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The recent discovery of hepatitis C virus (HCV)-related viruses in different animal species has

raised new speculations regarding the origin of HCV and the possibility of a zoonotic source

responsible for the endemic HCV transmission. As a consequence, these new findings prompt

questions regarding the potential for cross-species transmissions of hepaciviruses. The closest

relatives to HCV discovered to date are the non-primate hepaciviruses (NPHVs), which have

been described to infect horses. To evaluate the risk of a potential zoonotic transmission, we

analysed NPHV RNA and antibodies in humans with occupational exposure to horses in

comparison with a low-risk group. Both groups were negative for NPHV RNA, even though low

seroreactivities against various NPHV antigens could be detected irrespective of the group. In

conclusion, we did not observe evidence of NPHV transmission between horses and humans.

Received 24 March 2015

Accepted 2 June 2015

Approximately 3 % of the world’s population are chronic-
ally infected with hepatitis C virus (HCV) resulting in a
high risk for liver diseases like fibrosis, cirrhosis and hepato-
cellular carcinoma (Alter, 2007). Since its discovery in the
1980s as a blood-transmitted non-A, non-B hepatitis, and
identification as HCV in 1989, much progress has been
made regarding cell culture models and antiviral treatment
options (Pawlotsky, 2013; Steinmann & Pietschmann,

2013). Numerous RNA viruses spread efficiently between
animals and humans by transmission across species barriers.
Consequently, they are responsible for viral zoonotic infec-
tions, i.e. infections of animal hosts that are transmitted to
humans by unintentional contact. Such cross-species trans-
missions of RNA viruses are accountable for some of the
most dangerous infectious diseases, which threaten the
health of many million humans. The origin of HCV remains
unclear, and one could imagine a scenario in which HCV
jumped from animals to humans, as seen for other viruses
like human immunodeficiency virus, ebolavirus and corona-
viruses (O’Shea et al., 2014; Scheel et al., 2015; Sharp et al.,
2013).
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The GenBank/EMBL/DDBJ accession numbers for the E1E2
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KP739813 and KP739814, respectively.
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Fig. 1. Experimental set-up of the luciferase immunoprecipitation (LIPS) assay. (a) Schematic representation of the NPHV
genome. Four distinct NPHV E1E2 sequences and one CHV/NPHV NS3 sequence were cloned into the pREN2 plasmid
generating an N-terminal fusion with Renilla luciferase (Ruc). (b) Cos1 cells were transfected with the constructs and the
antigens (AG) expressed and purified. Purified antigens were incubated with sera, immunoprecipitated using A/G beads and
the luciferase (Rluc) activity was determined. (c) Phylogenetic comparison of published NPHV E1E2 sequences (#) and four
new NPHV E1E2 isolates (X). Molecular phylogenetic analysis was performed by using the maximum-likelihood method.
Default parameters were used with a Hasegawa–Kishino–Yano substitution model and a gamma distribution of six discrete
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Recently several new viruses belonging to the hepacivirus
family have been discovered in different mammalian host
species including dogs (Kapoor et al., 2011), horses (Burbelo
et al., 2012), rodents (Drexler et al., 2013; Kapoor et al.,
2013), bats (Drexler et al., 2013; Quan et al., 2013), non-
human primates (Lauck et al., 2013) and rats (Firth et al.,
2014). Among these viruses, the non-primate hepaciviruses
(NPHVs), discovered first in dogs and subsequently in
horses, exhibit the highest genetic similarity to HCV. More-
over, with regard to viral tropism and the course of infection,
this virus also resemblesHCV infection of humans (Pfaender
et al., 2014, 2015). At the genomic level, HCV and NPHV
share approximately 50 % nucleotide sequence divergence
with a maximum amino acid identity in the non-structural
proteins NS3 and NS5B (.55–65 %), whereas the glyco-
proteins show the lowest amino acid identity (,35–45 %)
(Kapoor et al., 2011). This similarity is noteworthy, as
HCV genotypes already differ from each other by 31–33 %
at the nucleotide level, compared with 20–25 % between
the individual subtypes (Simmonds et al., 2005). However,
despite the sequence diversity of HCV as well as NPHV var-
iants, the viruses share an identical architecture of collinear
genes of similar or identical size in the large ORF (Kapoor
et al., 2011; Pfaender et al., 2014). Given the close relation-
ship between HCV and NPHV, one could imagine a possible
risk of cross-species transmission from horses to humans.
Such a scenario would be supported by the observation
that the canine hepacivirus (CHV)/NPHV protease has
been shown to cleave the mitochondrial antiviral-signalling
protein and the TIR (Toll/IL-1 receptor) domain-containing
adaptor protein (TRIF), and therefore, like HCV, success-
fully circumvents the immune system of the host even
across species barriers (Li et al., 2005; Parera et al., 2012).
We showed that the seroprevalence of NPHV in horses in
northern Germany amounts to 30 % with 2–3 % also carry-
ing viral RNA (Pfaender et al., 2015). In this study, we inves-
tigated the risk of a cross-species transmission fromhorses to
humans by focusing on a high-risk group of humans that had
occupational contact with horses in northern Germany, and
compared this study group with humans who declared no
contact with horses. To analyse the risk of a potential
cross-species transmission of NPHV between horses and
humans, human sera were collected and analysed for the pre-
sence ofNPHVRNAand anti-NPHVantibodies using a luci-
ferase immunoprecipitation system (LIPS) assay based on
the detection of CHV/NPHV NS3 antibodies (Burbelo
et al., 2012). Since in the absence of active viral replication
no antibodies against the non-structural proteins will be gen-
erated, several variants of the more variable and exposed
NPHV envelope proteins E1 and E2 (E1E2_H10, GenBank

accession no. KP739811; E1E2_H12, GenBank accession no.
KP739812; E1E2_H13, GenBank accession no. KP739813;
and E1E2_H14, GenBank accession no. KP739814) were
chosen for the serological assay and cloned into the pREN2
vector (Fig. 1a). As shown in the scheme, antigens were
expressed upon transfection of Cos1 cells with the respective
plasmids, harvested and co-incubated with 1 : 10-diluted
sera. Antigen–antibody complexes were immunoprecipi-
tated and the luciferase activity determined (Fig. 1b).
To determine the sensitivity and specificity of the assay, a
cut-off limit was calculated as the mean value of the samples
containing only buffer A, the respective antigen and A/G
beads (Pierce Biotechnology) plus 3 SD. Sequences of NPHV
glycoproteins were aligned to equine hepaciviral E1E2 glyco-
proteins from GenBank, using CLUSTAL W implemented in
MEGA6 (Tamura et al., 2013), involving 18 nucleotide
sequences. Sequence analyses showed that the chosen
E1E2 variants were variable and distinct from each other
by an average of 12.5 % at the nucleotide level and 3.8 %
at the amino acid level (Fig. 1c). Next, a total of 172
human serum samples were collected from volunteers with
occupational horse contact after informed consent was
obtained according to procedures approved by the ethical
committee of the Hannover Medical School. For further
characterization, all volunteers answered a questionnaire
about their occupational and private contact with horses
and their exposure to horse blood. The participants of
this survey were employed at the respective horse clinic
for a mean of 8 years (Fig. 2a) and had a mean contact
with horses of 25 years (Fig. 2b). About 80 % of the volun-
teers also had regular private contact with horses (Fig. 2c)
and 68 % declared to have a history of occupational injury
with blood–blood contact involving horses (Fig. 2d). As a
control cohort 159 volunteers were identified with no
declared contact with horses, provided by the German
Red Cross Blood Service NSTOB. All donors gave their
written informed consent that their blood could be used
for scientific purposes. To evaluate the serological assay
for the detection of anti-NPHV antibodies, the different
glycoprotein constructs were first tested against horse
sera collected from the Clinic for Horses, University of
Veterinary Medicine, Hannover, Foundation. The tested
horse sera displayed a variable seroreactivity against the
different constructs which may be attributed to the
sequence variability of the glycoproteins (Fig. 3a). Nega-
tive-control sera did not react with the cloned glycoprotein
variants (n53–8, Fig. 3a and data not shown). All human
sera were tested for reactivity against different NPHV anti-
gens using the LIPS assay. Interestingly, a low seroreactivity
against different NPHV constructs could be detected in

rate steps. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. There were a
total of 526 codon positions included in the final dataset, and gaps were partially deleted with a 90 % cut-off. Initial trees for
the heuristic search were obtained by applying the neighbour-joining method to a matrix of pairwise distances estimated
using the maximum composite likelihood approach. Bootstrap values above 70 % are indicated next to the branches. Newly
identified sequences were employed in the LIPS assay. Bar, nucleotide substitutions per site.
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both study groups, irrespective of horse contact (Fig. 3b).
Statistical analysis was carried out with the open source
statistics software R (http://www.R-project.org/) and the
library outliers. In order to account for assay-specific vari-
ations, the measurements were median normalised, i.e. the
median of the values measured in the corresponding assay
was subtracted from all values in this assay. A comparison
of the distributions of the measurements for the group with
horse contact to the control group was performed based on
boxplots (see Fig. 3b) and on the Kolmogorov–Smirnov
test and resulted in no statistically significant differences
for the five measured NPHV antigens. Fisher’s exact test
was used to check whether there was a statistically signifi-
cant difference in the number of persons with discordant
values (discordant values were defined either as outliers
based on Grubbs’ test or as values more than 3 SD above
the median, where a robust estimator for the SD based on
the interquartile range was used). However, for both

ways of counting discordant values, Fisher’s exact test did
not yield a statistically significant difference between the
group with horse contact and the control group after Bon-
ferroni–Holm correction for multiple testing. RNA was
extracted from all human sera using a High Pure Viral
RNA kit (Roche) according to the manufacturer’s instruc-
tions. Extracted RNA was tested for the presence of NPHV
RNA by quantitative real-time (RT)-PCR as described
before (Pfaender et al., 2015). All human sera tested nega-
tive for the presence of NPHV RNA (data not shown).
As the serological assay has been shown to cross-react
with antibodies against HCV (Burbelo et al., 2012), all anti-
body-positive sera were additionally tested for the presence
of HCV-specific antibodies; however, none were detected.
In conclusion, as antibody-positive sera could be detected
in both groups, our data suggest that there is no evidence
of NPHV cross-species transmission in people with occu-
pational horse contact compared with people with no
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Fig. 2. Questionnaire of people with occupational horse contact. A total of 172 volunteers with occupational horse contact
answered a questionnaire regarding how long they had been employed at the horse clinics (a), how long they had contact
with horses (b), whether they had private contact with horses (c) and if they ever had blood–blood contact with horses (d).
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horse contact. In this study, a high-risk group of humans

with occupational exposure to horses was analysed for ser-

ological markers to analyse the potential for a cross-species

transmission of the HCV-related non-primate hepacivirus

between horses and humans. Since HCV is a blood-borne

virus (Alter, 2007) it is possible that NPHV infection

among horses occurs along the same route. As seen for

another recently discovered horse virus, Theiler’s disease-

associated virus, which could be transmitted via inocu-

lation of virus-containing serum products (Chandriani

et al., 2013), a similar route of infection is likely for

NPHV. Indeed, a recent study showed that NPHV could

be transmitted experimentally between horses upon inocu-

lation of NPHV-positive serum (Ramsay et al., 2015). It is
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likely that very close contact, if not a blood–blood contact,
between an infected horse and a foreign species host is a
prerequisite for NPHV to cross the species barrier. There-
fore, serum samples of a high-risk group of people with
occupational contact with horses and occasional blood-
to-blood contact, e.g. by accidental needle-stick injuries
or exposure due to lesions within the skin, were analysed
for the presence of different anti-NPHV antibodies and
compared with a low-risk group of people who were
stated to have no contact with horses. Acutely HCV-
infected individuals produce antibodies against epitopes
within the structural as well as non-structural proteins
(Heim & Thimme, 2014). However, in the case of acciden-
tal contact with NPHV virus, no antibodies against non-
structural proteins can be generated as this protein is
only expressed upon active viral RNA replication. Conse-
quently, besides the conserved NS3 region several
sequences from the envelope glycoprotein genes were
chosen for the serological assay, since these regions are
exposed at the surface of the virus particles and more vari-
able. Sequence analyses of different NPHV glycoproteins
showed a high variability between different isolates which
is reflected in the different ability of anti-NPHV antibodies
to bind to these antigens. We found that human samples
were not positive for NPHV RNA using a real-time PCR
assay with NPHV-specific primers and probe. This is in
line with two previous studies that analysed NPHV RNA
in randomly chosen humans (Levi et al., 2014; Lyons
et al., 2014). Surprisingly some blood donors, irrespective
of the high-risk or low-risk group, displayed weak reactiv-
ity against specific NPHV antigens. As NPHV antigens in
the LIPS assay exhibit a cross-reactivity with anti-HCV
antibodies (Burbelo et al., 2012), all positive samples
from our study were tested for HCV seropositivity with
no donor being found to be reactive. Since these antibodies
were detected in both groups, it is unlikely that an NPHV
infection was the cause for the positive test results. One
could speculate that a previous infection with another
not-yet-discovered hepacivirus occurred in these donors
giving rise to these cross-binding antibodies.

In conclusion, no potential markers suggesting a cross-
species transmission of NPHV could be observed in a
high-risk group with occupational exposure, indicating
that a species jump from horses to humans is not likely
to occur, even though both viruses share similar features.
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