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Summary: The p-value is the most widely used statistical concept in biomedical research. Recently, there are 
controversies over its utility and over the possible relationship between p-value misuse and the relatively 
high proportion of published medical research that cannot be replicated. In this paper, we introduce the 
p-value in layman’s terms and explain its randomness and limitations. However, we also point out that the 
available alternatives to p-value suffer similar limitations. We conclude that using p values is a valid way to 
test the null and alternative hypotheses in clinical trials. However, using the p-value from a single statistical 
test to judge the scientific merit of a research project is a misuse of the p-value; the results of inference 
tests using p-values need to be integrated with secondary results and other data to arrive at clinically valid 
conclusions. Understanding the variability and limitations of the p-value is important for the interpretation 
of statistical results in research studies.  
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1. Introduction
In a typical study, such as a clinical trial, the investigators 
might be interested in the difference in a pre-selected 
primary endpoint between an innovative treatment 
and a placebo control (or a standard treatment) group. 
Motivated by preliminary evidence that the innovative 
treatment may potentially benefit patients, clinical trials 
aim to test this hypothesis rigorously. 

Before we prove that a new, experimental 
treatment works, we have to maintain equipoise for 
both treatment options in order to ethically conduct 
a trial. Equipoise means that there is no difference 
between the two treatments. This hypothesis is what 
we statistically refer to as the 'null hypothesis'. In 
addition to the null hypothesis, all clinical trials also 
have a working hypothesis that the experimental 
treatment will not only work, but also achieve clinically 
significant benefits. This hypothesis is often referred to 
as the alternative hypothesis.

Upon completion of a trial, we examine the trial 
data in order to determine which hypothesis – the null 
hypothesis or the alternative hypothesis – is supported. 

In 1925 Fisher[1] introduced null hypothesis significance 
testing (NHST) to objectively separate interesting 
findings from background noise. The NHST is the most 
widely used data analysis method in most scientific 
disciplines.[2] We look at the difference between the 
two treatments that we observe in the trial and ask 
ourselves: “What is the probability of observing a 
difference between the groups as large as the observed 
one (or larger) under the equipoise (null) hypothesis?”  
This probability is referred to as the ‘p-value’[3] or 
‘the significance probability.’ When this probability is 
sufficiently small, we are confident that the likelihood 
of no difference between treatments is very small and, 
thus, we conclude that the trial supports the alternative 
hypothesis (i.e., the working hypothesis that motivated 
the study). When the probability is larger, we have little 
evidence to support the alternative hypothesis, even 
though it may still be true. 

In statistical hypothesis testing, two types of errors 
can occur: false positives (i.e., the incorrect rejection of 
the null hypothesis) and false negatives (i.e., the failure 
to reject a false null hypothesis). The NHST approach 
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uses an arbitrary cutoff value (usually 0.05) to control 
the false-positive rate. Findings with p-values smaller 
than the cutoff value are described as ‘statistically 
significant’ or ‘positive,’ while findings with p-values 
equal to or larger than the cutoff are described as ‘non-
significant’ or ‘negative.’ 

2. The debate about p-values
The beauty of a p-value is that it combines both the 
signal (treatment difference) and noise (random 
variation of the estimated signal) into a single 
measure of the strength of the evidence provided 
by the trial data. Widely adopted in the scientific 
research community, p-values are considered the most 
influential and transformative statistical concept in 
modern science. However, despite their success, there 
is an emerging debate about whether or not the use 
of p-values is responsible for the frequent failure to 
replicate statistically significant scientific findings – a 
serious problem that limits the translation of clinical 
research into clinical practice. In their recent paper in 
Nature Methods, Halsey and colleagues[4] argued that: 

“the P-value is  often used without the 
realization that in most cases the statistical 
power of a study is too low for P to assist the 
interpretation of the data. … Researchers 
would do better to discard the P-value and 
use alternative statistical measures for data 
interpretation.” 

In accordance with this thinking, the editors of the 
journal Basic and Applied Social Psychology recently 
banned p-values and hypothesis testing from articles 
published in their journal.[5] 

In contrast to this view, we argue that the p-value 
alone cannot be blamed for the lack of repeatability 
of scientific research findings. The p-value is a one-
dimensional metric that measures the strength of 
evidence as a signal-to-noise ratio in one experiment. 
Like all statistics, the p-value is estimated from the 
data and, thus, is subject to random variations; so its 
confidence interval can be pretty wide, particularly 
when the original data are from a relatively small 
sample of data points. For example, based on the work 
of Lazzeroni and colleagues,[6,7] identical replication of 
a test with a reported one-sided p-value of 2.5% would 
have a 95% confidence interval for the p-value ranging 
from 0 to 79%. However, the width of this confidence 
interval can be narrowed by increasing the sample size 
of the replication experiment.

One common misuse of the p-value unrelated to 
the repeatability of research results is that it is often 
misinterpreted by clinicians and other persons who are 
not trained in statistics. The p-value, which assesses 
the probability a given result is due to chance, is often 
incorrectly interpreted as a measure of the strength 
of a relationship. For example, in clinical trials smaller 
p-values are incorrectly presumed to show a greater 

superiority of the experimental intervention compared 
to the intervention (if any) in the control group. 
However, a tiny, clinically-insignificant effect size can 
be associated with very low p-values if the sample size 
is quite large. Thus, a low p-value does not necessarily 
mean that a finding is of major clinical or biological 
interest. 

Several alternatives to p-values have been 
proposed, [8,9] including confidence intervals and 
Bayesian statistics. A confidence interval provides two-
dimensional information, the point estimate (signal) 
and the width of the confidence interval (noise), thus 
it can potentially be more informative than a p-value 
and should always be reported. However, confidence 
intervals are unit-dependent and, thus, are hard to 
compare between different studies. Additionally, 
decision rules about acceptance or rejection of the null 
hypothesis based on confidence intervals result in the 
same conclusion as decision rules based on p-value – 
whenever a 95% confidence interval excludes the null 
value of a parameter there is a corresponding p-value 
less than 0.05. The ‘Bayesian credible interval’ in 
Bayesian statistics, analogous to the confidence interval 
in frequency statistics, is another possible alternative 
to the p-value.[10] However both of these alternative 
methods can, like the p-value, result in false positives 
and false negatives when deciding to accept or reject 
a clinical hypothesis and can be incorrectly interpreted 
to represent the clinical or biological importance 
of the finding.

3. Banning p-values is not a solution for reproducible 
research

There are many stages to the design and analysis of a 
successful study, including data collection, processing, 
and analysis. The last of these steps is the calculation of 
an inferential statistic, such as a p-value, and application 
of a decision rule using this statistic (e.g., p<0.05) to 
accept or reject the hypothesis of interest. In the course 
of collecting and analyzing data, researchers have many 
decisions to make, such as how much data to collect, 
which observations to exclude, and which conditions 
to combine and compare.[11] These decisions made 
before the data analysis have a much greater impact on 
the validity of the final results than the decision about 
which inferential statistic to employ.[12] 

Simmons and colleagues [11] have shown that 
despite the nominal endorsement of a maximum 
false-positive rate of 5% (i.e., p<0.05), changes in a 
few data-analysis decisions can increase the false-
positive rate to 60% in a single study. To protect against 
the under-estimation of the false-positive rate, they 
recommend the full disclosure of all data-analysis 
decisions and the reporting of all relevant comparisons, 
not only the significant ones. A more rigorous method 
to reduce publications with false-positive results is 
recommended by Gelman and Loken:[13] it involves 
conducting all studies in two stages, the first being a 



Shanghai Archives of Psychiatry, 2015, Vol. 27, No. 6• 383 •

theory-based exploratory study and the second being a 
purely confirmatory study with its own pre-registered 
protocol that specifies in advance all the details of 
data processing and analysis. This approach allows for 
freedom and flexibility in the analysis while providing 
enough rigor to reduce the number of false positive 
results being published. It also helps distinguish the 
results of confirmatory analyses, which are reasonably 
robust, from the results of exploratory analyses, which 
should be treated with skepticism.[14] 

The incentives to publish only statistically significant  
(‘positive’) results has led to publication bias, a 
phenomenon in which studies with positive results are 
more likely to be published than studies with negative 
results. Publication bias is a serious problem that 
affects both the repeatability of research results and, 
perhaps more importantly, the correct interpretation 
and translation of published research results into clinical 
guidelines and health policies.[15] However, publication 
bias is primarily a problem of selective publication 
unrelated to the use of the p-value; the selective 
reporting of positive studies can also occur when other 
inferential statistics such as the Bayesian critical interval 
are used to test the null and alternative hypotheses.[16] 

Publication bias can be reduced not by banning p-values, 
but by applying higher standards and scientifically based 
review processes, and by encouraging the publication of 
well-designed and conducted ‘negative’ studies.

The lack of repeatability in research cannot be 
blamed on the use of p-values. As pointed out by Leek 
and Peng,[12] “ridding science of shoddy statistics will 
require scrutiny at every step, not merely the last one”. 
Clinical trial research is constructed from clearly defined 
null and alternative hypotheses, so the use of a p-value 
for hypothesis testing is appropriate. Banning p-values 
is not the solution to the low repeatability of scientific 
research findings.

So what is the main culprit that can explain poor 
repeatability of research findings? If we think of 
statistical decision-making as diagnostic tests of the 
scientific validity of the result generated using the 
data collected in a study, a p-value can be viewed 
as a lab test value (similar to a lab test to aid in the 
determination of a clinical diagnosis). In this analogy, 
one minus the p-value is the specificity of the ‘diagnostic 
test’, that is, the chance of accepting the null when 
there is no treatment effect. The statistical power is the 
sensitivity of the diagnostic test, the ability to correctly 
identify a true/valid hypothesis. However, if only a 
small proportion of studies undertaken have correct 
(true/valid) clinical hypotheses, the positive predictive 
value of the diagnostic/statistical test (i.e., the chance 
of the clinical hypothesis being true given a statistically 
significant test) would be low. For example, using a study 
design with a 5% Type I error rate (i.e., a 95% specificity) 
and an 80% power (sensitivity), when only 10% of the 
clinical hypotheses to be tested are true, the positive 

predictive value – the likelihood that a ‘statistically 
significant’ result is true – is merely 60% and would be 
even worse for designs with lower statistical power. 
Thus, banning p-values is not a solution for research that 
is based on questionable hypotheses. This concept was 
explained by Dr. Ioannidis[17] in 2005 in his famous article 
titled “Why most published research findings are false.” 
Science is an iterative learning process. There is no 
shortcut. As long as the proportion of true hypotheses 
is low among the studies undertaken or the statistical 
power of the undertaken studies is low (low sensitivity), 
the results are less likely to be repeatable. Garbage in 
garbage out!

To improve reproducibility of research findings, 
we must first rigorously apply scientific principles 
to generate well-defined and scientifically justified 
hypotheses. This requires thorough background 
research (often including systematic reviews) to develop 
protocols with a solid foundation, conducting pilot 
studies to prove concepts, using rigorous methods to 
objectively assess outcome measures, and properly 
sizing the clinical trials to ensure high statistical power 
(i.e., high sensitivity). Physicians do not diagnose 
a disease based on a single lab value; they rely on 
collective evidence that supports the diagnostic test. 
Similarly, the results of clinical trials and other medical 
research should not depend entirely on a single p-value 
for the primary endpoint; the consistency of the finding 
for the primary endpoint with supporting evidence from 
secondary endpoints and with other evidence should 
be taken into account. Finally, it is critically important 
to report study findings in an accurate, complete, 
and transparent way (e.g., using reporting guidelines, 
available at: http://www.equator-network.org) that 
makes it possible for readers who may wish to use or 
replicate the results to clearly understand the strengths 
and limitations of the study and the strengths and 
limitations of the statistical methods used to analyze the 
data generated by the study. 

4. Conclusion
In summary, the p-value is an acceptable inferential 
statistic to test hypotheses in clinical trial research. 
However, exclusively relying on a single p-value to 
judge the scientific merit of a study is a misuse of the 
p-value; study conclusions need to be based on a range 
of inter-related findings, not on a single statistical 
test. Understanding the limitations and variability of 
p-values is crucial to correctly interpreting trial results. 
Better background preparations for studies and the 
conduct of effective pilot studies before undertaking 
the main study are the most important steps that are 
needed to improve the validity and repeatability of 
scientific findings. Dropping the use of the p-value and 
of hypothesis testing due to their limitations is unlikely 
to have much effect on improving the repeatability of 
clinical trial research.
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概述：p 值是生物医学研究中使用最广泛的统计学概
念。最近，学界关于 p 值的效用以及 p 值的滥用与已
发表的医学研究无法重复性较差之间可能存在的关联
性有一些争论。在本文中，我们以通俗易懂的方法介
绍 p 值，并且解释它的随机性和局限性。然而，目前
提出其它能替代 p 值的概念也有同样的局限。我们得
出了如下的结论：对于检验临床试验的中的零假设 (null 
hypothesis) 和替代假设 (alternative hypothesis) 来说，
使用 p 值是一种有效的方法。然而，仅仅利用从某单
一统计检验所得出的 p 值来判断研究项目的科学价值

则是一种对 p 值的滥用；为得到可信的临床研究结果，
我们需要将利用 P 值得到的推断检验的结果与次要结
果以及其它数据进行整合。对于在研究中阐释统计结
果而言，了解 p 值的多样性和局限性是至关重要的。

关键词：p 值；统计推断；假设检验；统计显著性；
科学可重复性
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