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Abstract

RNA motifs can be defined broadly as recurrent structural elements containing multiple 

intramolecular RNA–RNA interactions, as observed in atomic-resolution RNA structures. They 

constitute the modular building blocks of RNA architecture, which is organized hierarchically. 

Recent work has focused on analyzing RNA backbone conformations to identify, define and 

search for new instances of recurrent motifs in X-ray structures. One current view asserts that 

recurrent RNA strand segments with characteristic backbone configurations qualify as independent 

motifs. Other considerations indicate that, to characterize modular motifs, one must take into 

account the larger structural context of such strand segments. This follows the biologically relevant 

motivation, which is to identify RNA structural characteristics that are subject to sequence 

constraints and that thus relate RNA architectures to sequences.

Introduction

What is an RNA motif?

No single definition exists for RNA motifs, as they can be proposed and analyzed at 

different levels of RNA structure. As discussed in a previous review, RNA motifs can be 

broadly defined as recurrent structural elements, subject to constraints [1]. This review is 

complementary to a recent review of new high-resolution RNA structures that exhaustively 

catalogued new and recurrent motifs [2••]. Therefore, we do not attempt to comprehensively 

discuss each newly reported motif, but rather aim to critically review evolving notions of 

recurrent RNA motifs in the context of RNA function and evolution, and how to identify, 

find and classify them.

Types of RNA motifs

We can distinguish two main classes of motifs — those that operate at the level of RNA 

sequence and those that entail a specific three-dimensional (3D) structure, characterized by a 

set of 3D coordinates. An example of a sequence motif is the Shine–Dalgarno sequence of 

bacterial mRNAs or the Sm-binding sites of some eukaryotic non-coding RNAs [3]. At an 

intermediate level of analysis, the secondary structure (2D) of an RNA is prominent because 
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it can be calculated quite accurately from sequence information, usually through a 

combination of thermodynamic and comparative sequence analyses [4]. At the level of 

secondary structure, the RNA double helix is the fundamental motif. Once helices are 

specified, other motifs become apparent, which, at the level of secondary structure, are 

classified as hairpin (or terminal) loops, internal loops (including bulges), and multihelix or 

junction loops. However, this description of RNA structure is incomplete, as it takes no 

account of non- Watson–Crick base pairing and most tertiary interactions that stabilize the 

native architecture.

Secondary structure motifs

How much information can we retrieve from analysis of secondary (2D) structures? Zorn et 
al. [5] calculate and compare frequency distributions of Watson–Crick (WC) paired 

nucleotides in helical stems and of nominally unpaired nucleotides in hairpin, internal and 

junction loops, as they appear in the secondary structures of the 16S and 23S rRNAs. Thus, 

they treat all bases in ‘loops’ as unpaired, even though a large fraction of them form non- 

WC base pairs, as is evident from high-resolution 3D structures, which have been available 

since 2000 [6–8]. Definitions of RNA motifs restricted to secondary structure are not 

necessarily connected to RNA function or evolution. A further point is that, in such an 

analysis, all junctions, regardless of the number of helices, are grouped together as the same 

motif. In fact, it is well known that stable four-way junctions can be constructed without 

‘unpaired’ bases, whereas stable geometrically defined three-way junctions require non-

helical nucleotides, forming stabilizing non-WC base pairs [9,10].

Motifs considered at the level of secondary structure are also the focus of a recent study that 

employs RNAMotif, a widely used secondary structure definition and search algorithm [11], 

to search for RNA aptamers in genomic sequences [12•]. The authors have chosen aptamers 

for which the corresponding X-ray crystal structures have been solved to test their search 

algorithm. However, a large part of the 3D information in these structures is ignored by the 

search models employed, so that the search is conducted essentially at the level of 2D 

motifs. The results of this analysis have not yet been subjected to experimental verification.

The ability to calculate the probabilities of functional motifs occurring in libraries of 

random-sequence RNA molecules as a function of library size, sequence length and base 

composition is useful for planning in vitro selection (SELEX) experiments and for 

theoretical considerations regarding the role of RNA molecules in the origin of life. Knight 

and co-workers [13••,14,15] have approached these issues computationally. The outcome of 

such calculations depends critically on how motifs are defined. Although in their most recent 

contribution, the presence of supporting double helices is taken into account, the actual 

substrate-binding or catalytic motifs are treated as single-stranded motifs, subject to 

independent sequence constraints. The presence in such motifs of non-WC base pairs is not 

taken into account and it is difficult at this time to assess the effects of such approximations 

on the statistical outcome.

Graph theory has been used to represent RNA secondary structure in various ways for some 

time [16,17]. In a series of recent articles, Schlick and co-workers [18–21] have promoted 
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the use of two types of graphs, tree graphs and dual graphs, to represent RNA 2D structure. 

In tree graphs, edges represent helices and vertices represent hairpin, internal and junction 

loops. In dual graphs, this is reversed. Dual graphs can also represent pseudoknots, which 

tree graphs cannot. For each known RNA, both representations are available on the RNA-

As-Graphs web site ([19]; http://monod.biomath.nyu.edu/rna/rna.php), which catalogues 

these graphs according to the number of vertices (V) and the topological complexity 

(identified with the second-smallest eigenvalue of the Laplacian matrix of the graph). In 

addition, graph theory is used to enumerate possible graphs with the same value of V, to 

systematically catalog possible RNA secondary structures. However, only graphs with the 

same V-value can be directly compared for topological complexity using the second 

eigenvalue. The applicability of this approach to homologous RNA molecules, especially 

large functional RNAs such as group I introns and rRNAs, which vary widely in the number 

of stems and loops and therefore in their V-values, may therefore be limited.

Karklin et al. [22•] introduced a labeled dual graph representation of RNA secondary 

structure, and developed a similarity measure to compare and distinguish RNA molecules 

belonging to different families of homologs. In such graphs, helices are represented as nodes 

labeled with the number of WC base pairs, whereas edges are the nominally single-stranded 

regions that connect helices to each other (hairpin, internal and junction loops), labeled with 

the number of nucleotides they comprise. As the authors point out, the accuracy of this 

approach depends on the accuracy of the secondary structures. However, a further implicit 

assumption is made in this approach, namely that homologous RNA molecules are 

conserved fundamentally at the level of secondary structure. In fact, 2D structure is less 

conserved than 3D structure, and it is the 3D structure of an RNA molecule that is subject to 

natural selection. A dramatic example of this was recently revealed with the publication of 

X-ray crystal structures of the specificity (S) domain of A and B type RNase P molecules 

[23–25]. The A and B architectures present similar features, but the two secondary structures 

display significant differences [26]. Furthermore, detailed structural analyses of internal and 

hairpin loop motifs show that motifs with different numbers of nucleotides can adopt similar 

3D structures, except for variations in the number of looped-out bases. Examples include T-

loops [27], and simple internal loops consisting of a single trans Hoogsteen/sugar edge 

(sheared) base pair and one to three unpaired, looped-out bases [28].

Representations of RNA three-dimensional structure

Different representations can be used to describe molecular structure information [29]. The 

most basic representation, used by the 3D structure databases, is the Cartesian coordinates of 

individual atoms, from which other representations can be derived. However, the large 

number of variables makes the Cartesian representation awkward when comparing structures 

or searching for recurrent motifs. Internal coordinates (torsion angles) significantly reduce 

the number of variables and remove the need to align structures to a common coordinate 

system. Therefore, several such approaches have been developed (see below). A further 

simplification is the use of pseudo-torsion angles [30]. An approach using distance matrices 

has also been applied [29]. Finally, symbolic representations involving higher levels of 

abstraction have been described [31,32]. These approaches seek to capture the biologically 

most relevant structural information at the appropriate granularity, by averaging over the 
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minor variations of structure typical of non-covalent interactions, such as hydrogen bonding, 

to identify features that connect 3D structure explicitly to sequence data [33••]. Regardless 

of representation, the aim of motif analysis is to cluster motifs that share structural features 

into geometrically similar classes. As pointed out by Reijmers et al. [29], the outcome of 

clustering experiments depends largely on the way the data are represented.

Huang et al. [34•] used the 3D coordinates of fifteen atoms per RNA residue, including three 

base atoms and all the backbone and sugar atoms, to calculate the RMSD distance between 

two RNA fragments of the same length after they are superposed in 3D. They applied the 

method to compare all hairpin loops of fixed size in a set of RNA 3D structures, including 

the large rRNAs. The RMSD distances between all pairs of sequence segments were used to 

cluster the motifs. UPGMA was applied to produce dendograms of the hairpin loop 

structures. The algorithm is limited in its ability to find motifs involving different strand 

segments (composite motifs) or insertions. Therefore, the authors also clustered subsets of 

nucleotides within longer hairpin loops, and recovered GNRA or UNCG tetraloops with 

inserted nucleotides, that is, ‘pentaloops’ or ‘hexaloops’ that are GNRA or UNCG hairpins 

with insertions in characteristic positions.

Harrison et al. [35] describe a reduced vectorial representation of RNA 3D structure 

designed to convert the problem of searching for recurrent 3D motifs to the subgraph 

isomorphism problem, for which algorithms are known from graph theory. These methods 

were first developed for searching substructures in libraries of structures of small molecules, 

and then applied to proteins and carbohydrates, and recently to RNA [36]. For RNA 

structure searching, two pairs of pseudo-atoms forming two vectors represent each base. 

These vector pairs compose the nodes of labeled graphs, one node per base. The relative 

positions of the bases in the 3D structure are captured by edges connecting the nodes, and 

labeled with the distance between the start and end points of the vectors composing each 

node. The problem of searching for a 3D motif is thus reduced to the problem of finding 

subgraph isomorphisms of graphs representing query motifs in graphs representing 

structures in the RNA database. Harrison et al. [35] use their approach to search for non-WC 

base pairs and other small motifs. The Ullman algorithm they use scales with n factorial (n!), 

where n is the number of nodes in the query motif (subgraph); it is not clear how practical 

this approach is for searching structures to find larger motifs representing entire hairpin or 

internal loops.

ARTS (alignment of RNA tertiary structures) is a new computational method that compares 

and aligns pairs of 3D nucleic acid structures (RNA or DNA) to identify common 

substructures [37•]. Each nucleotide is represented by the position of its phosphate group. 

The program seeks the rigid transformation of one structure onto another that superimposes 

the largest number of phosphate groups of one structure onto the phosphate groups of the 

second structure, within a specified distance error. ARTS can also be used to discover new 

motifs.

Classifying backbone conformations

Local motifs (i.e. hairpin and internal loops) result in distinct and reproducible backbone 

conformations. Therefore, several groups have focused on analyzing and classifying RNA 
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backbone conformations to identify new motifs and search for recurrent motifs in complex 

high-resolution 3D RNA structures.

Schneider et al. [38••] analyzed and classified the backbone conformations of the 5S and 

23S rRNAs of the 50S ribosomal subunit from Haloarcula marismortui using Fourier 

averaging of the six 3D distributions of torsion angles. They identified 18 non-A-type 

conformations and 14 A-RNA-related conformations, and determined their corresponding 

torsion angles. Hershkovitz et al. [39] binned the continuous torsional information into a 

limited number of discrete values and used pattern recognition methods to find structural 

recurrences. They found they could represent backbone conformations using a small 

alphabet, consistent with the fact that four torsion angles contain the bulk of the structure 

information. Recently, Hershkovitz et al. [40•] applied classical statistical signal processing 

techniques (‘vector quantization’ or k-means clustering) to more rigorously classify RNA 

nucleotide conformations. Torsion angle information is lost in scalar quantization or binning. 

This problem is addressed in vector quantization (VQ). With 4D VQ, applied to the four 

‘identifier angles’ (α, γ, δ and ζ), about 60 4D clusters were found, indicating about 60 

fundamentally distinct nucleotide conformational states within globular RNAs. This 

compares with 38 configurational classes identified using binning of torsion angles taken 

one angle at a time (‘visual binning’). 7D VQ was also carried out and combined with a 

merging stage to merge conformations based on cluster centroid proximity and on structural 

constraints. Thus, all A-form helical clusters were merged into a single cluster. This reduces 

the number of clusters to 26, which further simplifies structure classification compared to 

the 38 bins identified manually. Richardson and co-workers [41•,42] applied quality filtering 

techniques to reduce noise levels in the backbone torsion angle distributions from an 8636-

residue RNA database. The signal that emerged for half-residue torsion angle distributions 

for α-β-γ and δ-ε-ζ was plotted and contoured in 3D. About a dozen distinct peaks were 

observed in the distributions and combined in pairs to define complete RNA backbone 

conformers. The RNA backbone conformations were reparsed into base-to-base ‘suites’ 

comprising seven variables, with sugar pucker specified at both ends. Their analysis 

produced a small library of 42 RNA backbone conformers. Thus, all three of these 

independent methods of analysis show that the torsion angles of the RNA backbone are quite 

constrained as to the number of distinct conformations that can result without steric clashes, 

a concept that was already apparent in the early days of nucleic acid stereochemistry 

[43,44].

The pseudo torsion angles  and , 

which, in older notation, were designated ωv and ωv, can be used to generate a reduced 

representation of an RNA backbone configuration — the ‘RNA worm’ — a 3D trajectory 

described using η, θ and the position of each nucleotide in the sequence as the coordinates 

[30,45]. 2D η–θ plots correspond formally to the Ramachandran plots of φ – ψ torsion 

angles used to analyze protein conformation. The program Primos was written to search 3D 

RNA structures for recurrent RNA worms [45]. Szép et al. [46] used Primos to identify 

additional occurrences of an RNA strand segment with a sharp turn that they observed in an 

oligonucleotide X-ray structure and that they called the ‘hook-turn’. All hook-turns 

identified in large RNA structures occur where the strands of a duplex separate so that they 
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can interact with other RNA regions. One strand doubles back to interact with itself in the 

5′-helical region. A careful analysis of hook-turns reveals other characteristic structural 

elements involving base–base or base–sugar interactions.

The computer program COMPADRES (Comparative Algorithm to Discover Recurring 

Elements of Structure) implements a novel algorithm, based on the RNA worm 

representation of the backbone, to identify new recurrent backbone conformations of RNA 

molecules in the structure database without prior knowledge [47••]. The algorithm compares 

all short RNA worms in the structure database against each other to discover recurrences 

within user-supplied tolerances. Applying this algorithm, Wadley and Pyle identified four 

new recurrent backbone conformations comprising five or more nucleotides, which they 

named for their shapes: π-turns (type 1 and type 2), Ω-turns, α-loops and C2′-endo-mediated 

flipped adenosine motifs. The authors note that Ω-turns exhibit some common base-pairing 

features, but lack a clear basepairing pattern. They discuss the bases forming WC base pairs, 

but overlook non-WC pairs that also occur in Ω-turns. When non-WC pairs are annotated in 

the secondary structure, a common base-pairing pattern emerges, as shown in Figure 1, 

which displays the structural annotation of each Ω-turn reported by Wadley and Pyle [47••] 

in the context of its interactions with other RNA strand segments. Figure 1 shows that Ω-

turns, viewed in context, also form characteristic ordered arrays of non-WC base pairs, even 

though they may be embedded in various kinds of motifs, including a K-turn, an internal 

loop or a three-way junction. At this stage, there is no agreement in the field as to where to 

draw the line between a motif and a submotif, with some workers maintaining that any 

substructure that occurs more than once in the structure database, and is “large enough to be 

interesting”, qualifies as an RNA motif in its own right [47••]. The present analysis indicates 

that Ω-turns, considered in the larger structural context in which they are embedded, can be 

viewed effectively as submotifs. This example supports the notion that criteria of 

independence and modularity should be applied to distinguish motifs from submotifs [1] and 

motifs from the molecules they compose.

Motifs defined by global features

In the striking crystal structure of the Azoarcus group I intron [48,49], Strobel and co-

workers noticed a sharp bend between two helical segments, which they named the ‘reverse 

kink-turn’ [50•]. Such a name implies a close relationship with the previously named kink-

turn [51]. In fact, the only common feature of these two motifs is that they produce a sharp 

bend or kink between two double-stranded elements. However, the kink-turn bends toward 

the minor/shallow groove and is stabilized by base–base A-minor motifs, whereas the 

reverse kink-turn bends toward the major/deep groove and is not stabilized by base–base 

interactions. Annotated drawings comparing the structures of representative kink-turns and 

reverse kink-turns are shown in Figure 2. This shows that these motifs are fundamentally 

different. Each motif is characterized by a different set of non-WC base pairs and therefore 

the motifs do not share sequence signatures (consensus sequences).

The SCOR classification

The SCOR database aims to comprehensively classify local RNA motifs that appear in 3D 

structures, focusing on internal and hairpin loops [52,53••]. Although SCOR features 3D 
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data, it is in fact organized using categories defined by secondary structure motifs (http://

scor.lbl.gov/scor.html). Thus, only local versions of motifs are provided, omitting 

structurally similar composite motifs that share the same core of base-pairing and stacking 

interactions. 3D information is not yet fully exploited in SCOR annotations or 

classifications; thus, a single dashed line is used to represent all non-WC base pairs in 

schematic diagrams regardless of the geometric type of each non-WC base pair. For 

example, internal loops containing n non-WC base pairs, where n = 1, 2, 3, …, are all 

classified together for a given value of n, regardless of the nature or the order of the 

component non-WC base pairs. The result is that quite heterogeneous motifs are grouped 

together while bona fide similarities are overlooked.

Base-pairing patterns and RNA motifs

Keeping in mind that sequences are the more fundamental biological data, other workers 

have focused on base-pairing patterns and their symbolic representation, and have pointed 

out that defined backbone configurations are necessary to form ordered arrays of non-WC 

base pairs [1]. In 2001, a systematic geometry-driven nomenclature was proposed for non-

WC RNA base pairs, along with easy to remember annotations for drawing schematic 

diagrams [31]. Using the nomenclature, all observed and chemically allowed base pairs can 

be classified into geometric families and isosteric subfamilies that identify those base 

combinations that can substitute during evolution while preserving 3D structure [54]. 

Moreover, this approach makes it possible to write computer programs to identify and 

classify base pairs in 3D structures [55–57]. Alternative classifications use names that are 

not related directly to the pairing geometry, do not provide ways to annotate 2D diagrams or 

to automate base-pair identification, and neglect hydrogen bonds involving the 2′-hydroxyl 

group [58,59].

It is now apparent from crystal structures that RNA architecture is dominated by the 

continuous stacking of bases. In addition, some arrays of non-WC base pairs prevail because 

of favorable stacking patterns coupled with standard and stereochemically satisfying sugar– 

backbone conformations [60]. Significant efforts are still necessary to reconcile these 

alternative approaches so as to define and classify the major types of recurrent backbone 

conformations, and associate them with specific occurrences of non-WC base pairs.

The 3D structure of RNA double helices is very regular compared to that of DNA helices. 

Sequence-dependent differences are more subtle for RNA than for DNA, and are due 

primarily to near- or non-isosteric base-pair substitutions, including wobble pairs (G/U or 

A/C), and homopurine (A/G or A/A) and homopyrimidine (C/U, U/U and C/C) pairs, which 

significantly distort the backbone conformation. Just as RNA helices require the stacking of 

two or more adjacent WC base pairs, RNA motifs result from combinations of two or more, 

usually stacked, non-WC base pairs. In this view, individual non-WC base pairs constitute 

the building blocks of RNA motifs, but do not themselves form integral motifs.

At the level of 3D motifs, more attention is therefore directed to the single-stranded regions 

of RNA molecules, hairpin or internal loops and multihelix junction loops, than to the 

helical regions. We now have sufficient numbers of high-resolution structures to conclude 

that most of the bases in these ‘loop’ regions of structured RNA molecules are paired in non-
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WC geometries and stacked to form specific structures—3D motifs. Because such a large 

proportion of bases in ‘loops’ are base paired, a useful definition of RNA motifs at this level 

is “an ordered array of non-WC base pairs under constraints”. It is worth noting here that, 

depending on the crystallo-graphic resolution, the presence or absence of individual 

hydrogen bonds may be difficult to ascertain. It may therefore be difficult to distinguish and 

classify motifs on the sole basis of hydrogen bonds. As 3D motifs may be local or 

composite, both types should be included in searches and classifications. Local motifs 

involve exclusively nucleotides that are close to each other in the secondary structure, that is, 

they belong to the same hairpin or internal loop. Composite motifs are formed when three or 

more strands converge to form an ordered array of non-WC base pairs.

Consensus sequences and motif signatures

Consensus sequences are used frequently to describe protein and RNA motifs. Known 

motifs from different sources are aligned, and the frequency of each residue type is 

calculated for each column of the alignment and displayed as a sequence logo [61]. This is 

only appropriate for RNA motifs that are strictly single stranded. To better describe RNA 

motifs that include WC base pairs, Gorodkin et al. [62] introduced an RNA structure logo 

that includes mutual information for paired positions [62]. The non-WC base pairs that 

compose RNA 3D motifs are also subject to pairwise sequence constraints. A more complete 

description of a recurrent RNA 3D motif, the sequence signature, includes information about 

the base pairs that can substitute at paired positions and the positions at which insertions and 

deletions occur. A recent study of two recurrent 3D motifs, the kink-turn and the C-loop, 

analyzes the sequence variations of all occurrences of these motifs known from crystal 

structures and derives sequence signatures of this type for each motif [33••]. This paper 

demonstrates the usefulness of isostericity matrices [54] for analyzing RNA motifs 

comprising non-WC base pairs, and outlines the steps for productively iterating motif 

analysis and sequence alignment. The flow chart shown in Figure 3 illustrates the role of 

isostericity matrices in 3D structural analysis, 3D motif identification and classification, 

sequence analysis to produce accurate structure-based sequence alignments and 3D 

modeling, all with the goal of increasing understanding of RNA function and evolution.

Conclusions

Biological data are fundamentally sequence data. Given the ease of obtaining sequence data 

and the difficulty of determining 3D structures at high resolution, there will always be more 

sequence data than structural data. The key challenge for RNA structural and computational 

biologists and bioinformaticians is to fully integrate these two types of data with a common 

ontology [63]. The fact that structured RNA molecules are mosaics of recurrent modular 

motifs means that high-resolution 3D information about one molecule may be useful in 

analyzing the sequences of another molecule, whether or not the molecules are homologous. 

For each modular 3D motif identified, we need to define the sequence constraints, as these 

allow one to identify the motif in other sequences. In this respect, a classification solely 

based on an analysis of secondary structures is of limited use. For structural biologists, the 

ability to describe, compare and superimpose using mathematically elegant and powerful 
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tools is the next step after structure determination. Several such tools have been described 

above, with their advantages and limitations.

However, in the future, there is the hope that the accumulated knowledge of 3D structures, 

when properly integrated, could be applied to the fundamental problems of searching for 

non-coding RNA genes in genomic sequences and constructing 3D models of RNA 

molecules based on known sequences. Finally, we would like to conclude by noting that the 

ultimate purpose of classification should be borne in mind in order to avoid unnecessary 

proliferation of confusing jargon. A Tower of Babel of structural acronyms would be erected 

if every recurrent element of structure at every possible degree of granularity is given a 

distinct name, without regard to the ways in which these elements combine to create integral 

structural and functional units or modules.
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Figure 1. 
Five examples of the new Ω-turn motif, as proposed by Wadley and Pyle [47••], in their 

structural contexts: (a) 23S rRNA from H. marismortui (PDB code 1JJ2), (b) 16S rRNA 

from Thermus thermophilus (PDB code 1N32), (c) RNA aptamer (PDB code 1NTB), (d) 
23S rRNA from H. marismortui (PDB code 1JJ2) and (e) 23S rRNA from H. marismortui 
(PDB code 1JJ2). The upper panel shows 3D representations highlighting the conservation 

of the backbone conformation of the five nucleotides composing each Ω-turn (shown in red). 

The lower panel shows schematic representations of each Ω-turn in its structural context, 

annotated with symbols for base-pairing [31] and base-stacking [48] interactions. The 

nucleotides composing each Ω-turn are shown in red and nucleotides in the syn 
conformation are indicated in bold. To prepare Figure 1, each Ω-turn was visually inspected 

in its structural context, and annotated for base-pairing [31] and base-stacking [48] 

interactions. This analysis clearly shows that motifs comprising Ω-turns share other common 

structural characteristics and are subject to sequence constraints. Thus, the first base of each 

Ω-turn forms a WC base pair. In three out of the five cases reported, the second base forms a 

trans Hoogsteen/sugar edge (sheared) pair [47••]. In the third case, the second base is a 

uridine, which cannot make a trans Hoogsteen/sugar edge pair, but rather interacts with C18 

to form a cis Hoogsteen/sugar edge pair. However, the position of this second base is the 

same as in the other Ω-turns. In the fifth case, the corresponding base (G1417 in H. 
marismortui 23S rRNA) is in the syn glycosidic configuration and, were it to rotate back to 

the more common anti configuration, it would form the same type of base pair with A1678. 

In each Ω-turn, the fourth base is in the syn glycosidic configuration and is extruded from 

the helix formed by the preceding nucleotides, so as to form a cis WC base pair with the 

base belonging to the other strand that pairs with the second base of the Ω-turn strand. The 

third base also base pairs, in a variable fashion, but always forming a trans base pair.
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Figure 2. 
Kink-turn and reverse kink-turn. (a) Schematic structures of the helix 7 kink-turn in 23S 

rRNA from H. marismortui (shown in red) and the reverse kink-turn in the P9/P9.0 junction 

of the Azoarcus intron (shown in blue). The structures are annotated for base-pairing 

interactions using the geometric nomenclature of Leontis and Westhof [31]. (b) 
Superposition of the canonical helices (C helix) from the 3D structures of the kink-turn (red) 

and the reverse kink-turn (blue). In the kink-turn structure, the non-canonical helix (NC 

helix) is oriented in the minor/shallow groove, whereas in the reverse kink-turn structure, the 

NC helix is in the major/deep groove.

Leontis et al. Page 15

Curr Opin Struct Biol. Author manuscript; available in PMC 2016 May 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Flow chart illustrating the use of isostericity matrices to integrate 3D structural and sequence 

information to produce accurate alignments and model 3D structures based on sequence. 

Isostericity matrices for non-WC base pairs organized in geometric families were proposed 

based on analysis of high-resolution atomic structures [54], as indicated in path 1. Sequence 

signatures of RNA motifs identified in 3D structures are deduced by analyzing homologous 

RNA molecules that have the same motif (path 2). Isostericity matrices are employed to 

productively iterate between sequence alignment and sequence signature to arrive at 

accurate, structure-based alignments (path 2). Sequence signatures for recurrent motifs 

identified in different crystal structures are defined with reference to isostericity matrices 

(path 3). For families of homologous RNA molecules for which no 3D structure exists (path 
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4), WC covariations and energy minimization (path 5) can be used to determine common 2D 

structures, which in turn define hairpin, internal and junction loops in which 3D motifs may 

occur. Sequence signatures of known motifs are used to propose motifs for loops and to 

refine alignments of loop regions in an iterative manner (paths 4 and 5). Motif substitutions 

at corresponding positions in the alignments can also be identified (path 4).

Leontis et al. Page 17

Curr Opin Struct Biol. Author manuscript; available in PMC 2016 May 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	What is an RNA motif?

	Types of RNA motifs
	Secondary structure motifs
	Representations of RNA three-dimensional structure
	Classifying backbone conformations
	Motifs defined by global features
	The SCOR classification
	Base-pairing patterns and RNA motifs
	Consensus sequences and motif signatures

	Conclusions
	References
	Figure 1
	Figure 2
	Figure 3

