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Abstract
Type 1 diabetes mellitus (T1DM) as one of the most 
well-known autoimmune disease, results from the 
destruction of β-cells in pancreas by autoimmune 
process. T1DM is fatal without insulin treatment. The 

expansion of alternative treatment to insulin is a dream 
to be fulfilled. Currently autoimmunity is considered as 
main factor in development of T1DM. So manipulation 
of the immune system can be considered as alternative 
treatment to insulin. For the past decades, vitamin A has 
been implicated as an essential dietary micronutrient in 
regulator of immune function. Despite major advantage 
in the knowledge of vitamin A biology, patients who 
present T1DM are at risk for deficiency in vitamin A and 
carotenoids. Applying such evidences, vitamin A treatment 
may be the key approach in preventing T1DM.
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Core tip: Diet modification and vitamin supplementation is 
a practical treatment approach for autoimmune diseases. 
However few broadly studies have been conducted on the 
use of vitamin A in the treatment of type 1 diabetes. Our 
objective is to consolidate the current literature to better 
delineate the vitamin A on immune pathway involved in 
formation of type 1 diabetes.
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INTRODUCTION
Type 1 diabetes mellitus (T1DM) is a well-known 
autoimmune disease that is characterized by a state 
of T cell-mediated selective deficiency of absolute or 
relative insulin-producing β-cells[1-4]. Despite modern 
medical management, T1DM is still one of the most 
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common chronic childhood diseases[5]. T1DM eventually 
ends up in several disorders including renal failure, 
ketoacidosis, heart disease, stroke and visionless[1]. It is 
estimated that T1DM affects 497100 children under 15 
years globally[5]. Currently administration of exogenous 
insulin has been the core strategy of treatment for 
patient with T1DM[4,6]. However it is not without com-
plications. So, alternative preventive and treatment 
approaches to insulin are required. It has been shown 
that manipulation of the immune system with altering 
the course of the disease can be consider as alternative 
preventive and treatments approach to insulin[7]. The 
effects of vitamin A on immune system have been 
studied more than any other nutrients[8]. The concept of 
modulation of immune system by vitamin A dates back 
to the early twenties and the work of Green et al[9,10] 
who reported that vitamin A and β-carotene have “anti-
infective” properties. Today, dietary vitamin A and its 
derivatives are recognized as crucial agents for normal 
immune system function and regulation[11]. 

Interestingly, recent studies have demonstrated 
that vitamin A deficiency leads to defects in glucose-
stimulated insulin secretion[12]. In addition presence of 
relatively high levels of cellular retinol binding protein 
(RBP), cellular retinoic acid (RA) binding proteins, 
transthyretin (TTR) and RBP in pancreatic rat islets 
have been documented[13-15]. Despite major advantage 
in the knowledge of vitamin A biology, patients who 
present T1DM are at risk for deficiency in vitamin A and 
carotenoids[16,17]. It has been shown that bioavailability 
and plasma concentrations of vitamin A, TTR, retinol, 
and RBP fall in children and adults with T1DM[18-22]. 

The action of vitamin A to control immune response 
has led to a growing hypothesis of potential role of 
vitamin A in T1DM as an autoimmune disease. This 
review highlights new information regarding to vitamin 
A and RA in regulation of immune responses in patient 
with T1DM. So, the purpose of the current study was 
to thoroughly review the function of vitamin A in the 
immunology of T1DM. 

RESEARCH
We performed a comprehensive literature search of the 
subject using MEDLINE and PubMed, for “vitamin A”, 
OR “retinoic acid” OR “retinol” AND “type 1 diabetes 
mellitus” OR “T1DM”. All papers fulfilling the above 
criteria were considered. All papers obtained in the 
search were fully discussed by the authors. References 
lists of all original published articles were scanned to 
find additional eligible studies.

VITAMIN A/RA METABOLISM AND 
SIGNALING
Vitamin A is an essential nutrient that can be acquired 
from the diet either as preformed vitamin A [primarily as 
retinyl ester (RE), retinol, and in much smaller amount 

as RA] or provitamin A carotenoids[23]. This vitamin has 
been well known for its critical function in embryonic 
development, vision and the nervous system, as well as 
in regulation and development of the immune system[24]. 
Both dietary vitamin A as vegetable and fruit-derived 
carotenoids and REs from animal sources are converted 
to retinol within the lumen of the small intestine or the 
intestinal mucosa and then enzymatically re-esterified 
with long-chain fatty acids within the enterocyte to form 
RE[23,25-27]. REs are packaged into chylomicrons together 
with other dietary lipids and secreted into the lymphatic 
system[27]. The liver is the primary organ for storage of 
vitamin A, where the retinol form of vitamin is esterifies 
by lecithin: Retinol acyl transferase and stored as a 
RE[28,29]. To meet the tissue vitamin A needs, retinol 
released into the circulation from liver and bound to its 
specific transport protein, retinol-binding protein (RBP or 
RBP4)[30,31].

In the liver and the peripheral stream, vitamin A 
is mainly in the form of retinol and REs. Although the 
function of vitamin A is applied in its metabolite form 
RA[28]. So, its precursors must be converted to RA by a 
two-step process[32]. First, retinol is hydrolyzed into retinal 
by ubiquitous alcohol dehydrogenase, and then irreversible 
hydrolysis reaction allows the formation of RA[33]. Reg-
ulation of gene expression by RA, and the discovery of RA 
receptor and retinoic acid X receptor which are specific 
receptors for the active metabolites of vitamin A such as 
all trans and 9-cis-retinoic acids, provided fundamental 
documents for the understanding retinoids effects on 
immune function[34-36]. RA is inactivated by CYP26A1, 
CYP26B1 and CYP26C1[28,29].

PREDIABETES STAGE
Type 1 diabetes is an autoimmune disease, which 
result from development of islet autoantibodies against 
proteins in insulin producing beta cells and immune-
mediated destruction of insulin producing beta cells in 
the pancreas[37]. These individuals with antibody positive 
within many years are at risk of developing T1DM[38-40]. 
Progressive autoimmune β-cell damage usually pre-
cedes the clinical onset of diabetes, and occurs years 
before any clinical symptom of T1DM[41,42]. This long pre-
diabetes phase making T1DM as a predictable disease, 
and provides an opportunity to prevent individuals with 
active insulitis from developing clinical disease[37].

So T1DM will be a preventable disease by the inter-
vention targeting the manipulating of immune system. 
In this context one approach is the trimolecular complex, 
including a self-reactive CD4 T cell, insulin, and HLA 
molecule[43].

TYPE 1 DIABETES AND INNATE IMMUNE 
RESPONSES
The body's first defense system against microorganism 
invasion is the innate immune system[44]. Unlike the 
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adaptive immunity, the response mounted by the innate 
immune system is relatively nonspecific, that mediated 
primarily by macrophages, dendritic cells (DCs), and 
granulocytes, basically functioning as phagocytes and 
APCs[45].

The innate immune response depends on the recog-
nition of the microbial-associated molecular patterns 
(MAMPs), through special cell receptors called pattern 
recognition receptors (PRRs)[46,47]. PRRs enable innate 
immune system to sense and recognize specific microbial 
compounds known as MAMPs[46]. PRRs comprise at least 
three distinct families: RA-inducible gene-I-like helicases, 
nucleotide oligomerization domain-like receptors (NLRs), 
and Toll-like receptors (TLRs)[48].

The TLR family, best known and characterized in 
mammals, is composed of 13 receptors, which when 
activated cause activation of the immune system[49]. 
TLRs are able to recognize extracellular and endocytosed 
ligands[50]. Activation of TLR starts a cascade of pro-
inflammatory reactions that leads to increased exp-
ression of specific cytokines, chemokines, and co-
stimulatory molecules[51]. In type 1 diabetes, it has been 
demonstrated that TLRs, as the result of autoreactive 
processes directed against self antigens, may be priming 
an unwarranted adaptative immune response[52]. Acc-
ording to a study of Devaraj et al[53] the monocytes 
attained from type 1 diabetic patients expressed TLR2 
and TLR4 more than the control group. Furthermore 
shown in these patients the TLRs activity as well as the 
targets of the downstream TLR signaling including nuclear 
factor-κB (NF-κB), MyD88, and TIR-domain-containing 
adapter-inducing interferon (IFN)-β were all respectively 
more expressed. So, TLR2 and TLR4 signaling may have 
significant role in development of type 1 diabetes[54]. 
However, TLR3 is not required for onset of autoimmune 
diabetes, while TLR9-deficient compared to TLR9 
heterozygotes mice showed a significantly decreased 
incidence of diabetes[55].

NLRs and C-type lectin receptors have not been 
reported to be directly related to autoimmunity. However, 
they may trigger autoimmune responses or initiate the 
adaptive immune system by autoimmune mechanisms[56].

Macrophage
The early studies indicated the role of macrophages in the 
pathogenesis of T1DM[57]. It has been reported that the 
islet infiltrates of young non-obese diabetic (NOD) mice 
contain macrophages and if the influx of these cells into 
the pancreas is inhibited, development of type 1 diabetes 
is prevented[58]. In addition, according to animal models 
macrophages produce proinflammatory cytokines such 
as tumor necrosis factor (TNF)-α and interleukin (IL)-
1β which could be pathogenic for B cells[59,60]. Cytotoxic 
T cells are activated in the presence of macrophages, 
which subsequently destroy pancreatic β-cells[61]. Overall, 
the current evidence supports a pathogenic role for 
macrophages in initiation and development of T1DM.

DCs
DCs, a group of diverse intrinsic effectors which have 

two main actions relevant to T cell immune system 
controlling, including: Presentation of antigens to T cells 
and determining the nature of T cell response[62]. In 
vivo, as compared to healthy controls, DCs were located 
around the pancreatic islets in type 1 diabetic patients[63]. 
DCs present in the pancreatic islets of type 1 diabetic 
patient which suggests that these cells have a direct or 
indirect role in β-cell destruction[63]. In T1DM, DCs function 
as important APCs, DCs degrade the T cell response to 
antigen presentation[63]. Together, these studies support 
a diabetogenic role for DCs in the initiation steps of this 
disease.

Natural killer cells
Natural killer (NK) cells can recognize and kill virus-
infected cells through a number of different mechanisms; 
in addition NK cells have a critical role in immune 
regulation[64]. Data on NK cells in patients with T1DM are 
inconclusive[1]. Following stimulation by pro-inflammatory 
cytokines, NK cells generate a large quantity of cytokines 
such as IFN-γ, TNF-α, and granulocyte macrophage-
colony-stimulating factor (GM-CSF)[65]. According to 
animal models, NK cells can play a consequential role 
in the development of T1DM; however human studies 
accomplished in this field are rare. Evidence from 
animal model and man have shown that NK cells are 
potentially involved both in progression and protective 
of type 1 diabetes, thus suggesting a dual role for these 
cells in type 1 diabetes pathogenesis[66]. NK cells shown 
differently role in different stages of diseases to the 
disease pathogenesis[66]. These cells are the main source 
of IFN-γ, and therefore, they regulate the intensity of the 
immune attack in diabetes and also the progression of 
insulitis to diabetes[67].

The NK receptors consist of two main families in-
cluding NKG2A, for HLA E molecules, and the killer cell 
immunoglobulin-like receptors (KIR), for the recognition 
of HLA A, B, and C molecules[68]. Increased frequency of 
KIR gene haplotypes has been observed in patients with 
type 1 diabetes[68].

In the blood of diabetic patients and in lymphoid 
tissues of NOD mice NK cell function has been impaired. 
Also, in type 1 diabetic patients a slight decrease of 
NKG2D expression has been observed. However animal 
studies suggested that NK cells activity was detected only 
in the early pre-diabetic infiltrates[1]. Most pancreatic NK 
cells of NOD mice became hypo-responsive during the 
later stages of diabetes development, as it is detected 
by lower cytokine secretion and a higher tendency for 
degranulation as a reaction toward antibodies which are 
distinct for receptor activation[69].

According to the available evidence, NK cells can 
exhibit protective functions in β-cell autoimmunity 
conceivably by the down-regulation of T-cell lymphocytes 
and by the generation of IFN-γ. 

Neutrophils
Neutrophils are a part of the immune system which do 
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1).

DCs
DCs, the primitive guardian cells which activate the 
development of adaptive immunity, can act as APCs and 
establish immune responses[88]. Therefore, RA’s influence 
on this kind of cell could have a major role in initiating 
the adaptive immunity[79]. Apoptosis was induced by 
retinoids in immature MoDCs, this is inhibited by the 
secretion of cytokines like TNF-α and IL-1β. Also, retinoids 
enhanced the up-regulation of MHC-II and CD86 
expression on MoDCs[79]. IL-4 and RA act synergistically 
on some populations of DCs and reduce the production 
of proinflammatory cytokines[89,90]. Furthermore RA could 
regulate the immunosuppressive properties of human 
tolerogenic DC and also mediate the transformation of B 
cells into B-regs[91] (Figure 1). 

NK cells
NK cells, part of the innate immune system, are critical 
in the first line of defense against tumors and viral 
infections[92]. These cells play an immune-regulatory 
role in antibody production and cell-mediated immunity 
through their production of various cytokines[93]. Previous 
investigations reported that vitamin A deficiency has 
a fundamental effect on NK cell lytic activity in young 
rodents[94]. Deficiency of vitamin A reduces the activity 
of NK cells and the ability of spleen cells to produce IFN 
after mitogen stimulation[95,96]. According to in vitro and in 
vivo studies, using physiologic or high concentrations of 
retinoids result in an enhancement of NK cell activity[97-99]. 
However, the mechanism for this stimulation is not fully 
clears[99]. A U-shaped relationship between vitamin A and 
NK cells has suggested which both low and high doses 
of vitamin A may have deleterious effects on NK cell 
hematopoiesis, differentiation or function[100]. In addition 
there is an interesting progressive relationship between 
the degree of vitamin A deficiency and the observed 
immune-suppression[101] (Figure 1). 

Neutrophils
The importance of the neutrophils is recognized in 
animals with neutropenia or a deficiency of any key 
neutrophils enzymes[102,103]. In these animals, mild 
infections can be life threatening[102,103]. The neutrophils 
differentiates requires the oxidized form of retinol, 
RA[104,105]. The development of neutrophils in the bone 
marrow is controlled by the genes that are modulated by 
RA receptors, and RA in cultures accelerates maturation 
of neutrophils[106,107]. According to previous studies, 
treatment with RA or vitamin A could restore the level of 
neutrophils and the capacity of superoxide-production in 
calves and rats significantly[108,109]. Vitamin A deficient rats 
had significantly higher numbers of hyper-segmented 
neutrophils (67%) relative to those in the control rats[103]. 
However the data on the relationship between vitamin 
A and neutrophils function in humans are sparse and 
inconclusive[8] (Figure 1). 

not act specifically. These cells have a key role in the 
host immune system against different bacterial infections 
during the early host response to infection[1]. Neutrophils 
express many chemokine receptors, including CXCR1 
and CXCR2, which respond to early chemokines released 
by macrophages. Neutrophils also express chemotactic 
receptors for complement, lipid mediators, and bacterial 
products[70,71]. So, neutrophils react to different chemo-
attractants including lipid mediators, complement 
fragments and bacterial products[72,73].

Many studies for the roles of neutrophils in the 
pathogenesis of diabetic complications have been carried 
out and ended with many controversies. According to 
previous studies, neutrophil dysfunction in chemotaxis, 
phagocytosis, killing bacteria and the release of super-
oxide in type 1 diabetic patients and animal models are 
not a cause but an effect of disease[74-77].

VITAMIN A AND INNATE IMMUNE 
SYSTEM
Macrophage
The available evidence has introduced retinoids as 
important regulators of monocytic/macrophages fun-
ction[78-81]. According to RA effect on monocytic/macro-
phages, it is shown that RA restrains the secretion of 
cytokines that promote the production of Th1-type cells 
and also it increases the secretion of cytokines that 
promote the production of Th2-type cells[82]. Macrophages 
secrete cytokines like TNF and nitric oxide (NO) under 
activation conditions[83]. RA affects the secretion of major 
cytokines generated by macrophages, including TNF-α, 
IL-1, IL-6, and IL-12[81]. A number of studies have shown 
that all-trans-RA extremely reduced the mRNA levels 
of TNF, regulates NO production, and increases IL-1 
generation[82].

Kim et al[84] studied the impact of RA on a mouse 
model macrophage and its oblique effect on T cells. In 
their study they pretreated the macrophages with RA 
and precedingly activated them with lipopolysaccharides. 
In regard to the previous study, it was shown that RA 
inhibited the production of pro-inflammatory mediators 
(IL-12 production) by activating macrophages and the 
macrophages treated with RA when applied as antigen 
presenting cells (APCs) decreased the T-cell production of 
IFN-γ and increase the generation of IL-4. Collectively RA 
signaling seems to set up a Th2-Treg non-inflammatory 
base[84,85]. Using RA-treated macrophages as APCs in 
co-cultures, result in IL-12 reduction and also T cell-
derived IFN-γ and IL-4 levels down-regulated and up-
regulated, significantly[86]. Supplementation with vitamin 
A at 6500 IU/d for 6 mo in 6 patients with common 
variable immunedeficiency, who had low serum retinol 
concentrations, decreased the TNF-α level in comparison to 
onset levels[87]. The overall results show that supplementing 
with the preformed vitamin A may decrease the production 
of particular proinflammatory cytokines [monocyte-derived 
DCs (MoDCs), TNF-α and IL-6] by macrophages[8] (Figure 
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TYPE 1 DIABETES AND ADAPTIVE 
IMMUNE RESPONSES
The adaptive immune system, which is the body’s 
second defense system against pathogens, functions by 
its antigen-specific structure which distinguishes foreign 
molecules by their antigens which is mediated by the 
interaction between T cells and APCs. It is generates 
long-term response by using immunological memory. T 
cells and T cell receptor are the essential section in the 
adaptative immune system[1].

It is currently accepted that T cells play an important 
role in type 1 diabetes pathogenesis[110]. These cells are 
the most important players in the autoimmune attack of 
β-cells[110]. Anti-islet T cells, including both: CD4 and CD8 
T cells have been observed in patients with T1DM[111]. It 
has been shown that transfer of anti-islet specific CD4 
or CD8 T cells can lead to diabetes, as follows; insulitis 
and diabetes can be adoptively transferred by T cells 
from diabetic mice into non-diabetic mice, whereas 
B cells are not needed[111-113]. In fact insulitis seen in 
T1DM is induced by diabetogenic T cells that then recruit 
heterogeneous mixture of cells[114].

CD8 T cells directly attack β-cells by MHC type 1 
expressed on pancreatic β-cells, therefor in the absence 
of beta-2 microglobulin which reduces MHC type 1 or in 
the status of beta-restricted MHC type 1 deficiency, it 
is adequate to stop diabetes development and to avoid 
β-cell demolition in NOD mice[115,116].

CD4 T cells are activated by β-cell APCs, and they 
mainly provide cytokines such as IL-21 to help both B cells 
and CD8 T cells, which is required for the development of 
T1DM in NOD mice. CD4 T cells secrete IFN-γ, stimulating 
macrophages to release other cytokines, such as IL-1β, 
TNF-α, and free radicals, which are toxic to β-cells[44].

Lymphocytes can kill β-cells directly through a 
cytotoxic process or by the secretion of proinflammatory 
cytokines, such as IL-1β, IFN-γ; they also release free 
radicals, which destructs the pancreatic β-cells. Cytokines 
induce the production of inducible NO synthase which 
results in NO production and NO synthesis influences 
the β-cell death[117]. Free radicals can induce, in turn, 
apoptosis and necrosis of β-cells[118]. 

In the disease progression phase, both T and B 
lymphocytes can be activated against self antigens in 

an islet lesion and trigger an immunological response 
that leads to the destruction of pancreatic β-cells[119,120] 
(Figure 2). 

VITAMIN A AND ADAPTIVE IMMUNE 
RESPONSES
A study by Iwata et al[121] for the first time described the 
role of RA in the biology of T cells. Recently evidenced 
T-cell immune-competence can be affected by vitamin 
A deficiency[8].

Transforming growth factor (TGF)-β which is a sup-
pressor of Th1 and Th2 differentiation and the inducer of 
transforming T-cells to Tregs or to Th17, mediates RA in 
the process of formation, differentiation and inhibition or 
activation of Th1, Th2, Th17 and Treg lymphocytes[122]. 
The main impact of RA in lymphocyte differentiation 
by TGF-β is the transformation of Th17[123,124]. RA has 
a two way affected on Th17 which on one hand it 
promotes its differentiation and on the other hand it 
downregulates it[125]. Th17 appears to be the example of 
customized immunity for special types of pathogens, but 
the abnormal Th17 responses could be involved in an 
exceeding number of autoimmune dysfunctions[126]. In 
some types of irregular immune responses, the defective 
form of RA via a genetic or an environmental mechanism 
intermediates the complex regulation of Th17[127]. 

A growing number of evidence indicates that vitamin 
A is involved in the modulation of IL-10 production. IL-10, 
secreted by Th2-helper T cells, restricts the production of 
pro-inflammatory Th1-type cytokines, such as IFN-γ and 
IL-2, in both T and NK cells. This is a major mechanism 
in reducing the inflammatory responses to some de-
fects[128].

A recent review demonstrated that in the status 
of vitamin A deficiency, Th1-cells mediate immune 
responses and when vitamin A is supplemented it 
induces Th2 immune responses[129]. Results from a 
number of studies that investigated the effect of vitamin 
A on infections that lead to one of the two immune 
responses, Th1 or a Th2 response, intimate that the 
immunological functions of vitamin A are specific for 
every pathogene and may involve other parts of the 
immune system other than Th1 or a Th2. Further studies 
are needed to examine the mechanism of vitamin A 
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neutrophils in the bone 
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cells activity NK cells

Neutrophils

Vitamin A

Macrophage

Reduced of TNF-α, IL-1, 
IL-6 and IL-12

Dendritic cells
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Enhanced the up-regulation of 
MHC-Ⅱ and CD86 expression on 
MoDCs

Induced of apoptosis 
(inhibited by the TNF-α 
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Figure 1  Schematic diagram for the pathways of vitamin A effects on innate immune system. NK: Natural killer; TNF: Tumor necrosis factors; IL: Interleukin; 
MoDCs: Monocyte-derived dendritic cells.
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supplementation on differential of Th1/Th2 responses 
comparing to the baseline vitamin A status in humans 
and the specific pathogens that cause disorders[8].

Overall, there is no exact evidence to state for a 
direct role of vitamin A supplementation on cytokine 
secretion or lymphocyte production. One principle reason 
for the wide range of results in studies is the specific 
immune response toward each pathogen which may 
affect the impact of vitamin A on T-cell function. Also, 
vitamin A may have momentary effects on intermediary 
factors of T-cell-dependent immunity which may not 
have been noticed in some population studies. Few 
randomized clinical trials have been accomplished on the 
topic of vitamin A supplementation on the proliferation or 
activation of B lymphocytes[8].

REVIEWS ON T1DM AND VITAMIN A
In the status of lack of balance between different 
subtypes of T-cells, autoimmune diseases occur[130]. 
For instance, IFN-γ-producing CD4 or CD8T effectors 
(Teff) cells activation and expansion and/or reduction 
of the number or function of CD4T regulatory (Treg) 
cells, can result in autoimmune diseases[130-134]. Present 
evidence showed that both CD4+ and CD8+ Teff cells 

are related in the initiation and further development of 
type 1 diabetes[135-137]. CD4+ and CD8+ Teff cells which 
are typically reactive with antigens on the β-cells in the 
pancreas can cause type 1 diabetes, an autoimmune 
disease[138]. Recent studies introduced IL-17-producing 
CD4 Th17 cells as a new generation of Teff cells that 
trigger potent inflammatory responses resulting in auto-
immune disorders[139]. These results suggest that the 
establishment of effective in vivo immune-tolerance can 
be considered as practical strategy to treat autoimmune 
diseases such as type 1diabetes. However this approach 
requires simultaneous targeting of more than one T-cell 
population subset. Therefore, immune tolerance induced 
by clinically relevant agents or methods affecting various 
T-cell subtypes could demonstrate an effective way for 
treating human autoimmune disorders[140].

Vitamin A and its derivatives are potent immune 
tolerance agents by its ability to transform Th1 to Th2 
lymphocytes[138,140]. Vitamin A regulates the adaptive and 
innate immune responses by different mechanisms for 
example, its high-level can diminish development of Th1 
and promote development of Th2 responses[141]. Vitamin 
A supplementation results in a decrease in serum pro-
inflammatory cytokines, such as TNF-α and IFN-γ, 
and an increase in the immunosuppressive cytokine 
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IL-10[87,142]. Such immune modulation by vitamin A 
could decrease the development risk of autoimmune 
diseases[143]. Present evidence reported high level of 
dietary vitamin A may have major effects on down 
regulating inflammatory immune cells and reducing the 
damage caused by oxidation in the islets that contribute 
to dysfunction of β cells. An animal study conducted by 
Zunino et al[138] showed that intervention with a diet rich 
in vitamin A inhibited the development of type I diabetes 
in mice by reducing or delaying of the infiltration of 
immune cells in to the islets.

Furthermore vitamin A plays a role in the release of 
insulin and glucagon hormones[12], and therefore has 
profound effects throughout the body in the regulation of 
glucose homeostasis[12,13]. Vitamin A in active form has 
an important role in the secretion and release of insulin in 
the langerhanse islets cells. The presence of RA binding 
proteins in pancreatic islet cells could probably explain 
the significance of vitamin A for optimal islet function[12]. 
Furthermore RA may be involved in regulation of the 
hormones released by the islet cells[12]. Deficient islet 
cells were defective in hormone release when exposed 
to graded levels of glucose[12,13]. Vitamin A deficiency 
results in change in pancreatic tissue quality, which could 
conceivably increase digestion with the collagenase[144].

In an animal study, NOD mice were divided into 3 
groups and treated with 250 IU of vitamin A per gram 
of their daily food or treated with 1% freeze-dried grape 
powder in their diet or a control diet for 7 mo. After 7 
mo, in the control group 71% of the mice had a blood 
sugar level more than 13.9 mmol/L (full-blown T1DM) 
whereas only 25% of the mice in the vitamin A group 
and 33% of the grape powder group reached the above 
blood sugar level. Furthermore TNF-α, an inflammatory 
marker in T1DM patients, in the vitamin A and grape 
powder groups was respectively lower compared to 
the control group[145]. These results suggested that 
polyphenols or vitamin A in the diet protect beta-
cell islets against autoimmune inflammatory attacks 
and have the potency to decrease the formation of 
autoimmune diseases such as type 1 diabetes[146].

In addition it has been showed that all-trans retinoic 
acid (ATRA), a potent derivative of vitamin A treatment 
restricted both CD4+ and CD8+ IFN-γ producing cells 
without affecting CD4+ IL-17-producing cells. ATRA 
treatment also affects the function and activation status 
of CD8+ T-cells[140]. Macrophages generate less TNF-α 
which in return reduces the production of chemokines 
which promote the recruitment of immune cells in to 
the islets including IP-10, RANTES, and MIP-1b, and 
also intracellular adhesion molecule-1[147,148]. According 
to histological studies, non diabetic animal treated with 
ATRA did not have insulitis, indicating that ATRA may 
have also inhibited T-cells trafficking to and infiltration in 
to islets, thus preventing diabetes. Furthermore, recently 
in vitro and in vivo trials indicated that ATRA treatment 
may result in upregulation of Foxp3+ Treg cells and 
reduction of Th1 and Th17 cell differentiation[125,141,149]. 
Protective effects of ATRA are impairing in the status 

of inadequacy of donors Foxp3+ CD4+ Treg cells[140]. 
Overall, these evidences support the idea that vitamin 
A and its derivatives exerted it’s autoimmune-protective 
effect, at least in part, by inhibiting both CD4+ and 
CD8+ IFN-γ-producing Teff cells with no effects on IL-17-
producing Teff cells, and inducing the production of Treg 
cells. However despite the fact that ATRA treatment 
inhibited the in vitro differentiation of Th17 cells did 
not alter the Th17 cell population[125,141,149,150]. Although 
Th17 cells are important players in pathogenesis of 
some autoimmune diseases including experimental 
autoimmune encephalitis and autoimmune arthritis, its 
function in type 1 diabetes is not yet discovered[151-153]. 
Expression of granzyme B was suppressed by ATRA. 
In addition ATRA efficiently inhibits infiltration of T-cells 
into islets, and precluded the progression of insulitis and 
diabetes. A study conducted by Van et al[140] showed 
that defect less islets or pre-insulitis were detected in 
ATRA-treated mice, even after 17 wk of the cell transfer 
while the control group developed severe destructive 
insulitis at 2 wk after cell transfer with CD4 CD25.

CONCLUSION
This review reported that both vitamin A and ATRA 
effectively induced immune tolerance that inhibited islet 
inflammation and progression to diabetes. In this review, 
as fully mentioned previously we showed that ATRA 
treatment had a dual effect, the inhibition of Teff cells 
and inducing Treg cell proliferation in therapeutic of type 
1 diabetes. Nonetheless, the protective effect of ATRA is 
inhibited when CD4CD25 T-cells, thus a majority of Foxp3 
Treg, are drawn down in donor splenocytes. In predi-
abetic NOD mice with initiated insulitis, ATRA treatment 
can inhibit the development of T1DM. Nevertheless, the 
mechanisms demonstrating the role of vitamin A or ATRA 
treatment in inducing immune tolerance and prevention 
of autoimmune diseases is not yet clear[138,142,154-156]. So, 
to further validate and establish the potential of using 
ATRA for therapy, further studies are needed to evaluate 
its relative contribution in modulating type 1 diabetes and 
to show the mechanisms by which vitamin A and ATRA 
may inhibit the development of autoimmune disorders. 
Overall, it seems that the use of vitamin A and ATRA 
via induction of immune tolerance provides an effective 
method in inhibiting type 1 diabetes.
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