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Abstract

Purpose of Review—Advances in the field of monocyte and macrophage biology have 

dramatically changed our understanding of their role during homeostasis and inflammation. Here 

we review the role of these important innate immune effectors in the lung during inflammatory 

challenges including lung transplantation.

Recent Findings—Neutrophil extravasation into lung tissue and the alveolar space have been 

shown to be pathogenic during acute lung injury as well as primary graft dysfunction following 

lung transplantation. Recent advances in lung immunology have demonstrated the remarkable 

plasticity of both monocytes and macrophages and demonstrated their importance as mediators of 

neutrophil recruitment and transendothelial migration during inflammation.

Summary—Monocytes and macrophages are emerging as key players in mediating both the 

pathogen response and sterile lung inflammation, including that arising from barotrauma and 

ischemia-reperfusion injury. Ongoing studies will establish the mechanisms by which these 

monocytes and macrophages initiate a variety of immune response that lay the fundamental basis 

of injury response in the lung.
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Introduction

Monocytes and macrophages are members of the mononuclear phagocyte system, a 

component of innate immunity. Monocytes are bone marrow derived leukocytes that 

circulate in the blood and spleen. They are characterized by their ability to recognize 

“danger signals” via pattern recognition receptors. Monocytes can phagocytose and present 

antigens, secrete chemokines, and proliferate in response to infection and injury. Once 
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recruited to tissues, monocytes are capable of differentiating into macrophages and dendritic 

cells. Macrophages, on the other hand, are generally considered terminally differentiated 

cells that phagocytose pathogens or toxins, secrete chemokines to recruit other immune 

cells, and migrate to local lymph node beds via lymphatics where they present processed 

antigens. Here we will discuss the current understanding of monocyte and macrophage 

function in lung immunobiology based on animal and human studies. We will review their 

role in homeostasis and response to lung infection and tissue injury. Additionally, we will 

review their importance in lung transplantation with a focus on ischemia-reperfusion injury, 

primary graft dysfunction, and allograft rejection.

Monocytes and Macrophages in Lung Homeostasis

While once thought of as a lineage of cells with macrophages as the terminally differentiated 

cell in a progression from monocyte to macrophage, studies over the past twenty years have 

proven otherwise. Advances in our understanding of monocyte and macrophage biology 

have direct applications to the lung and maintenance of its homeostasis. Together, in a 

coordinated fashion, monocytes and macrophages survey the lung (Figure 1A).

Monocytes

Much of our knowledge about monocytes comes from studies using mouse tissues and 

human blood. In both humans and mice, monocytes can be subdivided into: (1) classical 

inflammatory monocytes that are Ly6ChighCCR2+ in mice and CD14+CD16−CCR2+ in 

humans; and (2) non-classical endothelial patrolling monocytes that are 

Ly6ClowCX3CR1high in mice and CD14dimCD16+CX3CR1high in humans (1). A third group 

of intermediate monocytes that are Ly6CintCX3CR1high in mice and 

CD14+CD16+CX3CR1high in humans have also been identified, but their specific role is 

incompletely characterized. It is likely that they have functions distinct from classical and 

non-classical monocytes (2).

Classical Monocytes

Classical monocytes are well-characterized. In response to infection or injury, they 

proliferate in the bone marrow, are released into circulation in a CCR2-dependent manner 

and home to the site of interest via a chemokine gradient (3). During bacterial infection, for 

example, these monocytes home to the site of infection and phagocytose pathogens, secrete a 

distinct set of chemokines that lead to recruitment of other immune cells, and present 

antigen via class II MHC (4). Murine studies have also revealed that these monocytes can 

exit the vasculature, and without further differentiating, survey the tissue microenvironment, 

before departing via the lymphatics (5). The spleen functions as a reservoir for monocytes. 

In response to signals emanating from a distant tissue injury, for instance release of 

angiotensin II during myocardial infarction, these cells can be mobilized to the site of injury 

from the spleen (6).

In the lung, these cells are capable of differentiating into pulmonary dendritic cells and 

macrophages. Utilizing a combination of fate-mapping techniques, parabionts, and 

fluorescent reporter murine studies, investigators have shown that Ly6Chigh classical 
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monocytes differentiated into both the CD11b+CD103− and CD11b−CD103+ dendritic cell 

subsets (7). In addition, these cells differentiate into macrophages when recruited to the lung 

and help replenish the tissue resident macrophage pool when depleted either by injury or 

through experimental manipulation (8).

Non-classical and Intermediate Monocytes

Non-classical endothelial patrolling monocytes were first reported in 2007 (9) and studies of 

their biology and function remain ongoing. These cells are likely the descendants of 

classical monocytes that have returned to the bone marrow and under the control of Nur77 

(Nr4a1) mature into non-classical monocytes (10). They display a distinct motility and 

crawling pattern. In vivo imaging studies have shown non-classical monocytes crawling 

along the luminal side of the endothelium. This integrin-dependent crawling is independent 

of the direction of blood flow. In fact, it is frequently against the direction of flow (11, 12). 

In the lung, non-classical monocytes are known to be capable of differentiating into 

CD11b+CD103− dendritic cells (7). Recent studies have further attempted to explore the role 

of these monocytes. Investigators have shown that non-classical monocytes are involved in 

intraluminal surveillance of the endothelium and phagocytosis of injured endothelium along 

with recruitment of neutrophils to the site of injury (13). In addition, these cells have also 

been shown to limit tumor metastases to the lung via the CX3CR1-CX3CL1 axis (14). 

Studies of human non-classical monocytes have shown that these monocytes sense nucleic 

acids and viruses via TLR7 signaling and can initiate the innate immune response by 

secreting cytokines (15). These monocytes can be mobilized from the marginalized vascular 

compartment during vigorous exercise, sepsis, and after cardiac surgery (16–18) and are 

depleted by high-dose glucocorticoid treatment (19, 20).

However, there are conflicting reports regarding the function of non-classical monocytes. 

Some studies suggest this population secretes pro-inflammatory cytokines, while others 

suggest they are anti-inflammatory and promote the resolution of inflammation and the 

initiation of healing and fibrosis (14). Difficulty differentiating non-classical monocytes 

from intermediate monocytes by cell surface marker expression may account for the 

conflicting reports regarding the function of these cells. In fact, as non-classical monocytes 

have become the subject of recent more intense investigation, it has become clear that there 

is a population of “intermediate” monocytes. Murine Ly6C and human CD14 are expressed 

in monocytes at high, intermediate, and low levels as a continuum, and intermediate levels of 

these surface markers along with expression of the cell surface marker 6-sulfo LacNac (slan) 

identify the intermediate monocyte subset. When studied as distinct populations, 

intermediate monocytes show higher expression of MHCII and are more closely related to 

classical than non-classical monocytes based on transcriptome analyses (21, 22).

Macrophages

Macrophages exist in tissues as sentinels, sensing pathogens and injury. While once thought 

of as being constantly replenished by circulating monocytes, murine studies over the past 

decade have revealed tissue-resident macrophages to be capable of self-renewal. These 
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include the Kupffer cells in the liver, red pulp macrophages in the spleen, Langerhans cells 

in the skin, cardiac-resident macrophages, and alveolar macrophages in the lung (23, 24).

Cardiac-resident and lung-resident macrophages have marked heterogeneity. A recent study 

identified distinct populations of cardiac macrophages, some of which were capable of self-

renewal, and others which were replenished by circulating monocytes (25). Similarly, in the 

lung, alveolar macrophages and lung-resident interstitial macrophages appear to be distinct 

populations with independent lineages (26). These populations, while heterogenous, appear 

capable of carrying out the functions traditionally considered to be of macrophages, 

including phagocytosis of pathogen, efferocytosis of injured host cells, secretion of 

cytokines upon activation, and migration via lymphatics to present antigen, initiating the 

adaptive immune response.

Macrophage activation occurs in two distinct varieties. The first is “classical” or “M1” 

activation, which leads to a pro-inflammatory phenotype. In response to extra- or intra-

cellular pathogens, M1 macrophages upregulate inducible nitric oxide synthase and secrete 

pro-inflammatory chemokines and cytokines via pattern recognition receptors. They also 

present antigen via MHC class II, initiating inflammation, recruitment of granulocytes, and a 

Type-1 helper T cell response. The second, “alternative” or “M2” activation is more varied 

in its phenotype. In response to IL-4 and IL-13 during allergy response or parasite infection, 

M2 macrophages secrete histamine and promote killing and encapsulation of parasites. 

Outside of the realm of pathogen response, M2-activated macrophages are capable of down-

regulating the initial inflammatory response and promoting the resolution of inflammation 

and initiation of tissue healing and fibrosis (27). Importantly, the M1/M2 classification of 

activation is likely too dichotomous in its characterization and the actual activation states of 

macrophages likely is better represented along a continuum in response to a variety of 

stimuli with responses ranging from pro-inflammatory to anti-inflammatory, demonstrating 

the remarkable plasticity of macrophages (28, 29).

Monocyte and Macrophage Responses to Mechanisms of Host Injury after 

Lung Transplant

Patients undergoing lung transplant are subject to a multitude of infectious and inflammatory 

insults. These include ischemia-reperfusion injury (IRI), mechanical ventilation, and 

infection by commensal and lung pathogens. Any of these insults can result in primary graft 

dysfunction (PGD), acute lung injury, and acute respiratory distress syndrome, depending on 

the etiology (Figure 1B through 1D). In the worst lung injury phenotypes, regardless of 

etiology, neutrophils infiltrate the alveolar space and neutrophil extracellular traps (NETS) 

are formed (30–33). When released, NETS are meant to help capture and facilitate removal 

of pathogens (34). However, when the inflammatory response becomes overwhelming, 

NETS can become pathogenic and contribute to the cycle of atelectrauma, ineffective gas 

exchange across the alveolar-capillary barrier, and respiratory failure. A review of 

neutrophils is beyond the scope of this review. However, it is important to understand their 

role in inflammation, as they are frequently the effector cells recruited by monocytes and 

Chiu and Bharat Page 4

Curr Opin Organ Transplant. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



macrophages. Infiltration of the lung by neutrophils and the presence of NETS are also 

frequently used as signs of severe lung injury.

Pathogen Response

Lung transplant recipients are particularly susceptible to pathogens. Long-standing lung 

disease is frequently complicated by prior infections, some frequent and with repeated 

hospitalizations. Long-standing or incompletely treated infections, in addition to donor-

acquired pathogens, immunosuppression, mechanical ventilation, and mandatory ICU stay, 

all place recipients at high risk of lung injury from pathogens.

Both monocytes and macrophages utilize pattern recognition-receptors to recognize 

pathogens and initiate their response. Classical monocytes are mobilized in response to 

bacterial, fungal, protozoal, and viral pathogens (35). On arrival to inflamed or infected 

tissue, they differentiate into either dendritic cells or macrophages. This distinction is not 

clear-cut, but rather based on cytokine profile and immunophenotyping. For example, in 

models of mouse colitis, Ly6Chigh monocytes are recruited to the intestine and give rise to 

CX3CR1+ dendritic cells which then phagocytose bacteria and transport them to mesenteric 

lymph nodes to induce T-cell response (36). The same circulating Ly6Chigh monocytes are 

capable of differentiating into TNF-α and inducible nitric oxide producing DCs or 

differentiate into macrophages which, depending on environmental cues, can either 

contribute to a pro-inflammatory milieu or resolution of inflammation (37, 38). Current 

guidelines recommend referring to these cells as simply “monocyte-derived cells” or 

MoDCs to avoid confusion, as the functions can overlap (39).

In another layer of complexity, non-classical monocytes are also recruited, albeit in a less 

robust fashion, in the initial response to inflammation. In the initial comprehensive report of 

their biology, they participated in the initial inflammatory response through the secretion of 

TNF and chemokines (9). Their response has been particularly well studied in response to 

circulating nucleic acids or viral infection via TLR7/8, endothelial injury via TLR7, or 

tumor metastasis control via CX3CR1 (14, 15). Altogether, the studies on non-classical 

monocytes portray a population that appears to be resident vascular endothelial 

macrophages.

Distinct from the intravascular monocyte are the resident alveolar macrophage. In the lung, 

alveolar macrophages serve as the “first responders” to pathogens, particulate matter, and 

tissue injury. Along with alveolar epithelial cells, they comprise the mucosal barrier of the 

lung. As a result, alveolar macrophages have been implicated in both inflammatory and 

fibrotic lung states. While depletion of alveolar macrophages has been shown to decrease 

lung injury, it is also associated with decreased pathogen clearance, demonstrating the 

crucial role for macrophages in host defense (40).

Ventilator-Induced Lung Injury

As all lung transplant recipients are mechanically ventilated during the post-operative 

period, and some for prolonged periods of time, we review here current knowledge of the 

contribution of monocytes and macrophages to mechanical ventilator-induced lung injury 
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(VILI). VILI has been well studied in animal models. The prevailing hypothesis is that the 

mechanical stress induced on the alveolar unit causes release of damage-associated 

molecular patterns (DAMPs), which can ligate toll-like receptors (TLRs), nucleotide-binding 

oligomerization domain-like receptors (NLRs) and the receptor for advanced glycosylation 

end products (RAGE). DAMPs can be recognized by both alveolar macrophages and 

monocytes and act downstream through several effector mechanisms.

Animal studies have shown that depletion of alveolar macrophages attenuates the severity of 

VILI (41). Mechanistic studies have revealed the response to be inflammasome-mediated, 

where the stretch injury causes NLR-containing pyrin domain 3 (NLRP3) activation and 

induces the release of IL-1β from alveolar macrophages (42–44). Additional studies showed 

alveolar macrophage high-mobility group box-1 (HMGB1) and possibly transient receptor 

potential vanilloid 4 (TRPV4) to be involved in neutrophil recruitment to the alveolar space 

and lung vascular permeability and lung edema (45–47). Human studies have correlated 

BAL levels of NLRP3 mRNA with short periods of high tidal volume ventilation (44).

An additional line of investigation has implicated lung-marginated monocytes in the 

pathophysiology of VILI. In these studies, classical monocytes were recruited to the lung 

during high tidal volume ventilation and depletion of these monocytes was protective against 

lung injury (48, 49). In a recent study, the mechanism of transduction of stretch injury to the 

lung was revealed to first involve pulmonary endothelium, then alveolar epithelium, and 

lastly alveolar macrophages (50). Together, the studies suggest that, in animal models, both 

pulmonary monocytes and macrophages mediate VILI.

Ischemia-Reperfusion Injury and Primary Graft Dysfunction

Ischemia-reperfusion injury is the sterile inflammation that results from the resumption of 

blood flow after the mandatory ischemic period during clinical lung transplantation. This 

total ischemia time period consists of cold ischemia, during which the organ is transported in 

cold storage; and warm ischemia, during which the organ is taken out of cold storage for 

implantation. The total ischemia for double lung transplantation is generally six hours or less 

in which each lung undergoes about 1–2 hours of warm ischemia. Warm ischemia has been 

studied using hilar clamping, during which either an isolated pulmonary artery or the entire 

pulmonary hilum is temporarily clamped for a time period of 30 minutes to two hours (51). 

This model of pulmonary IRI is associated with severe lung injury mediated by TLR and 

NLR inflammasome signaling. Cold ischemia and primary graft dysfunction have been 

studied using a murine single lung transplant model, with up to 18 hours of allograft cold 

ischemia time prior to implantation (52).

The majority of work to-date has focused on the role of the alveolar macrophage in IRI and 

PGD. Both IRI and PGD are characterized by early neutrophil infiltration of the alveolar 

spaces and recent studies have shown that this leads to the formation of neutrophil 

extracellular traps (NETs) and lung injury (33). Indeed, macrophage-induced early 

reperfusion injury and neutrophil recruitment has been postulated and verified by several 

groups using animal models of both warm and cold ischemia (53–57), but there is some 
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conflicting evidence as to whether depletion of alveolar macrophages is protective or 

injurious (58).

However, there is also evidence that implicates the involvement of monocytes in IRI. In one 

study utilizing intravital multiphoton microscopy of the lung and the murine lung transplant 

model, monocytes and neutrophils were found surveying the lung at steady-state. Four hours 

after allograft implantation, dynamic clusters of neutrophils associated with monocytes 

which were absent when blood monocytes were depleted, suggesting a role for monocyte-

mediated extravasation of neutrophils during inflammation (59). Furthermore, our recent 

data shows that depletion of intravascular monocytes utilizing clodronate-loaded liposomes 

in mice abrogates neutrophil extravasation at 24 hours after single-lung transplant 

(manuscript under preparation). We have found that there are pulmonary intravascular 

monocytes that mediate transendothelial migration of neutrophils in lung allografts, leading 

to PGD (60). Additionally, in a recent study of the leukocyte filter trap in an ex vivo lung 

perfusion (EVLP) circuit, human monocytes capable of differentiating into MoDCs were 

identified (61). Given the protective effect of EVLP against PGD, this finding may implicate 

monocytes as a critical player in the pathogenesis of PGD.

While alveolar macrophage and epithelial cell injury and dysfunction can cause lung injury, 

there is a component of endothelial dysfunction that has yet to be incorporated into current 

understanding of primary graft dysfunction pathogenesis. The endothelial dysfunction that 

occurs during IRI and PGD increases expression of cell adhesion molecules necessary for 

arrest of monocytes and neutrophils, implicating a possible role for classical monocytes. The 

injured endothelium also generates injurious reactive oxygen species and nitric oxide, and as 

non-classical monocytes are responsible for phagocytosis and disposal of injured or necrotic 

endothelial cells, their role in PGD and IRI is worth investigating.

Allograft Rejection

While primary graft dysfunction is a phenomenon of innate immunity, allograft rejection has 

traditionally been thought to be exclusively within the domain of adaptive immunity. 

However, there is a strong association between primary graft dysfunction and chronic 

allograft rejection (62) and few studies have been done to link the two entities. In one line of 

investigation, experimental depletion of monocytes in murine models of heart and kidney 

transplantation was shown to blunt T cell-mediated rejection (63). In another study of 

murine lung transplant, CD4 T cells isolated from allogeneic lung recipients lacking 

circulating classical monocytes were protected against allorecognition, but allografts still 

experienced acute rejection (64). Thus, evidence exists that monocytes and macrophages 

may link the innate and adaptive immune responses after transplantation, but further studies 

are necessary to fully elucidate these processes.

Conclusion

Monocytes and macrophages in the lung are crucial players in host innate immune defense 

against pathogens and processes of sterile inflammation involved in lung transplantation, 

including mechanical ventilation, ischemia-reperfusion, and primary graft dysfunction. A 
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link between monocytes, macrophages, and allograft rejection likely exists and should be 

further characterized. Further studies are needed to elucidate the role of monocytes and 

macrophages in the pathogenesis of primary graft dysfunction and lung allograft rejection.
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Key Points

1. Monocytes and macrophages in the lung are crucial players in host innate 

immune defense against pathogens.

2. Processes of sterile inflammation involved in lung transplantation, including 

mechanical ventilation, ischemia-reperfusion, and primary graft dysfunction 

have been shown to be monocyte and macrophage dependent.

3. Further studies are needed to elucidate the role of monocytes and macrophages 

in the pathogenesis of primary graft dysfunction and lung allograft rejection.
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Figure 1. 
Role of Lung Monocytes and Macrophages in Homeostasis, Bacterial Infection, Barotrauma, 

and Ischemia-Reperfusion Injury/PGD. (A) In homeostasis, lung non-classical monocytes 

patrol the endothelium, while classical monocytes survey the parenchyma. Classical 

monocytes can differentiate into interstitial macrophages or monocyte-derived dendritic 

cells, or remain undifferentiated while monitoring for infection or injury signals. Alveolar 

macrophages are resident in the lung, independent from monocytes and remain in the 

alveolar space. (B) During pathogen challenge in the alveolar space, alveolar macrophages 

are the first to be activated, releasing chemokines and cytokines which then recruit 

monocytes and neutrophils. Neutrophils, on arrival to the site of infection, are capable of 

degranulating and generating neutrophil extracellular traps in an effort to combat infection. 

(C) During mechanical ventilation, stretch-induced injury activates endothelium, alveolar 

macrophages, and epithelium, causing recruitment and activation of both classical and non-

classical monocytes and the recruitment of neutrophils. (D) During ischemia-reperfusion, 
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alveolar macrophages and monocytes become activated, recruiting neutrophils, and if the 

injury is severe enough, they can lead to primary graft dysfunction.
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