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Abstract

Worldwide, laboratory technicians tediously read sputum smears for tuberculosis (TB) diagnosis. 

We demonstrate proof of principle of an innovative computational algorithm that successfully 

recognizes Ziehl-Neelsen (ZN) stained acid-fast bacilli (AFB) in digital images.

Automated, multi-stage, color-based Bayesian segmentation identified possible ‘TB objects’, 

removed artifacts by shape comparison and color-labeled objects as ‘definite’, ‘possible’ or ‘non-

TB’, bypassing photomicrographic calibration. Superimposed AFB clusters, extreme stain 

variation and low depth of field were challenges. Our novel method facilitates electronic diagnosis 

of TB, permitting wider application in developing countries where fluorescent microscopy is 

currently inaccessible and unaffordable. We plan refinement and validation in the future.
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Sputum smear microscopy using the ubiquitous Ziehl-Neelsen (ZN) stain, the primary 

diagnostic strategy for active tuberculosis (TB) worldwide that is recommended by the 

World Health Organization (WHO),1 is constrained by its reliance on human skill and time-

intensive nature. In developing countries, fewer skilled technicians, inadequate equipment 

and high caseloads compound the problem of numerous samples at limited microscopy 

facilities. Reading of three initial smears and viewing of 100 high-power fields per slide is 

recommended. This takes at least 15 min for experienced staff,2 is subject to error,3 and the 

mental concentration and visual strain limits the volume of slides handled per day. 

Automated detection of acid-fast bacilli (AFB) could hasten diagnosis, enhance quantitative 

classification and reduce errors. Two reported studies applying computational image 

processing to detect TB bacilli used the expensive, less accessible auramine-rhodamine 
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fluorescent stain.4,5 We demonstrate proof of principle of an innovative computational 

algorithm to recognize ZN-stained AFB in digital images. Color-edge detection methods 

applied to fluorescent images work poorly on ZN images. Our new method, free from scale 

calibration, uses prior knowledge about the distinctive ZN stain color to label a given image 

pixel as a ‘TB object’ or a ‘non-TB object’, followed by shape/size analysis to refine 

detection.

METHODS

Digital images of ZN-stained smears and tissue were obtained from the Centers for Disease 

Control’s (CDC’s) Public Health Image Library (PHIL) laboratories and other sources 

(Kandavelu K, personal communication, 2006).6-9 To be selected, images had to depict ZN-

stained AFB. For simpler segmentation, we used clear Mycobacterium tuberculosis broth 

images to characterize AFB color. Computational algorithms (Figure 1) were implemented 

on a personal laptop in MATLAB 7 Image Processing Toolbox software (The Mathworks 

Inc., Natick, MA, USA, 2004).

Color segmentation

Color gradient-based AFB segmentation and edge detection work poorly for ZN stains, 

which have greater background detail than fluorescent images. We used 1) Bayesian 

segmentation to predict the probability of a pixel representing a ‘TB object’ using prior 

knowledge of ZN stain colors; and 2) shape/size analysis. Pixel probabilities were derived 

from the three-dimensional probability density function histogram created by manually 

segmenting ZN-stained AFB-positive images. Most true AFB pixels had red green blue 

values that were significantly different from non-TB objects. Thresholding pixel 

probabilities created a binary mask which was improved using morphological dilation of the 

image with a circular structuring element.

Shape extraction

We discriminated true AFB from other AFB-positive artifacts such as Nocardia using shape. 

Matching nearest-neighbor connected pixels were grouped; to account for varying bacillary 

orientations and magnification, we bypassed size calibration by employing two shape 

descriptors that were invariant to rotation, translation, skew transformations and scale: 1) 

axis ratio (1 for circles, higher for line segments) and 2) eccentricity, a ratio of distance 

between elliptical foci to major axis length (1 for line segments, 0 for circles). The typical 

axis ratio of 2–2.5 for true AFB was significantly different from approximately ‘one’ for 

non-AFB objects; similarly, true AFB eccentricity was 0.90–0.96 and centered at zero for 

non-AFB. To maximize rod-shaped object recognition, we empirically chose conservative 

threshold cut-offs (axis-ratio >1.25 and eccentricity >0.65) as indicating AFB. Objects 

below the thresholds were labeled red as ‘non-TB’ objects. Calculating the mean AFB size μ 

and standard deviation σ from a broth image, we labeled all size outliers > μ ± 1.5σ in blue 

as ‘possible’ and within μ ± 1.5σ in green as ‘definite’ TB objects.
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RESULTS

The algorithm recognized AFB under wide latitudes of staining, magnification and 

resolution (Figure 2). In Figure 2a,b nearly all visible bacilli were color-labeled as TB 

objects (green); conglomerations were labeled possible objects (blue). In Figure 2c,d the 

single typical TB bacillus was clearly recognized alongside a minor artifact. In Figure 2e,f, 

all AFB were recognized. In a challenge tissue slide (image not shown), the single TB 

bacillus was successfully detected without artifacts.

In the typical sputum smear image (Figure 2g,h), the algorithm successfully detected most of 

the single bacilli; most overlapping bacilli were labeled as ‘possible TB’. In all images, very 

little of the slide background was incorrectly labeled as possible or definite TB. In an image 

showing AFB in a skin lesion (image not shown), individual bacilli and small groups were 

correctly identified, while conglomerations and contiguous background were labeled 

‘possible TB’. Even with bacillary conglomerations in AFB-positive images, individual 

bacilli were likely to be correctly labeled.

DISCUSSION

We present the first report of automated computational recognition of AFB in ZN-stained 

digital images, a challenge due to color density similarity between primary stain and 

counterstain. Our approach has several benefits. First, we specifically targeted the widely 

used ZN staining method, which is globally relevant to national TB programs. Second, our 

method succeeds despite considerable background artifacts. Third, our incorporation of size-

invariant shape selection allows differing magnification and increases robustness for 

automated processing without human interaction. The programming simplicity of our 

algorithm permits conversion to stand-alone software for use on numerous personal 

computers in developing countries.

Overstaining or understaining may impact the current algorithm, as Bayesian segmentation 

uses stored probabilities. However, the algorithm can easily be modified to ‘learn’ stain 

characteristics for a new batch of slides by a color calibration step where new sample images 

are compared to the training database and flagged for differing color histograms. However, 

staining errors are unlikely in laboratories that follow the quality control procedures 

recommended by the WHO.1 Descriptors for ‘Y’ or ‘T’ shaped bacillary conglomerations 

could be another future improvement. Extensive refinement and validation is planned.

Relevant to centers having few skilled technicians and high workload, our method could 

reduce TB diagnostic delays. High bacillary load images could be rapidly labeled for 

immediate analysis and images with few bacilli could be reviewed faster with color-labeling. 

Our technique could also potentially quantify TB bacilli in ZN smears for future use as a 

surrogate marker of prognosis or cure in TB patient follow-up and to evaluate new anti-

tuberculosis compounds. Program personnel and researchers could gainfully exploit the 

convenience and speed of automated processing to accurately and rapidly diagnose active 

TB worldwide.
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Figure 1. 
Flowchart showing the classification steps for automatic identification and labelling of 

bacilli in the ZN-stained digital images. ZN = Ziehl-Neelsen; TB = tuberculosis.
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Figure 2. 
Result of our automated method for labelling TB bacilli. In the left column are the original 

images and in the right column are the results of the automatic identification. Red objects are 

those detected by Bayesian segmentation but rejected as TB objects based on shape. Blue 

objects are those detected by Bayesian segmentation and by shape segmentation but have an 

incorrect size and are considered as ‘possible’ TB objects. Green objects are ‘definite’ TB 

objects that passed Bayesian segmentation, shape segmentation, and size analysis. TB = 

tuberculosis. This image can be viewed online in colour at http://www.ingentaconnect.com/

content/iuatld/ijtld
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