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Abstract
To provide a useful community resource for orthogonal assessment of NGS
analysis software, we present the ICR142 NGS validation series. The dataset
includes high-quality exome sequence data from 142 samples together with
Sanger sequence data at 730 sites; 409 sites with variants and 321 sites at
which variants were called by an NGS analysis tool, but no variant is present in
the corresponding Sanger sequence. The dataset includes 286 indel variants
and 275 negative indel sites, and thus the ICR142 validation dataset is of
particular utility in evaluating indel calling performance. The FASTQ files and
Sanger sequence results can be accessed in the European Genome-phenome
Archive under the accession number .EGAS00001001332
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Introduction
Next-generation sequencing (NGS) approaches have greatly 
enhanced our ability to detect genetic variation. Over the past 
decade NGS hardware, software, throughput, data quality and ana-
lytical tools have evolved dramatically. Thorough evaluation of 
each new laboratory and analytical development is challenging but 
necessary to fully understand how pipeline modification can impact 
results. To fully assess performance, NGS analysis tools should ide-
ally be run on samples with pre-determined positive and negative 
sites assessed through orthogonal experimentation such as Sanger 
sequencing.

Over the past five years, we have generated extensive data on 
thousands of samples using different NGS instruments, sequenc-
ing chemistry, gene panels, exome captures and variant calling 
tools. Fortuitously, during this process we have generated orthogo-
nal validation data using Sanger sequencing for a core set of 142 
samples that were included in the majority of our experiments. We 
now formally use these samples, which we call the ICR142 NGS 
validation series, to evaluate NGS variant calling performance after 
any change to experimental or analytical protocols. This series has 
proved an extremely useful resource for our assessment of NGS 
analysis in both the research and clinical settings. We believe that it 
may also have utility for others, and hence are making it available 
here.

Materials and methods
We used lymphocyte DNA from 142 unrelated individuals. All indi-
viduals were recruited to the BOCS study and have given informed 

consent for their DNA to be used for genetic research. The study is 
approved by the London Multicentre Research Ethics Committee 
(MREC/01/2/18)

Over the last five years we have generated data from the ICR142 
validation series using different exome captures which we have 
analysed with multiple aligner/caller combinations1–6. To date we 
have generated Sanger sequence data for 730 sites amongst the 142 
individuals. These sites include variants called by only one aligner 
and caller combination, increasing the representation of sites which 
can discriminate performance between methods.

To generate the Sanger sequence data, we performed PCR 
reactions using the Qiagen Multiplex PCR kit, and bidirectional 
sequencing of resulting amplicons using the BigDye termina-
tor cycle sequencing kit and an ABI3730 automated sequencer 
(ABI PerkinElmer). All sequencing traces were analysed with both 
automated software (Mutation Surveyor version 3.10, SoftGenetics) 
and visual inspection.

We considered a site negative for a base substitution if the specific 
base substitution was not present, resulting in 46 negative base 
substitution sites. We considered a site negative for an indel if no 
indel, of any kind, was detected in the sequencing trace, resulting 
in 275 negative indel sites. We annotated confirmed variants with 
the HGVS-compliant CSN standard using CAVA (version 1.1.0) 
according to the transcripts designated in Supplementary table 17. 
There were 123 confirmed base substitution variants and 286 con-
firmed indel variants (Figure 1, Supplementary table 1).

Figure 1. Description of variant sites evaluated by Sanger sequencing in the ICR142 NGS validation series.
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We have also generated high-quality exome sequencing data for the 
ICR142 NGS validation series. We prepared DNA libraries from 
1.5 µg genomic DNA using the Illumina TruSeq sample prepara-
tion kit. DNA was fragmented using Covaris technology and the 
libraries were prepared without gel size selection. We performed 
target enrichment in pools of six libraries (500 ng each) using 
the Illumina TruSeq Exome Enrichment kit. The captured DNA 
libraries were PCR amplified using the supplied paired-end PCR 
primers. Sequencing was performed with an Illumina HiSeq2000 
(SBS Kit v3, one pool per lane) generating 2×101 bp reads. 
CASAVA v1.8.1 (Illumina) was used to demultiplex and create 
FASTQ files per sample from the raw base call files.

All of the 730 sites had at least 15× coverage in the exome data, 
defined as at least 15 reads of good mapping quality (mapping score 
≥20). Because these sites are well covered, we can readily assess 
the variant calling performance of any software tool by applying the 
pipeline to the exome sequencing data and comparing the variant 
calls with the Sanger sequencing dataset.

Data availability
We have deposited the FASTQ files for all 142 individuals in the 
European Genome-phenome archive (EGA). The accession number 
is EGAS00001001332. Details of how to request access to the data 
are available at: www.icr.ac.uk/icr142.

Researchers and authors that use the ICR142 NGS validation 
series should reference this paper and should include the follow-
ing acknowledgement: “This study makes use of the ICR142 NGS 

validation series data generated by Professor Nazneen Rahman’s 
team at The Institute of Cancer Research, London”.
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Supplementary material
Supplementary table 1. Sanger sequencing results for 730 sites in the ICR142 NGS validation series. Confirmed variants are annotated 
according to the designated transcript by CAVA using CSN7.

The description of the column headings are given below:

Sample          – sample name in the ICR142 series
Gene              – HGNC symbol
SangerCall    – the most 3’ representation annotated with CSN
Type               –“bs”, “del”, “ins”, “complex”, or “indel” for base substitutions, simple deletions, simple insertions, complex indels, or
	           negative indel sites, respectively
Transcript     – the ENST ID from Ensembl v65 used to annotate the Sanger call
Chr                – chromosome
EvaluatedPosition – evaluated hg19 site position, centre of designed amplicon
POS               – the left-aligned position in hg19 coordinates for variants called in exome data by Platypus v0.1.5
REF               – the reference allele in hg19 for variants called in exome data by Platypus v0.1.5
ALT               – the alternative allele in hg19 for variants called in exome data by Platypus v0.1.5
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The authors describe ICR142, a publicly available set of fastq files and confirmed true and false variants
for validating analysis pipelines. This is an incredibly useful community resource that complements
existing efforts like the Genome in a Bottle project by providing a set of validated, difficult regions to
evaluate variant detection tools. I appreciate the efforts to make these test sets public; instead of having
validation sets like these developed internally at clinical laboratories, we can collaborate and improve
them publicly.

In collaboration with Oliver Hofmann at the Wolfson Wohl Cancer Research Center (
) we obtained access to the data and were able to run a validation using bcbiohttps://twitter.com/fiamh

variant calling ( ). In doing this, we tried to address a couple ofhttp://bcbio-nextgen.readthedocs.io
challenges for other users wanting to make immediate use of this data in their own in hour validation work:

The truth sets are not easy to plug into existing validation frameworks. Most validation tools like rtg
vcfeval and hap.py work from VCF format files, while this truth set is in a custom spreadsheet
format with a mixture of methods for describing changes. You can use Platypus positions for many
but need to use CSN descriptions or evaluated position for the remainder.
 
The truth sets don't appear to describe if we expect calls to be homozygous or heterozygous calls
at each position.
 
Many existing validation approaches expect a single (or few) samples so coordinating checking
and validation for all these samples can be a challenge.
 
As part of this review, we generated a set of configuration files and scripts to help make running
validations with ICR142 easier ( ).https://github.com/bcbio/icr142-validation

This comparison work also includes a set of comparisons with common callers (GATK HaplotypeCaller,
FreeBayes and VarDict). Several of the Sanger validated regions without variants are false positives in at
least 2 of the callers tested, so this dataset exposes some common issues with calling and filtering. It
would be useful to hear the author's experience with validating callers using this benchmark set and if they
have additional filters used to avoid these problems. Knowing a baseline expectation for results would
help ensure that the users understand how correctly they've setup the validation resources.

We have read this submission. We believe that we have an appropriate level of expertise to
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We have read this submission. We believe that we have an appropriate level of expertise to
confirm that it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

 21 April 2016Referee Report

doi:10.5256/f1000research.8841.r13347

 Richard Bagnall
Agnes Ginges Centre for Molecular Cardiology, Centenary Institute, Sydney Medical School, The
University of Sydney, Sydney, NSW, Australia

A myriad of software tools have been developed for the alignment of next generation sequencing data to
a reference genome and for the subsequent genotyping of DNA variants. Evaluating the specificity and
sensitivity of a variant calling framework can be achieved with a dataset containing validated genotypes.
Ruark et. al. provide the ‘ICR142 NGS validation series’ exome sequence fastq files of 142 individuals,
and a large set of corresponding Sanger sequencing validated variant sites and sites where variants were
called by an NGS tool, but no variant was found with the corresponding Sanger sequencing.

I found the NGS dataset to be easily accessible, on request, from the European Genome-phenome
archive and it comprises paired end fastq sequencing files generated by an Illumina sequencing system
on the stated 142 individuals. The Sanger sequencing dataset is available as supplementary table 1 of the
manuscript. This is a useful resource for evaluating variant calling pipelines.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:
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