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Abstract

Objective—Anhedonia, disrupted reward processing, is a core symptom of major depressive 

disorder. Recent findings demonstrate altered reward-related ventral striatal reactivity in depressed 

individuals, but the extent to which this is specific to anhedonia remains poorly understood. The 

authors examined the effect of anhedonia on reward expectancy (expected outcome value) and 

prediction error-(discrepancy between expected and actual outcome) related ventral striatal 

reactivity, as well as the relationship between these measures.

Method—A total of 148 unmedicated individuals with major depressive disorder and 31 healthy 

comparison individuals recruited for the multisite EMBARC (Establishing Moderators and 

Biosignatures of Antidepressant Response in Clinical Care) study underwent functional MRI 

during a well-validated reward task. Region of interest and whole-brain data were examined in the 

first- (N=78) and second- (N=70) recruited cohorts, as well as the total sample, of depressed 

individuals, and in healthy individuals.
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Results—Healthy, but not depressed, individuals showed a significant inverse relationship 

between reward expectancy and prediction error-related right ventral striatal reactivity. Across all 

participants, and in depressed individuals only, greater anhedonia severity was associated with a 

reduced reward expectancy-prediction error inverse relationship, even after controlling for other 

symptoms.

Conclusions—The normal reward expectancy and prediction error-related ventral striatal 

reactivity inverse relationship concords with conditioning models, predicting a shift in ventral 

striatal responding from reward outcomes to reward cues. This study shows, for the first time, an 

absence of this relationship in two cohorts of unmedicated depressed individuals and a moderation 

of this relationship by anhedonia, suggesting reduced reward-contingency learning with greater 

anhedonia. These findings help elucidate neural mechanisms of anhedonia, as a step toward 

identifying potential biosignatures of treatment response.

Anhedonia, the disruption of reward processing, is a core symptom of depressive illness (1, 

2). Numerous demonstrations of the influence of anhedonia on reward-guided behavior are 

reported (3, 4), for example, absence of a reward-related response bias in a signal detection 

task (5). However, examination of the neural underpinnings of this effect has yielded 

inconsistent findings. While several studies report reduced reward-related reactivity in 

striatal and medial frontal regions in individuals with major depressive disorder (6) or with 

high levels of anhedonia (7), other studies show robust anticipatory striatal activation in 

depressed individuals (8), as well as different affected loci within the striatum (9).

Some of these findings may be reconciled using reinforcement learning models to capture 

the variation of neural reactivity and to conceptualize abnormalities observed in individuals 

with major depressive disorder (10). One such model is the temporal difference model, 

which proposes that during learning, the prediction of future reward is updated based on the 

difference between the expected reward magnitude (from previous experience) and the 

actual reward outcome (11, 12). Prediction error signals are tracked in the ventral striatum 

(13, 14) and, as learning progresses, ventral striatal responding shifts from reward outcome 

(i.e., prediction error) to reward cues (i.e., reward expectancy), reflecting the process of 

conditioning (11). Preliminary evidence implicates reduced prediction error encoding in 

major depressive disorder, which is associated with severity of anhedonia symptoms (15).

We recently reported an inverse relationship between reward expectancy and prediction error 

ventral striatal reactivity in healthy individuals, consistent with a transfer of ventral striatal 

responding from prediction error to reward expectancy predicted by the temporal difference 

model (16). Importantly, this association was absent in medicated depressed individuals with 

bipolar disorder or major depressive disorder, which provides further evidence of disrupted 

temporal difference encoding in depressed individuals (16). Given that this finding was 

reported in medicated individuals with major depressive disorder and that psychotropic 

medications, including antidepressants, can modulate prefrontalstriatal dopamine function 

(17), it is important to determine whether a similar pattern of altered ventral striatal 

functioning is present in unmedicated depressed individuals with major depressive disorder. 

Furthermore, the extent to which this pattern of altered reward expectancy and prediction 
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error-related ventral striatal reactivity is specifically associated with anhedonia, rather than 

with other symptom dimensions in major depressive disorder, remains unknown.

We first sought to adopt a conventional diagnostic categorical approach and compare reward 

expectancy and prediction error-related ventral striatal reactivity in a large group of 

unmedicated depressed individuals with major depressive disorder and a group of healthy 

individuals using a well-validated reward task. In a novel step forward, we then adopted a 

dimensional approach, paralleling the approach advocated by the National Institute of 

Mental Health Research Domain Criteria (18), and determined, across both groups, the 

extent to which alteration in the expected inverse relationship between reward expectancy 

and prediction error-related ventral striatal reactivity was moderated specifically by the 

severity of anhedonia rather than other symptoms. Participants were recruited for the 

EMBARC (Establishing Moderators and Biosignatures of Antidepressant Response for 

Clinical Care) study, a large multisite randomized controlled trial aiming to identify 

biomarkers of treatment response in major depressive disorder (data available upon request 

from MH Trivedi, PJ McGrath, M Weissman, R Parsey, and M Fava, principal investigators; 

ClinicalTrials.gov identifier: NCT01407094 [also see reference 19]). The design of 

EMBARC allowed us to test the following hypotheses separately in the first and second 

recruited cohorts of 100 depressed individuals and in the total sample of 200 depressed 

individuals.

In accordance with the temporal difference model and a previous report (16), we 

hypothesized that healthy individuals would demonstrate an inverse relationship between 

reward expectancy and prediction error-related ventral striatal reactivity and that this 

association would be absent in depressed individuals with major depressive disorder. Based 

on the disruptive effect of anhedonia on reward-related reactivity (7, 20, 21) and functional 

connectivity (20), as well as specifically on prediction error encoding in the ventral striatum 

(15), we further hypothesized that the relationship between reward expectancy and 

prediction error-related ventral striatal reactivity in depressed individuals with lower, 

compared with higher, anhedonia severity would more closely follow the pattern observed in 

healthy individuals.

METHOD

Participants

Participants were 200 unmedicated depressed individuals with major depressive disorder and 

40 healthy individuals recruited for EMBARC. The study was conducted at four clinical 

sites: Columbia University, Massachusetts General Hospital, the University of Michigan, 

and the University of Texas Southwestern Medical Center. All individuals were screened 

with the Structured Clinical Interview for DSM-IV Axis I Disorders-Patient Edition (SCID-

I/P [22]) to confirm diagnoses of major depressive disorder in patients and absence of 

diagnoses of lifetime axis I mood, anxiety, and psychotic disorders and current substance 

abuse in healthy individuals. To be eligible for the study, individuals had to be 18–65 years 

old, had to report an age at onset of depression occurring before 30 years old, and had to be 

fluent in English. Additional inclusion/exclusion criteria are presented in the data 

supplement accompanying the online edition of this article.
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Fifty depressed patients and nine healthy individuals were excluded because of excessive 

motion (>4 mm), low slice signal-to-noise ratio (<80), and severe artifacts in MRI data. This 

exclusion rate is in line with other neuroimaging data sets (23). Two depressed patients were 

excluded because of a large number of omission errors (≥11) for the reward task. This 

yielded a final sample of 148 depressed patients (97 women; mean age=37.11 years 

[SD=12.93]) and 31 healthy individuals (19 women; mean age=38.42 years [SD=15.74]). A 

total of 158 participants were right-handed, 20 were left-handed, and one was ambidextrous. 

The two groups did not differ in age, sex ratio, handedness, and education level. The study 

was approved by the institutional review boards at each of the four clinical sites. All 

participants provided written, informed consent.

Clinical Measures

All participants were rated on the Hamilton Depression Rating Scale (HAM-D [24]) for 

severity of depression. Participants also completed the anhedonic depression subscale from 

the Mood and Anxiety Symptom Questionnaire (25), as well as the Snaith-Hamilton 

Pleasure Scale (26), to assess anhedonia severity, the anxious arousal subscale from the 

Mood and Anxiety Symptom Questionnaire (25) to assess somatic arousal severity, the 

Spielberger State-Trait Anxiety Inventory (27) to assess state anxiety, and the Altman Self-

Rating Mania Scale (28) to determine hypomania severity. All self-report questionnaires 

were completed on the scanning day except the Altman Self-Rating Mania Scale, which was 

completed during an initial evaluation visit.

Reward Task

A well-validated monetary reward task comprised 24 trials presented in pseudorandom order 

with predetermined outcomes (29–31). There were four possible trial types (N=6 each): the 

expectation of a possible win, followed by a win or no change outcome, and the expectation 

of a possible loss, followed by a loss or no change outcome (Figure 1). During each trial, 

individuals guessed using button press whether the value of an upcoming card would be 

higher or lower than the number 5 (presentation of a question mark; 4 seconds). An upward 

or downward arrow was then presented for 6 seconds, representing a possible win or 

possible loss, respectively, while the participant anticipated the outcome. The outcome then 

appeared for 1 second (a number for 500 ms and then an upward or downward arrow for win 

and loss outcomes, respectively, or a yellow circle for no change outcomes, for 500 ms), 

followed by a 9-second intertrial interval. Participants were informed that their performance 

would determine a monetary reward after the scan, with $1.00 for each win and 50 cents 

deducted for each loss. The total possible earnings were, in fact, fixed at $3.00 to equalize 

rewards between participants. Previous data indicate that participants are unaware of the 

latter and believe that outcome is determined by chance (29). Participants completed a 

practice run of the task prior to the scan.

Image Acquisition

Neuroimaging data were collected using 3-T MRI scanners at all sites (for imaging 

parameters at each site, see the online data supplement).
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Image Analysis

Preprocessing procedures were performed with Statistical Parametric Mapping software 

(SPM8; http://www.fil.ion.ucl.ac.uk/spm). Functional images for each participant were 

realigned to the first volume in the time series, coregistered with the corresponding 

anatomical image and smoothed with an 8-mm Gaussian kernel. The first-level model 

included the following four regressors: response (4-second presentations of a question 

mark), anticipation (6-second presentations of an arrow), outcome (1-second presentations 

of the number and feedback arrow), and baseline (3-second presentation of an orienting 

cross). In addition, we included two regressors representing reward expectancy and 

prediction error. The reward expectancy regressor, coupled with the anticipation phase, 

reflected the expected value of the arrow, set to +0.5 for the up arrow condition (given the 

50% chance of winning $1.00) and to −0.25 for the down arrow condition (given the 50% 

chance of losing 50 cents). The prediction error regressor, coupled with the outcome, was 

determined by the difference between the outcome and the expected value (i.e., +0.5 for a 

win following an up arrow, −0.5 for no win following an up arrow, +0.25 for a no loss 

following a down arrow, −0.25 for a loss following a down arrow).

To model omission errors, we included another regressor, which lasted 17 seconds from the 

onset of the question mark and replaced other trial events during this period. Finally, we 

included the six motion parameters from the realignment phase as covariates of no interest. 

Serial autocorrelations were modeled using a first-order autoregressive process.

The main conditions of interest were reward expectancy and prediction error. We conducted 

a region of interest analysis focused on the ventral striatum. Mean parameter estimates 

reflecting reward expectancy and prediction error reactivity were extracted using two 

separate functional masks for the right and left ventral striatum, based on our previous 

findings (16). We conducted bivariate and partial correlational analyses (covarying for age, 

sex, site, and slice signal-to-noise ratio) to examine the relationship between reward 

expectancy and prediction error-related ventral striatal reactivity in the two groups (major 

depressive disorder group and healthy group).

We conducted hierarchical regression analyses to examine the effect of anhedonia, anxiety, 

and depression severity on the relationship between reward expectancy and prediction error-

related ventral striatal reactivity, as well as on reward expectancy and prediction error-

related ventral striatal reactivity per se, using the covariates described above.

We also conducted whole-brain analyses that paralleled the region-of-interest analyses using 

a family-wise error cluster threshold of p<0.05 (see the online data supplement).

The above analyses were conducted in the first-recruited cohort of 100 depressed patients 

(referred to as cohort MDD100a; N=78 with usable data) and healthy individuals (N=31 with 

usable data), in the second-recruited cohort of 100 depressed patients (referred to as cohort 

MDD100b; N=70 with usable data) and healthy individuals, and in all 200 depressed patients 

(referred to as cohort MDD200; N=148) and healthy individuals.
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RESULTS

Demographic Variables

There were no group differences in age, sex ratio, and level of education for the MDD100a 

cohort (all p values >0.28), the MDD100b cohort (all p values >0.1), or the MDD200 cohort 

(all p values >0.11) and healthy individuals (Table 1).

Clinical Measures

Depressed individuals had higher scores on the HAM-D, Mood and Anxiety Symptom 

Questionnaire anhedonic depression subscale, Snaith-Hamilton Pleasure Scale, Mood and 

Anxiety Symptom Questionnaire anxious arousal subscale, and Spielberger State-Trait 

Anxiety Inventory than healthy individuals (all p values <0.001 for cohorts MDD100a, 

MDD100b, and MDD200 [see Table 1]). There were no group differences in Altman Self-

Rating Mania Scale scores between cohorts MDD100a (p=0.3), MDD100b (p=0.75), or 

MDD200 (p=0.6) and healthy individuals. For one depressed participant, scores on the Mood 

and Anxiety Symptom Questionnaire anhedonic depression and anxious arousal subscales 

were not available, and for six depressed participants, scores on the Altman Self-Rating 

Mania Scale were not available. For two healthy participants, HAM-D scores were not 

available.

Reward Task

Behavioral measures—There were no group differences in reaction time and number of 

omission errors between cohorts MDD100a (p=0.19 and p=0.69, respectively), MDD100b 

(p=0.79 and p=0.41, respectively), or MDD200 (p=0.4 and p=0.51, respectively) and healthy 

individuals (Table 1).

Neural reactivity

Region-of-interest analysis: reward expectancy and prediction error: There were no 

differences in reward expectancy and prediction error-related reactivity in the right or left 

ventral striatum between cohorts MDD100a (all p values >0.38), MDD100b (all p values 

>0.31), or MDD200 (all p values >0.47) and healthy individuals.

Relationship between reward expectancy and prediction error-related ventral striatal 
reactivity: There was a significant inverse correlation between reward expectancy and 

prediction error-related right ventral striatal reactivity in healthy individuals (r=−0.39, 

df=29, p=0.03) but not in depressed individuals (cohort MDD100a: r=0.12, df=76, p=0.31; 

cohort MDD100b: r=−0.07, df=68, p=0.58; cohort MDD200: r=0.03, df=146, p=0.72 [Figure 

2]).These correlation coefficients differed significantly between the healthy group and 

cohort MDD100a (z=−2.4, p=0.02) and cohort MDD200 (z=−2.15, p=0.03) but not cohort 

MDD100b (z=−1.55, p=0.12). The latter comparison was nearly significant for a one-tailed t 

test (p=0.06).

There was a similar pattern of relationships between the left ventral striatal reward 

expectancy and prediction error-related reactivity in healthy and depressed individuals 

(healthy participants: r=−0.22, df=29, p=0.25; cohort MDD100a: r=0.12, df=76, p=0.31; 
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cohort MDD100b; r=−0.06, df=68, p=0.62; cohort MDD200: r=0.04, df=146, p=0.67), but the 

major depressive disorder group compared with healthy comparison group differences in 

correlation coefficients were not significant (z=−1.63, p=0.1, z=−0.7, p=0.48 and z=−1.23, 

p=0.22, respectively). Similar between-group differences in correlational patterns between 

the right ventral striatal reward expectancy and prediction error-related reactivity were 

observed when controlling for age, sex, and site (healthy participants: r=−0.41, df=24, 

p=0.04; cohort MDD100a: r=0.07, df=71, p=0.59; cohort MDD100b: r=−0.144, df=62, 

p=0.26; cohort MDD200: r=−0.03, df=140, p=0.74).

Effects of anhedonia, anxiety, and depression severity on the relationship 
between reward expectancy and prediction error-related ventral striatal 
reactivity

MDD100a and healthy individuals: We conducted a hierarchical multiple regression with 

right ventral striatal prediction error-related reactivity as the dependent variable. To control 

for age, sex, site, and slice signal-to-noise ratio, we included these covariates in the first step 

of the model. We then entered the two independent variables of interest: right ventral striatal 

reward expectancy-related reactivity and scores on the Mood and Anxiety Symptom 

Questionnaire anhedonic depression subscale. Finally, we added the interaction term for the 

two independent variables. The interaction term accounted for significant variance in right 

ventral striatal prediction error-related reactivity (R2
change=0.12, Fchange=14.6, df=1, 98, 

p<0.001). To examine this finding further, we subdivided individuals with major depressive 

disorder into three subgroups defined by tertile split of scores on the Mood and Anxiety 

Symptom Questionnaire anhedonic depression subscale: major depressive disorder-low 

anhedonia, major depressive disorder-moderate anhedonia, and major depressive disorder-

high anhedonia. We then examined the interaction between anhedonia and right ventral 

striatal reward expectancy-related reactivity using these three subgroups and healthy 

individuals. This analysis revealed that a reduced inverse regression slope was associated 

with higher anhedonia severity (F=3.75, df=3, 94, p=0.01 [Figure 3A]).

Similar analyses were conducted to examine the effect of somatic arousal (Mood and 

Anxiety Symptom Questionnaire anxious arousal subscale), depression severity (HAM-D), 

and state anxiety (Spielberger State-Trait Anxiety Inventory) on the relationship between 

reward expectancy and prediction error-related right ventral striatal reactivity. There was a 

significant moderation effect for the Mood and Anxiety Symptom Questionnaire anxious 

arousal subscale (R2
change=0.05, Fchange=5.4, df=1, 98, p=0.02), an effect that fell short of 

statistical significance for HAM-D (p=0.07), and no effect for the Spielberger State-Trait 

Anxiety Inventory (p=0.37).

To determine to what extent the moderation effects observed were specific to anhedonia, we 

conducted a moderation analysis with scores from all symptom measures (Mood and 

Anxiety Symptom Questionnaire anhedonic depression and anxious arousal subscales, 

HAM-D, and Spielberger State-Trait Anxiety Inventory) included in one regression model. 

First, we entered the covariates to the model, next we entered all the independent variables 

of interest, and then we entered the three interaction terms for the Mood and Anxiety 

Symptom Questionnaire anxious arousal subscale, HAM-D, and Spielberger State-Trait 
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Anxiety Inventory and right ventral striatal reward expectancy-related reactivity. In the last 

step, we added the interaction term for the Mood and Anxiety Symptom Questionnaire 

anhedonic depression subscale and right ventral striatal reward expectancy-related reactivity. 

The Mood and Anxiety Symptom Questionnaire anhedonic depression subscale remained a 

significant moderator of the relationship between right ventral striatal reward expectancy and 

prediction error-related reactivity, with all other symptom measures included (R2
change=0.1, 

Fchange=12.19, df=1, 90, p=0.001). Furthermore, t tests examining the effect of each 

predictor (beta) in the model showed that the interaction term for the Mood and Anxiety 

Symptom Questionnaire anhedonic depression subscale and right ventral striatal reward 

expectancy-related reactivity was the only significant predictor of right ventral striatal 

prediction error-related reactivity (t=3.49, p=0.001).

Moderation effect of anhedonia within each depressed cohort and all depressed 
individuals only: The moderation effects of anhedonia with and without other symptom 

measures were significant for cohort MDD100a (R2
change=0.16, Fchange=14.33, df=1, 67, 

p<0.001; R2
change=0.17, Fchange=15.82, df=1, 61, p<0.001, respectively) and MDD200 

(R2
change=0.04, Fchange=5.91, df=1, 135, p=0.02 and R2

change=0.06, Fchange=9.721, df=1, 

129, p=0.002, respectively) but not for MDD100b (both p values >0.1). However, the 

correlation coefficients for reward expectancy and prediction error-related ventral striatal 

reactivity did not differ between the two MDD cohorts (p=0.28). A possible factor for the 

absence of an anhedonia moderation effect on the ventral striatal region of interest in cohort 

MDD100b was the restricted range of Mood and Anxiety Symptom Questionnaire anhedonic 

depression subscale scores in this cohort (21 compared with 34 in cohort MDD100a), 

particularly at the low end of the scale.

Moderation effect of anhedonia within all depressed and healthy individuals: The 

moderation effect of the Mood and Anxiety Symptom Questionnaire anhedonic depression 

subscale on the relationship between right ventral striatal reward expectancy and prediction 

error-related reactivity was significant (R2
change=0.03, Fchange=6.53, df=1, 166, p=0.01 

[Figure 3B]). This effect of anhedonia remained significant with all other symptom measures 

added to the model (R2
change=0.04, Fchange=8.54, df=1, 158, p=0.004).

Effects of anhedonia, anxiety symptoms, and depression levels on reward expectancy 
and prediction error-related ventral striatal reactivity: To test whether scores on the 

Mood and Anxiety Symptom Questionnaire anhedonic depression subscale, Snaith-

Hamilton Pleasure Scale, Mood and Anxiety Symptom Questionnaire anxious arousal 

subscale, HAM-D, or Spielberger State-Trait Anxiety Inventory were significantly 

associated with reward expectancy or prediction error-related right ventral striatal reactivity 

in depressed and healthy individuals, we conducted simple regressions with each symptom 

measure as an independent variable and either reward expectancy or prediction error-related 

right ventral striatal reactivity as the dependent variable; all covariates were included for 

these analyses. There was no effect for any of the symptom measures on either reward 

expectancy or prediction error-related right ventral striatal reactivity in cohort MDD100a (all 

p values >0.1), cohort MDD200 (all p values >0.12), or healthy individuals (all p values 

>0.1), except for the Mood and Anxiety Symptom Questionnaire anxious arousal subscale 
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on prediction error-related right ventral striatal reactivity in cohort MDD100b (p=0.02; all 

other p values >0.12).

Whole-brain moderation analysis (accounting for covariates): Two separate whole-brain 

analyses showed, in the first (MDD100a) cohort and healthy individuals and in the second 

(MDD100b) cohort and healthy individuals, moderation effects of the Mood and Anxiety 

Symptom Questionnaire anhedonic depression subscale on the relationship between reward 

expectancy and prediction error-related reactivity in the anterior caudate, just anterior to the 

ventral striatal region of interest above (see the online data supplement). Across all 

participants, there was a significant moderation effect of the Mood and Anxiety Symptom 

Questionnaire anhedonic depression subscale on this relationship in four striatal loci (Figure 

4). Furthermore, correlation coefficients between reward expectancy and prediction error-

related reactivity, based on parameter estimates extracted from the right anterior caudate, 

from the latter whole-brain analysis, showed comparable patterns in each of the two MDD 

cohorts for anhedonia range-equivalent subgroups (Figure 4).

DISCUSSION

The goal of the present study was to determine the extent to which anhedonia disrupts 

normal patterns of functioning in a key region of reward circuitry, the ventral striatum, 

during uncertain reward and loss expectancy and outcome. Our findings indicate that while 

depressed and healthy individuals exhibited similar reward expectancy and prediction error-

related ventral striatal reactivity, there were marked group differences in the relationship 

between the two measures. Healthy, but not depressed, individuals showed an inverse 

correlation between right ventral striatal reward expectancy and prediction error-related 

reactivity. Across participants, increased anhedonia severity was associated with a reduced 

inverse correlation between reward expectancy and prediction error-related right ventral 

striatal reactivity. These findings were present in the first-recruited cohort of depressed and 

healthy individuals and the larger sample of all recruited participants. Whole-brain analyses 

showed a similar moderation effect of anhedonia on the reward expectancy prediction error 

relationship in the anterior caudate (just anterior to the ventral striatal region of interest), a 

region key to disrupted reward processing in major depressive disorder (6), in both the first 

and second cohorts of depressed individuals and healthy individuals and across all 

participants.

A core feature of conditioning is the transfer in the control of behavior from reinforcement 

itself to antecedent stimuli that predict reinforcement (32). The temporal difference model 

provides a unifying account of this transfer, with a single signal that becomes coupled to the 

earliest reliable predictor of reward (11). Our finding in healthy individuals of an inverse 

relationship across individuals between reward expectancy and prediction error-related right 

ventral striatal reactivity is consistent with this model, since right ventral striatal reactivity 

transferred from the outcome (prediction error) to its antecedent cue (reward expectancy). 

Here, individuals who show greater reward expectancy than prediction error-related ventral 

striatal reactivity may show a faster reward cue-outcome contingency learning rate. The 

absence of this relationship in depressed individuals and the moderating effect of anhedonia 

upon this relationship suggest that more severely anhedonic individuals may show deficient 
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temporal difference encoding and/or reward cue-outcome contingency learning in rewarding 

or potentially rewarding contexts. Our findings also highlight the specificity of this deficit to 

anhedonia, rather than this being a feature of major depressive disorder in general.

Previous findings indicate reduced prediction error-related ventral striatal reactivity in 

depressed individuals during reward learning (10, 15) and an association between decreased 

prediction error-related ventral striatal reactivity and greater anhedonia severity (15). Our 

study is the first, to our knowledge, to examine the relationship among reward expectancy 

and prediction error-related ventral striatal and whole-brain reactivity and the moderating 

effect of anhedonia on this relationship in a large sample of unmedicated depressed 

individuals. Furthermore, while these previous studies reported attenuated prediction error-

related ventral striatal reactivity in depressed individuals when using temporal difference 

(10), or similar (15, 33) modeling approaches, cue-outcome contingency learning was 

captured by a fixed (10, 15) or individually determined (15, 33) learning rate. The fit of 

neural reactivity was therefore obtained by matching the observed pattern of dynamically 

changing ventral striatal reactivity with the parametric model of this reactivity. Thus, a poor 

fit in depressed individuals could be obtained for two reasons: 1) a general failure to activate 

the ventral striatum or 2) a failure of the model to reflect the abnormal pattern of fluctuation 

in ventral striatal reactivity in these individuals. Our findings support the latter, rather than 

the former account, given that depressed individuals showed normal levels of reward 

expectancy and prediction error-related ventral striatal reactivity but an aberrant relationship 

between these measures, especially in more severely anhedonic individuals.

The neurobiological basis of temporal difference learning is thought to involve modulation 

of ventral striatal activity by the midbrain (ventral tegmental area) dopamine system. The 

ventral tegmental area, which projects to the ventral striatum, is calibrated to optimize its 

signal-to-noise ratio by adapting to contextual rates of reinforcement (34). The dysregulation 

of this contextual adaptation in depressed individuals with greater anhedonia may thus be 

associated with variability of ventral tegmental area firing and lead to a ventral striatal 

reactivity pattern that does not tightly correspond to the temporal difference signal. 

Nevertheless, the ventral striatum may still show robust prediction error-related reactivity, as 

we show in depressed individuals in the present study, as well as in our previous findings 

(16).

Our findings are the first to show an absence of the expected inverse relationship between 

reward expectancy and prediction error-related ventral striatal reactivity in a large group of 

unmedicated individuals with major depressive disorder and suggest a neural mechanism for 

deficits in temporal difference learning in the illness. Furthermore, this aberrant pattern of 

striatal reactivity was associated with greater severity of anhedonia, even after controlling 

for other symptoms, in both cohorts of depressed individuals and all participants. The 

identification of a neural measure that may reflect a pathophysiological process underlying a 

core symptom of major depressive disorder is an important step forward in elucidating 

biomarkers of different affective symptom dimensions that, in turn, can help identify 

biomarkers and biosignatures that predict differential treatment response in the illness. These 

findings may also point to focused target of treatment in the future.
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FIGURE 1. 
Diagram of Given Trial From the Reward Taska
a The paradigm consists of 24 trials: 12 are reward-expectation trials, in which an arrow 

points upward and the possible outcomes are a win (six trials) or no change (six trials), and 

12 are loss-expectation trials, in which the arrow points downward and the possible 

outcomes are a loss (six trials) or no change (six trials).
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FIGURE 2. 
Association Between Reward Expectancy and Prediction Error-Related Reactivity in the 

Right Ventral Striatum in the First-Recruited Cohort (N=78), Second-Recruited Cohort 

(N=70), and the Total Sample (N=148) of Depressed Individuals and Healthy Comparison 

Subjects (N=31)a
a RE=reward expectancy; PE=prediction error.
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FIGURE 3. 
The Relationship Between Reward Expectancy and Prediction Error-Related Right Ventral 

Striatal Reactivity in Healthy Comparison (HC) Subjects and in Individuals With Low, 

Moderate, and High Symptoms of Anhedonia in the First-Recruited Cohort (MDD100a) and 

Total Sample (MDD200) of Individuals With Major Depressive Disordera
a The scatter plots (A, B) show the relationship between reward expectancy and prediction 

error-related right ventral striatal reactivity. The bar graphs (C, D) show correlation 

coefficients and standard errors for HC subjects and anhedonia subgroups (defined by tertile 

split of anhedonia scores) within the MDD100a cohort and for HC subjects and anhedonia 

subgroups within the MDD200 cohort. RE=reward expectancy; PE=prediction error.
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FIGURE 4. 
Whole-Brain Moderation Analysis Across All Participantsa
a Whole-brain analysis across all participants was conducted to investigate the significant 

moderation effect of anhedonia at a voxel-wise level. A regression model was constructed in 

which prediction error was predicted on the basis of reward expectancy, Mood and Anxiety 

Symptom Questionnaire anhedonic depression subscale scores, and Mood and Anxiety 

Symptom Questionnaire anhedonic depression subscale-by-reward expectancy interaction, 

as well as the other covariates used for the region-of-interest analysis. This regression model 

(A) was fitted to each voxel. The resulting map was thresholded at a t statistic of 4.6 and a 

cluster size of 5, corresponding approximately to the peak/cluster family-wise-error 

corrected threshold (the map was thresholded at t>3.4 for display purposes). For the Mood 

and Anxiety Symptom Questionnaire anhedonic depression subscale-by-reward expectancy 

interaction effect, four clusters reflecting an increasingly positive/decreasingly negative 

correlation between reward expectancy and prediction error with increasing anhedonia were 

obtained. Two clusters were centered slightly more anteriorly with respect to the ventral 

striatum regions of interest, in the anterior caudate (left: peak voxel: t=5.36, df=167, p<0.05 

[family-wise error] [coordinates: −16, 28, 2; 46 voxels]; right: peak voxel: t=5.60, df=167, 

p<0.05 [family-wise error] [coordinates: 16, 26, 0; 26 voxels]), while a small cluster was 

slightly more posterior, on the right (peak voxel: t=4.75, df=167, p<0.05 [family-wise error] 

[coordinates: 8, 12, 2; 5 voxels]). The fourth cluster was centered on the left dorsal striatum 

(peak voxel: t=5.63, df=167, p<0.05 [family-wise error] [coordinates: −22, 16, 8; 41 voxels; 
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all reported coordinates are in Montreal Neurological Institute space]). There were no 

significant voxels for the opposite direction of the interaction. The bar graphs show 

correlation coefficients (and standard errors) between reward expectancy and prediction 

error-related reactivity (extracted from a 6-mm sphere centered at coordinates 16, 26, 0) for 

healthy comparison subjects and anhedonia range equivalent subgroups (defined by tertile 

split of anhedonia scores) in the (B) first-recruited cohort (MDD100a) and (C) second-

recruited cohort (MDD100b) of depressed individuals.
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