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Abstract

In this NeuroView, Engert discusses the challenges for the connectomics field in making insights 

about brain function from big data.

There has been a great deal of focus in recent years on efforts to map the brain. The ability 

to record from every neuron in the brain of an awake, and ideally behaving, animal is 

unquestionably immensely useful. In addition, having a wiring diagram at hand that can be 

overlaid on such activity maps is probably a dream come true for most systems 

neuroscientists. Given the vast number of neurons in the brain, however, such systematic 

analysis could yield enormous reams of data. The same could be said for efforts in the 

connectomics field to reconstruct structural connections throughout the brain via EM. Here, 

I argue that “big data” and the oft-discussed challenges inherent to it (e.g., mining, storing, 

and distributing it) is not the key challenge we face in transitioning from making neural 

maps to making useful insights into brain function. I would suggest that the essential 

ingredient that turns a useless map into an invaluable resource is the experimental design 

employed to gather and analyze the underlying data, and ultimately the thought process, 

creativity, and ingenuity that went into this design. This is where the hard work is—in 

formulating precisely the question of what we actually want to know, what an answer would 

look like, and what kind of insight we can take away from the experiment.

In this essay I will focus on two endeavors that are presently underway in the neurosciences 

that aim to collect rather large amounts of data: the Open Connectome Project (Burns et al., 

2013; Kandel et al., 2013) and the BRAIN initiative (Devor et al., 2013; Kandel et al., 2013; 

Striedter et al., 2014). While it has been suggested that a critical challenge to be addressed 

with these initiatives is the issue of “big data” (Brinkmann et al., 2009; Choudhury et al., 

2014; Swain et al., 2014), I will make the argument that it will be comparatively small data 

sets (on the order of a few terabytes at most) that will contain the relevant information and 

need to be distributed and made available as resources to the community. These small and 

information-rich data sets will include a description of all the neurons in the brain, their 

activity, and, ideally, their wiring diagram. The development of the methodologies necessary 

to generate these data sets is essential, it is important—and it is very difficult to do. But the 

difficulty lies primarily in developing the right technology. Overcoming these problems is 

essentially the goal of the BRAIN initiative and, in my opinion, a good place for investing 

money, energy, and time.
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Big Data in Neuroscience?

Big data is a hot topic these days, and it’s not surprising that there is discussion in the 

community about what to do with the data generated by these endeavors. Big data can be 

defined in many ways, and the continuous increase in computational power leads to a 

somewhat amorphous concept of what we mean when we talk about big data. For the 

purposes of this commentary, I will define as big data anything that exceeds the size of a 

standard laptop hard drive.

It is useful and important to make a definitive distinction between big data and complex 

data, however, two concepts that frequently get mixed up. The former is just that: big. The 

latter is complicated, hard to interpret, and—usually—very hard to compress. It also requires 

the application of mathematical tools and quantitative methods to analyze. Complex data 

sets, quite often, are not big in the sense of “big data,” but they are ubiquitous in modern 

science.

How Big Is a Connectome?

Let’s consider the respective challenges of converting data into information within the 

connectome project and the BRAIN initiative. Connectomics relies on recovering a circuit 

diagram by imaging the whole region of interest at the resolution of an electron microscope 

(EM) (Briggman and Bock, 2012; Kleinfeld et al., 2011; Lichtman and Denk, 2011; Randel 

et al., 2014). These EM data sets then need to be analyzed by segmentation and 

reconstruction of the individual neurons, which ultimately allows the identification of all the 

synaptic connections. The final product is the circuit diagram of the complete network in the 

volume under scrutiny. The size of the raw data collected in such an enterprise is truly 

daunting.

Let us look at a few numbers: a mouse brain imaged at 5 nm × 5 nm × 40 nm resolution at a 

volume of approximately 500 mm3 would generate a raw data volume of 500 petabyte. Big 

data, indeed. However, what we want to get out of this volume is the connectivity matrix 

among the 100 million neurons that a mouse brain contains. If we assume ~1,000 

connections for each neuron, the resulting connection matrix contains ~1011 entries. 

Assuming a bit depth of a few bytes, these 1011 entries result in a data set of a few hundred 

gigabytes, which will fit comfortably on an ordinary laptop hard drive. Complex data, but 

not big. It is true that we haven’t yet developed fast, reliable, and efficient segmentation and 

tracing algorithms to actually do the segmentation and tracing—and as such this particular 

problem of data compression is far from being solved. However, the solution to this problem 

will come most likely out of machine vision research and doesn’t quite have the flavor of 

“big data mining.” The task of segmentation and tracing itself is actually quite 

straightforward; it is easy to formulate and can be accomplished by a trained middle school 

student (see, for example, Eyewire.org), it’s just very hard to implement in computer 

algorithms at the moment (Jain et al., 2010; Turaga et al., 2010). However, once these 

algorithms have been developed, whole-brain EM volume data can be reduced and 

compressed by six orders of magnitude. Not so big data anymore. It is unquestionably 

important to allocate resources to solve this problem, but it is most likely going to be solved
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—in the end—by a handful of smart mathematicians and might not really require a national 

(or international) effort and billions of dollars. Once compressed in this manner—and 

converted into information—the data sets to be analyzed in the context of systems 

neuroscience questions will comfortably fit on a flash drive that you can carry in your 

pocket.

How Big Is an Activitome?

If we consider recording all the spikes in all the neurons of the brain, we can envision a 

similar compression. If we achieve such large-scale recording through some technology 

based on volume imaging (point- or sheet-scanning, spatial light modulation, etc.) coupled 

with genetically encoded activity indicators (GCaMPxx or voltage-sensitive protein), we are 

initially faced with similarly big data volumes: a mouse brain contains 500 × 109 cubic 

micron pixels (filling a volume of ~500 mm3), and if we want to record all of them for 20 

min (1,000 s) at 1000 Hz, we again have 500 petabytes of raw data. Here, however, the 

initial compression is much more straightforward: you isolate all the cell bodies (100 

million) and find the timestamps of all the fluorescence intensity spikes. With the 

assumption that all the neurons fire at an average rate of 5 Hz through the recording time 

period (probably an upper estimate since many neurons might be silent), we again end up 

with a data volume of 500 gigabytes. Quite manageable. Here, the mathematical tools to do 

this compression are more or less already in place. Segmentation of neuronal cell bodies and 

isolation of spikes from fluorescent traces is presently made difficult only by signal-to-noise 

problems. If the signals are large, this is easily done with the help of standard and 

ubiquitously available software.

Thus, in both cases, the size of the relevant data volumes can be reduced from hundreds of 

petabytes to a few hundred gigabytes, and this can be done by relatively straightforward 

analysis pipelines that are—at least intellectually—very straightforward. Furthermore, this 

data reduction will eventually be done on the fly, i.e., during the acquisition of the raw data, 

and will probably be achieved with dedicated hardware in the form of custom-designed 

coprocessors. Raw data sets might be very large, but once converted into information, the 

volumes aren’t big data anymore.

Large-Scale, Small-Scale: A Question of Style

I’ve argued that the big data in question could, with appropriate analysis and technological 

developments, be relatively easily compressed into information, albeit complex. But the big 

data still must be gathered. So what’s the best approach to collecting the data that will give 

us an unprecedented view into brain function? One could envision either large-scale, 

industrial data collection or the traditional small-scale, individual lab approach. Here, I will 

briefly discuss the potential contributions of both.

Whole brain imaging will greatly facilitate the identification and localization of essential 

neural subnetworks related to a behavioral context under scrutiny. The product or 

“deliverable” of whole brain imaging will then be a small and spatially identified subset of 

neurons that shows correlated activity with all—or any—aspect of the behavioral context. 
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This is probably more useful than any other way of labeling subsets of cells if the goal is to 

decipher the roles of circuits in generating behavior. It offers an attractive and 

complementary approach to labeling neurons with genetic methods like enhancer trapping. 

The catch is that whole brain imaging has to be integrated into the experimental context and 

it has to be designed and optimized for the specific project. As such, it needs to be turned 

into a readily available technology for all laboratories and accessible on the small scale.

The issues are slightly different for connectomics, which has the goal of generating complete 

wiring diagrams that—ideally—can and should be overlaid onto previously acquired 

functional maps. Such an enterprise will require concerted and large-scale efforts and indeed 

might best be accomplished by industrially organized science at the more corporate level. 

Indeed, in recent years several voices have been raised that argue—occasionally quite 

convincingly—for neuroscience to move from tinkering in individual laboratories to 

industrial-scale research that allows for the many challenges to be tackled systematically and 

in a properly organized fashion.

I propose that there is equal space and opportunity for both: corporate-style/industrial-size 

science as well as the individual, small-scale, cottage industry style. Connectomics is clearly 

an example that is begging to be turfed out to a contract research organization (CRO), 

equipped with a park of various electron microscopes, where fixed brains can be 

automatically sectioned, mounted, imaged, and even segmented. Several successful service 

industries come to mind that all started out as relatively small-scale operations in individual 

laboratories and that are now used routinely by almost every laboratory in the world.

Sequencing services are being used ubiquitously around the world, yet the technology 

certainly started as some form of cottage industry by the likes of Sanger and colleagues. 

Oligonucleotide synthesis as well as protein sequencing is another powerful technology that 

quickly made it into a service industry. The generation of transgenic mice—a job that used 

to soak up a large part of a PhD thesis—is now in most cases outsourced to CROs. It is 

frequently observed that even the outsourcing of graduate student supervision occurs, in this 

case to thesis advisory committees and/or postdoctoral fellows.

Whole brain imaging, on the other hand, is difficult to envision as an industrial-scale, 

massively parallel high-throughput operation. The main reason for this is that such an 

operation usually requires a clear final product, a deliverable that can be quantitatively 

described, priced, benchmarked, and specified by intermediate milestones. These features 

seem quite feasible in the context of generating connectomes but appear to be ludicrous in 

the context of whole brain imaging. What would such a product look like? Here, clearly the 

deliverable is the technology and not the final data set, and as such the aims of the BRAIN 

initiative are perfectly aligned with these objectives.

Looking to the Future

Once the data are collected and compressed into information, the question becomes how best 

to turn this information into knowledge. The challenge in the neurosciences will be to come 

up with good questions and intelligent experimental assays—assays that ultimately will have 
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to be anchored in behavior and that will have to give answers to questions of how specific 

behaviors are generated by the nervous system. For excellent specific examples, it is useful 

to go further back in the history of neuroscience and consider stories like the jamming 

avoidance reflex (JAR) of the weakly electric fish (Heiligenberg, 1991) and the generation of 

rhythmic activity in the somatogastric ganglion of the lobster (Marder et al., 2014; O’Leary 

and Marder, 2014).

New technologies that allow us to identify and isolate the neuronal subtypes that are actually 

involved in a specific task will of course be an important boon to this enterprise, and they 

will undoubtedly speed up the collection of necessary data. However, I doubt that these new 

technologies will lead to a paradigm shift or a fundamentally new way of doing 

neuroscience. The name of the game will always be to think carefully and deeply about how 

behavioral features can emerge out of neuronally implemented algorithms, and ideally these 

ideas ought to germinate and take shape well before we actually start generating data, be it 

big or small.
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