatic islet transplantation into the liver.49

This type of immune suppression induced by proinflammatory

cytokines in the context of cancer has been termed adaptive

resistance.50 Therefore, we would argue that immune tolerance

provoked by inflammation should be called adaptive tolerance.

Suppression of T-cell immunity acts via many pathways,

including immunosuppressive small molecules, cytokines and

cell surface ligands; many of these are induced by IFNs. IFN-b
induces the enzyme IDO1,which imposesT-cell tolerance though

the depletion of tryptophan and the synthesis of kynurenine.51

IFN-c gene transduction also induces the Ido1 gene52 as well as

bothFas (CD95) andFas ligand,53 the interactionofwhich results

in T-cell apoptosis. Some other proinflammatory cytokines have

similar effects. Thus, IFN-c along with IL-12 and IL-17 up-regu-
lated the immunosuppressive ligand PD-L1;54 IFN-c along with
TNF-a and TLR2, 3 and 4 ligands induced galectin-9.55

There is evidence that all these immunosuppressive pathways

are active in the liver. Thus, in HBV infection, IDO not only

suppresses anti–hepatitis B surface antigen CD81 T-cell activ-

ity56 but also promotes liver injury in fulminant hepatitis.57 In

mice, deficiency of PD-L1 results in massive accumulation of

CD81 T cells in the liver,58 while antibody-mediated inhibition

of PD-L1 signaling enhanced an anti-HBV CD81 T-cell res-

ponse.59 Similarly, in human HCVand HBV infection, dysfunc-

tional T cells were enhanced by PD-L1 blockade.60,61 Likewise,

both the Fas–FasL pathway62,63 and the galectin-9–Tim-3 path-

way64,65 regulate T-cell immunity in viral hepatitis.

The IFN-induced immunosuppressive feedback pathways may

actively promote T-reg activity. Thus, in HCV the interaction

of galectin-9 with Tim-3 on CD41 T cells promoted T-reg
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Figure 3 Normal tolerance and pathological tolerance in the liver. In
health (shown in green) the microbiota causes steady-state low-level
immune activation and the negative feedback that results in bias toward
immune tolerance in the liver. Disturbance of the relationship between
microbiota and host, which may be caused by diverse stresses including
toxic diet elements, can cause enhanced inflammation that acts through
the same mechanisms, but causes more profound immune incompet-
ence. At the same time, the inflammation itself propagates liver injury.
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development.66 Conversely, T-reg cells in viral hepatitis express

high level of PD-1.67 Most strikingly, even IFN-l has been impli-

cated in inducing a myeloid cell phenotype that in turn promotes

the expansion of T-reg cells.68 Thus, while many liver cell types

have the potential to present antigen to T cells, multiple immu-

nosuppressive mechanisms conspire to defeat their activation.

IMMUNITY DESPITE THE PRESENCE OF TOLERANCE

While immune failure is a common response to liver antigens,

it is by no means universal. Most patients infected with HAV

undergo acute hepatitis accompanied by the activation of a

strong CD81 T-cell response, and then eradicate the infection.

In HBVonly a subset, and in HCV infection only a minority of

patients eliminate the virus, andwhen it occurs such self-cure is

accompanied by a more diverse, sustained CD81 T-cell and a

CD41T-cell response.69,70WhatmakesHAVdifferent? It is not

the presence of diverse strategies to disable innate immune

defense that makes the difference, since HAV like HCVencodes

proteases that cleave host innate immune signaling proteins.71

One study of the differential roles of CD81 and CD41 T cells

in HAV made the point that effective CD41 T-cell function

correlated with the onset of viral clearance, while CD81 T-cell

function only improved after virus was eliminated.72 This is a

very provocative observation that challenges themodel, argued

above, that the important role of CD41 T-cell help in HAV

infection is to support and sustain the CD81 T-cell response.

Are CD41 T cells possibly the relevant effectors in anti-HAV

immunity, with the CD81 T-cell response reduced to an unre-

liable biomarker? Correlation may not prove causation, but

lack of correlation is a strong argument against causation.

In HCV, self-cure in chimpanzees is linked to CD81 immun-

ity as already noted,73 while in humans the striking correlation is

with a polymorphism in the gene encoding an innate immune

cytokine, IL-28B, a member of the IFN-l family.74 The link may

be that IL-28 increases the transcription factor T-bet,75 which

biases CD41 T cells toward the Th1 fate, but is also correlated

with cytotoxic CD81 T cell effector function in CD81 T cells

and NK cells.76 In summary, the conditions that lead to effective

immunity against hepatitis viruses may critically involve innate

immunity (IL-28B), CD41 T cells and CD81 T cells, but the

relationships between them are not yet clear.

WHEN INFLAMMATION OVERSHADOWS TOLERANCE

Ample evidence suggests that uncontrolled inflammation

induces severe liver damage and progression to end-stage liver

disease. Although the first landmark observation linking liver

cirrhosis and inflammation was documented over 100 years

ago, our understanding of liver disease processes has only

recently evolved to include inflammation as a mechanism

rather than a consequence.77 Liver lymphocyte infiltration,

increased levels of circulating LPS and elevated levels of proin-

flammatory cytokines such as TNF-a are key hallmarks of not

just alcoholic liver disease but also nonalcoholic steato-hep-

atitis, and cirrhosis due to viral infection. Consistent with this

idea, a recent study by one of our laboratories showed surpris-

ingly that liver recruitment and activation of DCs was a general

consequence of inflammation, irrespective of viral infection

status.78 In fact, the immune manifestations of alcoholic liver

disease and nonalcoholic steato-hepatitis are virtually indistin-

guishable through current diagnostic methods, suggesting that

common core pathways of inflammation-fueled cirrhosis exist

that may serve useful as therapeutic targets.79

Recently, studies have alluded to the contribution of in-

testinal microbiota as prime suspects to promote metabolic

diseases by driving low-level inflammation.80,81 In fact TLR/

Nod-like receptors activation in resident Kupffer cells by low-

level bacterial products (endotoxin) in the liver through TLR4

pathway is critical for liver inflammation induced by ischemia

reperfusion, alcohol and viral components.82–84 Given the

alarming correlation seen between changes in our diet to obes-

ity, metabolic syndrome and nonalcoholic steato-hepatitis, gut

permeability and elevated serum endotoxins have been shown

to be critical components in promoting liver inflammation and

disease progression.85 Interestingly, many of the diet-induced

metabolicmanifestations seem to be reversed in germ-freemice

and/or in mice devoid of TLR signaling.86–88 In addition, gut

microbiota also play an important role in the progression of

liver disease to fibrosis as chemically induced treated mice with

carbon tetrachloride showed increases in bacterial transloca-

tion.89 Furthermore, intestinal microbiota and signaling

through TLR4 on hepatic stellate cells was shown to be critical

for the development of fibrosis by modulation of TGFb and

subsequent unrestricted activation of Kupffer cells.90

In summary, the liver is an environment where antigens are

readily presented by diverse liver cell types, but the prevalence of

background low-level exposure to innate immune stimuli results

in continuous feedback inhibition of T-cell immunity through

many parallel pathways. However, the inextricable connectivity

between the intestinal microbiota and the liver also selects for an

inflammatory thermostat that shifts the balance from tolerance

to inflammatory-induced liver disease when gut microbial anti-

gens and/or neo-antigens provide unchecked danger signals to

the liver. In Neruda’s words (translated by H. Morales and W.

Hochman) ‘one small cell goes astray, the pilot flies in the wrong

sky, the tenor shrinks to a whisper, the astronomer loses his

planet’. Such is the central role of the liver in immunity.
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PM, Quiles-Pérez R, Gila-Medina A et al. Genetic variation in
interleukin 28B with respect to vertical transmission of hepatitis C

Liver antigens

A Grakoui and IN Crispe

Cellular & Molecular Immunology

299    



virus and spontaneous clearance in HCV-infected children.
Hepatology 2011; 53: 1830–1838. doi:10.1002/hep.24298.

75 Siebler J, Wirtz S, Weigmann B, Atreya I, Schmitt E, Kreft A et al.
IL-28A is a key regulator of T-cell-mediated liver injury via the T-box
transcription factor T-bet. Gastroenterology 2007; 132: 358–371.
doi:10.1053/j.gastro.2006.10.028.

76 Hamilton SE, Jameson SC. Effective effector generation of CD81 T
cells and NK cells: a need for T-bet and ZEB-too. J Exp Med 2015;
212: 1990. doi:10.1084/jem.21212insight3.

77 Wang HJ, Gao B, Zakhari S, Nagy LE. Inflammation in alcoholic liver
disease. AnnuRevNutr 2012; 32: 343–368. doi:10.1146/annurev-
nutr-072610-145138.

78 Velazquez VM, Hon H, Ibegbu C, Knechtle SJ, Kirk AD, Grakoui A et al.
Hepatic enrichment and activation of myeloid dendritic cells during
chronic hepatitis C virus infection. Hepatology 2012; 56: 2071–
2081. doi:10.1002/hep.25904.

79 Schuppan D, Kim YO. Evolving therapies for liver fibrosis. J Clin
Invest 2013; 123: 1887–1901. doi:10.1172/JCI66028.

80 Henao-Mejia J, Elinav E, Jin C, Hao L, Mehal WZ, Strowig T et al.
Inflammasome-mediated dysbiosis regulates progression of NAFLD
and obesity. Nature 2012; 482: 179–185. doi:10.1038/
nature10809.

81 Vijay-Kumar M, Aitken JD, Carvalho FA, Cullender TC, Mwangi S,
Srinivasan S et al. Metabolic syndrome and altered gut microbiota
in mice lacking Toll-like receptor 5. Science 2010; 328: 228–
231. doi:10.1126/science.1179721.

82 SandlerNG, Koh C, Roque A, Eccleston JL, Siegel RB, Demino M et al.
Host response to translocated microbial products predicts outcomes
of patients with HBV or HCV infection. Gastroenterology 2011; 141:
1220–1230, 1230 e1221–1223. doi:10.1053/j.gastro.2011.
06.063.

83 Tsung A, Hoffman RA, Izuishi K, Critchlow ND, Nakao A, Chan MH et al.
Hepatic ischemia/reperfusion injury involves functional TLR4 signaling
in nonparenchymal cells. J Immunol 2005; 175: 7661–7668.

84 French SW. Mechanisms of alcoholic liver injury. Can J Gastroenterol
2000; 14: 327–332.

85 Pendyala S, Walker JM, Holt PR. A high-fat diet is associated
with endotoxemia that originates from the gut. Gastroenterology
2012; 142: 1100–1101 e1102. doi:10.1053/j.gastro.2012.01.
034.

86 Kleinridders A, Schenten D, Könner AC, Belgardt BF, Mauer J,
Okamura T et al. MyD88 signaling in the CNS is required for
development of fatty acid-induced leptin resistance and diet-
induced obesity. Cell Metab 2009; 10: 249–259. doi:10.1016/j.
cmet.2009.08.013.

87 Rabot S, Membrez M, Bruneau A, Gérard P, Harach T, Moser M et al.
Germ-free C57BL/6J mice are resistant to high-fat-diet-induced
insulin resistance and have altered cholesterol metabolism. FASEB
J 2010; 24: 4948–4959. doi:10.1096/fj.10-164921.

88 Tsukumo DM, Carvalho-Filho MA, Carvalheira JB, Prada PO, Hirabara
SM, Schenka AA et al. Loss-of-function mutation in Toll-like receptor
4 prevents diet-induced obesity and insulin resistance. Diabetes
2007; 56: 1986–1998. doi:10.2337/db06-1595.

89 Gomez-Hurtado I, Santacruz A, Peiró G, Zapater P, Gutiérrez A, Pérez-
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