
| INVESTIGATION

Probabilistic Multilocus Haplotype Reconstruction in
Outcrossing Tetraploids

Chaozhi Zheng,*,1 Roeland E. Voorrips,† Johannes Jansen,* Christine A. Hackett,‡ Julie Ho,§

and Marco C. A. M. Bink*
*Biometris and †Plant Breeding, Wageningen University and Research Centre, 6708 PB Wageningen, Netherlands,

‡Biomathematics and Statistics Scotland, Dundee DD2 5DA, Scotland, and §Forage Genetics International, Inc., Davis, California
95618-0505

ABSTRACT For both plant (e.g., potato) and animal (e.g., salmon) species, unveiling the genetic architecture of complex traits is key to
the genetic improvement of polyploids in agriculture. F1 progenies of a biparental cross are often used for quantitative trait loci (QTL)
mapping in outcrossing polyploids, where haplotype reconstruction by identifying the parental origins of marker alleles is necessary. In
this paper, we build a novel and integrated statistical framework for multilocus haplotype reconstruction in a full-sib tetraploid family
from biallelic marker dosage data collected from single-nucleotide polymorphism (SNP) arrays or next-generation sequencing technol-
ogy given a genetic linkage map. Compared to diploids, in tetraploids, additional complexity needs to be addressed, including double
reduction and possible preferential pairing of chromosomes. We divide haplotype reconstruction into two stages: parental linkage phasing
for reconstructing the most probable parental haplotypes and ancestral inference for probabilistically reconstructing the offspring haplo-
types conditional on the reconstructed parental haplotypes. The simulation studies and the application to real data from potato show that
the parental linkage phasing is robust to, and that the subsequent ancestral inference is accurate for, complex chromosome pairing
behaviors during meiosis, various marker segregation types, erroneous genetic maps except for long-range disturbances of marker ordering,
various amounts of offspring dosage errors (up to �20%), and various fractions of missing data in parents and offspring dosages.
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POLYPLOIDY occurs in some animals such as salmon but is
pervasive inplants, includingmany important crop species

such as potato (Solanum tuberosum) and alfalfa (Medicago
sativa). Understanding the genetic architecture of complex
traits in polyploids plays a fundamental role in their genetic
improvement. Numerous statistical methods have been de-
veloped for quantitative trait locus mapping in humans, ani-
mal, and plant species with diploid genomes. In contrast,
corresponding studies in polyploids are very few, although
an analogous linear model framework was introduced for tet-
raploid mapping populations at least 15 years ago (Xie and Xu
2000; Hackett et al. 2001).

In the linear (mixed) models for quantitative trait locus
mapping in diploid and polyploid species, the genetic compo-
nent of a quantitative trait requires the calculation of genetic
predictors(covariates),oftenexpressedas theprobabilities that
the alleles at putative quantitative trait loci (QTL) are derived
from particular parental chromosomes conditional on the ob-
servedgenotypicdataofmapping individualsand theirparents.
Thehaplotype reconstruction for calculating genetic predictors
in diploids has been well developed (Mott et al. 2000; Broman
et al. 2003; Liu et al. 2010; Zheng et al. 2015). The aim of this
work is haplotype reconstruction in a full-sib tetraploid family.

Compared to diploids, there are several challenges for
haplotype reconstruction in polyploids. First, traditional
marker systems such as dominant amplified fragment length
polymorphism (AFLP) and codominant simple sequence repea
(SSR) do not provide full information for a straightforward
estimation of the number of copies of each allele (dosage).
This is sobecauseeachscore(gelbandpattern)maycorrespond
to multiple allelic dosages, and some alleles may not be re-
vealed in a gel band pattern (the null alleles). However, new
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genotyping technologies, e.g., the Illumina Infiniumplatformand
sequencing-based methods such as genotyping-by-sequencing,
allow accurate estimation of the dosage of high-density single-
nucleotide polymorphisms (SNPs) throughout the genome
(Voorrips et al. 2011; Garcia et al. 2013; Hackett et al. 2013; Li
et al. 2014). We focus on analyzing the increasingly available
SNP dosage data.

Second, the pairing and segregation of chromosomes during
meiosis are more complex in polyploids than in diploids. Poly-
ploids are traditionally classified into allopolyploids and auto-
polyploids. Allopolyploids are derived fromhybridization of two
different species and subsequent chromosome doubling, and
thus homologous chromosomes aremore likely to pair together
than homeologous chromosomes (Sybenga 1994). However, in
autopolyploids, all the homologous chromosomes can pair dur-
ingmeiosis and form either random (nonpreferential) bivalents
or multivalents, leading to polysomic inheritance. To maximize
flexibility, we do not make a strict distinction between al-
lopolyploids and autopolyploids, so both preferential bivalent
pairing and quadrivalent pairing are possible a priori in tetra-
ploids. Quadrivalent pairing can lead to a phenomenon called
double reduction; i.e., corresponding parts of two sister chroma-
tids of a chromosome sort into the same gamete (Mather 1936).

Last but not least, the parents of a mapping population are
often outbred (not homozygous), which requires the crucial
reconstructionofparental linkagephasesacrossallSNPmarkers
within each linkage group. For traditional marker systems such
as AFLP and SSR in a full-sib tetraploid family, Luo et al. (2001)
developed a general expectation-maximization algorithm to
obtain the most likely phases for all pairs of markers and then
reconstructed the phase of the complete linkage group using a
heuristic algorithm. This procedure was extended to analyze
SNP dosage data (Hackett et al. 2013). However, this still re-
quires manual assignment of some SNP marker phases, and its
application to large data sets may be slow.

Our approach to haplotype reconstruction in outcrossing
tetraploids consists of multilocus parental linkage phasing and
subsequent ancestral inference fromSNPdosage data. It builds
on an integrated network modeling of tetraploid inheritance,
accounting for preferential bivalent and quadrivalent pairing.
Themultilocus linkagephasing is anautomaticmarker analysis
involving no manual manipulation of intermediate results.
Conditional ontheestimatedparental linkagephases, ancestral
inference is performed to calculate posterior genotype proba-
bilities at allmarker locations based onahiddenMarkovmodel
(HMM) derived from the networkmodel. Hackett et al. (2013)
developed a similar HMM, except that their model assumes
bivalent pairing and does not account for quadrivalent pairing.
Leach et al. (2010) developed multilocus autotetrasomic link-
age analysis using aHMM for traditional AFLP and SSRmarker
data conditional on marker ordering and parental linkage
phases; their method accounts for a mixture of random biva-
lent and quadrivalent pairing, and it also may be used for
ancestral inference in autotetraploids.

We assume a given genetic linkage map, i.e., the ordering
of SNP markers and the intermarker genetic distances, that

may be constructed from two-locus linkage analysis (Luo et al.
2001, 2006; Hackett et al. 2013). Specifically, for each linkage
group, the two-locus analysis produces the recombination frac-
tion and the LOD score for all pairs of markers, which can be
used to construct the map using, e.g., the least-squares pro-
cedure implemented in JoinMap software (Stam 1993).

To evaluate the robustness of our new haplotype recon-
struction method called TetraOrigin, we simulate many sce-
narios, including various chromosome pairing behaviors,
various marker segregation types, and erroneous genetic link-
age maps. We also study the impact of missing dosage data
among parents and offspring and the effects of errors in off-
spring dosage data. Then we apply TetraOrigin to real potato
data (Hackett et al. 2013). For both simulation studies and
application to real data, we compare TetraOrigin with the
methodology described in Hackett et al. (2013), henceforth
abbreviated to H2013.

Methods

The model overview

Considera full-sib tetraploid familywith twoparentsdenotedP1
and P2.Wemodel the genetic inheritance independently across
linkage groups and thus consider only one group. We label the
four homologous or homeologous chromosomes of parent P1 1,
2, 3, and 4, assuming that chromosomes I and II are homolo-
gous and that so are chromosomes III and IV. The four chro-
mosomes of parent P2 are similarly labeled 5, 6, 7, and 8. The
ordering of the two parents and the ordering of the four chro-
mosomes within a parent are otherwise arbitrary. Denote byDo

t
the dosage of offspring o ¼ 1; . . . ;No at locus t ¼ 1; . . . ;Nt and
Dp
t the dosage of parent p = P1, P2 at locus t. The ordering and

genetic locations of markers are assumed to be known, and all
the markers are biallelic.

An overviewof themodel for analyzing dosage dataDo
t and

Dp
t is shown in Figure 1. The offspring dosage data Do

t are not
independent across offspring, which provides information on
estimating the parental haplotype H ¼ fHtgNt

t¼1. Given the
parental haplotype and offspring o, the dosage data Do

t are
not independent across markers, which provides information
on estimating the chromosome pairing Vo when producing
offspring o. Denote this by V ¼ fVogNo

o¼1.
Conditional on the parental haplotype H and the chromo-

some pairing Vo, we model parental origins Xo
t along the four

chromosomes of offspring o by a discrete-time Markov chain.
The Markov chain can be described by an initial distribution
po
j ¼ PðXo

1 ¼ jÞ ¼ 1=Ns specifying the probability that the
parental origin Xo

1 at the first locus is at the jth state for
j ¼ 1; . . . ;Ns and an Ns 3Ns transition probability matrix
ToðtÞ specifying how the parental origin state changes from
locus t into the next. The state space of the Markov chain
depends on the chromosome pairing Vo, which will be de-
scribed in the following gamete and zygote models. For con-
venience, we specify Xo

t , Ht, and Vo by either their discrete
values or integer labels starting from 1.
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The data likelihood

Wefirst consider that there isnoerrorandnomissingdata in the
parental dosages. At a given locus t, the posterior probability
PðHtjDP1

t ;DP2
t Þ ¼ 1=Mt follows a discrete uniform distribution

over all possible Mt combinations of haplotypes compatible
with parental dosages. For example, the dosages for parents
P1 and P2 are 1 and 2, respectively. Then there are four possible
haplotypes for P1, 1000, 0100, 0010, and 0001, and six possi-
ble haplotypes for P2, 1100, 1010, 1001, 0110, 0101, and
0011, where we denote by 0 and 1 the two alleles at the locus,
and the dosage refers to the number of copies of allele 1. Thus,
Ht at this locus is one of theMt ¼ 24 possible combinations, e.g.,
ð1000;  1100Þ, at equal probability.

If a parent dosage is missing, we treat all five dosages as
equally probable with probability 1/5. When modeling errors
are seen in the parent dosages, we assume that each observed
dosage is the true dosage with probability 12 eF and that
all the other four possible dosages are equally probable with
probability eF=4. We denote pðHt ¼ iÞ ¼ PðHt ¼ ijDP1

t ;DP2
t ; eFÞ

after accounting for missing data and dosage error (the depen-
dence on parental dosages is not shown).

Let e be the error probability for the offspring dosage data
and the likelihood lijðDo

t Þ ¼ PðDo
t

��Ht ¼ i;Xo
t ¼ j; eÞ. For miss-

ing dosage data, we set the likelihood lijðDo
t Þ ¼ 1 conditional

on the pattern of missing data. We assume that the observed
dosage takes one of the other four possible dosages with
probability 1/4, given that an error occurs. Thus, it holds that
lijðDo

t Þ ¼ 12 e if the observed dosage Do
t is the same as the

dosage value that is derived from Ht ¼ i and Xo
t ¼ j and

lijðDo
t Þ ¼ e=4 otherwise.

The gamete model

Bivalent chromosome pairing: A gamete is produced from a
pair of bivalents in the tetraploid parent. For example, we

consider the bivalent formation in parent P1. Let the bracket
½c1c2� (c1 , c2) denote the bivalent formed between chromo-
somes c1; c2 ¼ I; . . . ; IV. After crossover between chromosomes
of the bivalent ½c1c2�, the resulting chromosome consists of mo-
saic blocks with the parental origins c1 and c2. We model the
parental origins along the resulting chromosome as a discrete-
time Markov chain. The parental origin at the first locus can be
equally c1 or c2. The transition probability matrix is given by

                                              c1                    c2

t½c1c2� ¼    
c1
c1

 

�
12 r r
r 12 r

�
     

where r is the known recombination frequency between two
loci, or it can be calculated from the genetic distance (e.g.,
Haldane mapping function).

The crossover events are assumed to occur independently
for the two bivalents when producing a diploid gamete. Thus,
the discrete-time Markov chain for the parental origins along
the two chromosomes can be derived easily. Let ½c1c2�½c3c4�
denote the two bivalent pairs, and it may take one of three
possible combinations, ½12�½34�, ½13�½24�, or ½14�½23�. The pa-
rental origin state at the first locus can be c1c3, c1c4, c2c3, or
c2c4, each with equal probability 1=4. The gamete transition
matrix is given by T½c1c2�½c3c4� ¼ t½c1c2�5t½c3c4�, a Kronecker prod-
uct between the transition matrices for the two bivalents.

Quadrivalent chromosome pairing: A gamete is produced
from a multivalent in the tetraploid parent, e.g., P1. The bi-
ological meiosis process of quadrivalent pairing is very com-
plicated, and the resulting gamete genotypes at two linked loci
depend on many factors, such as the configuration of the four
chromosomes and the locations of the two loci relative to the
centromere (e.g., Stift et al. 2010).We build a simple discrete-
time Markov chain for the parental origins along the two

Figure 1 The network model. Left panels refer to
the possible gametes produced by either bivalent
pairing or quadrivalent pairing in parent P1, where
the four homologous/homeologous chromosomes
are labeled by different colors. The right panel refers
to the directed acyclic graph of the model for No = 3
offspring at Nt = 3 marker loci, where the rectangles
denote known dosage data, the circles random vari-
ables, and the solid arrows probabilistic relationships
described in the Methods section. Conditional on the
chromosome pairings V ¼ fVogNo

o¼1, the network
model becomes a HMM along the chromosomes
with the latent variables being the parental haplo-
types fHtgNt

t¼1 and the parental origins fXo
t go¼1;...;No

t¼1;...;Nt
.

Haplotype Reconstruction in Tetraploids 121



chromosomes, aiming to account for the phenomenon of dou-
ble reduction resulting from quadrivalent pairing.

The parental origin process is assumed to be independent
along each of the two chromosomes within the gamete pro-
duced. Along one chromosome, the parental origin state at the
first locuscanbe1,2,3,or4,eachwithequalprobability1/4; the
transition matrix is given by

                                             1       2          3           4    

t½1234� ¼
1
2
3
4

2
664
12 r r=3 r=3 r=3
r=3 12 r r=3 r=3
r=3 r=3 12 r r=3
r=3 r=3 r=3 12 r

3
775

so theparentaloriginchanges intooneof theother threepossible
values with equal probability 1/3 given that a transition occurs
between the two loci with probability r. Along the two chromo-
somes of the diploid gamete, the parental origin state at the first
locus can be one of 16 phased genotypes with equal probability,
and the transition matrix is given by T½1234� ¼ t½1234�5t½1234�.

Among the 16 phased genotypes, there are four with
double reduction: 11, 22, 33, and 44. The prior probability
of double reduction is thus 1/4,which is also the highest value
given for the maximum possible double-reduction rate (Luo
et al. 2006); values of 1/6, 1/7, and 1/8 are also mentioned
(Mather 1935; Sybenga 1972; Voorrips and Maliepaard
2012). However, our prior probability will hardly affect an-
cestral inference when marker data are substantial.

The zygote model

The two gametes constituting a zygote are assumed to be
produced independently during meiosis. Let Vo ¼ ðVP1

o ;VP2
o Þ,

where Vp
o denotes the two bivalents or the quadrivalent

formed in parent p ¼ P1; P2 when producing offspring o. Let
pquad be the probability that a gamete is produced from quad-
rivalent formation and ppref be the extra probability of pairing
between homologous chromosomes with respect to that be-
tween homeologous chromosomes. Consider, e.g., a P1 gamete
that is produced via bivalent formation with probability
12 pquad, and the resulting pair of bivalents is ½12�½34�,
½13�½24�, and ½14�½23� with probabilities ppref þ ð12 pprefÞ=3,
ð12 pprefÞ=3, and ð12 pprefÞ=3, respectively, assuming that
½12�½34� is the preferred homologous pairing. For the bvModel,
we set a priori pquad ¼ 0 and ppref ¼ 0, so VP1

o or VP2
o can be

equally one of the three possible bivalent pairings; for the full-
Model, we set a priori pquad ¼ 1=4 and ppref ¼ 0, so VP1

o or VP2
o

can be equally one of the four possible chromosome pairings.
Consider, e.g., that offspring o is produced by bivalent

formations in both parents, with VP1
o ¼ ½c1c2�½c3c4� and

VP2
o ¼ ½c5c6�½c7c8�. Along the four chromosomes of offspring

o, the parental origin Xo
1 at the first locus can be equally one

of Ns ¼ 43 4 ¼ 16 possible combinations (e.g., c1c3c5c7).
The transition matrix is given by To ¼ T½c1c2�½c3c4�5T½c5c6�½c7c8�,
a Kronecker product between the gamete transition matrices.

If the P1 gamete is produced from a quadrivalent
formation, VP1

o ¼ ½1234�. The zygote transition matrix

To ¼ T½1234�5T½c5c6�½c7c8� and thus the parental origin Xo
1 can

be equally one of Ns ¼ 163 4 ¼ 64 possible states. Similarly
To ¼ T½c1c2�½c3c4�5T½5678� for the P2 gamete resulting from a
multivalent formation, where T½5678� is the same as T½1234�
except the state labels. If both gametes are produced from
a quadrivalent formation, there are Ns ¼ 163 16 ¼ 256
equally possible states, and To ¼ T½1234�5T½5678�.

Parental linkage phasing

Phasing algorithm:Weestimate the parental haplotypeH by
maximizing themarginal likelihood loglðHÞ ¼ PNo

o¼1ln PðDojHÞ,
where PðDojHÞ is the marginal likelihood for offspring o with
dosage data Do. In addition, we denote by PðVojDo;HÞ the pos-
terior probability of Vo for offspring o, which will be used in the
phasing algorithm. The calculation of PðDojHÞ and PðVojDo;HÞ
is described in the next section on ancestral inference. The max-
imization is an adaptation of the Metropolis algorithm (e.g.,
Gelman et al. 2004), where the acceptance always increases
the target function loglðHÞ. The algorithm proceeds as follows:

A0. Sample a starting parental haplotype H. To set an over-
dispersed starting point, we randomly sample Ht to be
one of Mt possible values compatible with the parental
dosages DP1

t and DP2
t , for t ¼ 1; . . . ;Nt.

A1. Sample Vo independently for offspring o ¼ 1; . . . ;No. Con-
ditional on H, set Vo that maximizes the posterior probability
PðVojDo;HÞ over all possible chromosome pairing values Vo.

A2. Sample a proposal H* and fXo
t go¼1;...;No

t¼1;...;Nt
from their pos-

terior distribution conditional on V ¼ fVogNo
o¼1, which will

be described in algorithms B and C.
A3. Calculate ratio ¼ eloglðH*Þ2loglðHÞ. If ratio.1, set H ¼ H*

and return to A1; if ratio ¼ 1, stop the algorithm, and if
ratio, 1, reject the proposal and return to A1.

Table 1 The 14 simulated scenarios classified into the three types

Type Data set

Marker
segregation

type
Preferential

pairing
Quadrivalent

pairing

A DStd-M Mixed 0 0
DPref-M Mixed 1/2 0
DQuad-M Mixed 0 2/3
DPrefQuad-M Mixed 1/2 1/2

B DStd-01 Nulliplex-simplex 0 0
DStd-02 Nulliplex-duplex 0 0
DStd-11 Simplex-simplex 0 0
DStd-12 Simplex-duplex 0 0
DStd-13 Simplex-triplex 0 0
DStd-22 Duplex -duplex 0 0

C DStd-M-V0.25 Mixed 0 0
DStd-M-V1 Mixed 0 0
DStd-M-Local Mixed 0 0
DStd-M-Long Mixed 0 0

For the mixed-segregation type, each parental allele at a SNP site is a dosage allele
with probability ½, so the expected relative proportions are 8, 6, 8, 24, 8, and 9 for
the types nulliplex-simplex, nulliplex-duplex, simplex-simplex, simplex-duplex, sim-
ple-triplex, and duplex-duplex, respectively. The nulliplex-simplex refers to the un-
ordered parental dosages 01, 03, 14, and 34 and so on for the other types. Note
that the type C data sets are derived from DStd-M by disturbing the genetic map.
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In addition, we stop a single phasing run of algorithm A if it
rejects in Cstuck consecutive iterations or it reaches the pre-
fixed maximum number of iterations Cit. By default, we set
Cstuck ¼ 10 and Cit ¼ 100 based on our simulation studies.

To find the globalmaximization, we performmultiple runs
of algorithm A and select the one with the largest target
function value. We repeat algorithm A until the largest
loglðHÞ among the so-far phasing runs has been obtained
Crep times including the current run or the number of runs
reaches the prefixed threshold Crun. By default, we set
Crep ¼ 3 and Crun ¼ 20 based on our simulation studies.

To increase computational efficiency, we exclude quad-
rivalent formations, so Vo can take only one of the nine
possible values. As shown in the simulated studies, the
phasing algorithm is very robust to the quadrivalent
inheritance.

Proposal sampling: To sample the parental haplotypes, we
first extend the forward algorithm (Rabiner 1989) to calcu-
late the marginal posterior probabilities of latent Ht and
fXo

t gNo
o¼1 at locus t, integrating out the previous parental hap-

lotypes fHt9gt21
t9¼1 and parental origins fXt9

ogo¼1;...;No
t9¼1;...;t21. Denote

by Vt ¼ fDt9
o;DP1

t9 ;D
P2
t9 gtt9¼1 the dosage data up to locus t.

For offspring o, we denote by ~ao
ijðtÞ ¼ PðVt;Xo

t ¼ jjHt ¼ i;VÞ
and ao

ijðtÞ ¼ PðXo
t ¼ jjHt ¼ i;Vt;VÞ, where ao

ijðtÞ ¼ ~ao
ijðtÞ=PNs

j¼1~a
o
ijðtÞ according to the Bayesian theorem (Gelman

et al. 2004). We denote by ~piðtÞ ¼ PðVt;Ht ¼ ijVÞ and
piðtÞ ¼ PðHt ¼ ijVt;VÞ, where piðtÞ ¼ ~piðtÞ=

PMt
i¼1~piðtÞ accord-

ing to the Bayesian theorem (Gelman et al. 2004). The algo-
rithm proceeds as follows:

B0. Initialize ~ao
ijð1Þ ¼ lijðDo

1Þpo
j , for o ¼ 1; . . . ;No,

i ¼ 1; . . . ;M1, and j ¼ 1; . . . ;Ns. Then calculate
~pið1Þ ¼ pðH1 ¼ iÞQNo

o¼1
PNs

j¼1~a
o
ijð1Þ. Remember that po

j is
the initial distribution for the discrete-time Markov chain
of offspring o and that pðHt ¼ iÞ is used as the prior

haplotype probability after accounting for the missing
data and errors in parental dosages. We obtain ao

ijð1Þ
and pið1Þ by normalizing ~ao

ijð1Þ and ~pið1Þ, respectively.
B1. For t ¼ 2; . . . ;Nt, compute

~ao
ijðtÞ ¼

XMt21

i9¼1

XNs

j9¼1

~pi9ðt2 1Þao
i9j9ðt2 1ÞTo

j9jðt2 1Þlij
�
Do
t
�

and

~piðtÞ ¼ pðHt ¼ iÞ
YNo

o¼1

XNs

j¼1

~ao
ijðtÞ

We obtain ao
ijðtÞ and piðtÞ by normalizing ~ao

ijðtÞ and ~piðtÞ,
respectively.

Based on the probabilities ao
ijðtÞ and piðtÞ calculated for-

wardly by algorithm B, we sample the parental haplotypes
and the parental origins backwardly:

C0. Sample HNt ¼ i from piðNtÞði ¼ 1; . . . ;MNtÞ; sample
Xo
Nt

¼ j from ao
ijðNtÞðj ¼ 1; . . . ;NsÞ independently for

o ¼ 1; . . . ;No, conditional on the haplotype HNt ¼ i.
C1. For t ¼ Nt 2 1; . . . ; 1,

i. Conditional on Xo
tþ1 ¼ j9, compute ~b

o
ijðtÞ ¼ ao

ijðtÞTo
jj9ðtÞ

and ~qiðtÞ ¼ piðtÞ
QNo

o¼1
PNs

j¼1
~b
o
ijðtÞ.

ii. Sample Ht ¼ i from the unnormalized probabilities
~qiðtÞði ¼ 1; . . . ;MtÞ.

iii. Conditional on Ht ¼ i, sample Xo
t ¼ j from the unnor-

malized probabilities ~b
o
ijðtÞðj ¼ 1; . . . ;NsÞ indepen-

dently for o ¼ 1; . . . ;No.

Ancestral inference

Let H be the parental haplotype estimated by the phasing
algorithm A or any given parental haplotype. Denote by Do

Table 2 Estimates of parental linkage phases

Data set

No = 10 No = 20 No = 100

Nt = 75 Nt = 300 Nt = 75 Nt = 300 Nt = 75 Nt = 300

DStd-M 6 (29.9)a 8 (0.0003) 0 0 0 0
DPref-M 56 (236.7) 4 (0) 0 0 0 0
DQuad-M 40 (24.6) 0 0 0 0 0
DPrefQuad-M 8 (214.9) 130 (55.5) 0 0 0 0
DStd-01 0 0 0 0 0 0
DStd-02 56 (0) 160 (0) 24 (0) 184 (0) 60 (0) 144 (0)
DStd-11 70 (2104.0) 0 0 0 0 0
DStd-12 4 (0.002) 16 (0.0001) 0 0 0 0
DStd-13 0 860 (0) 0 0 196 (0) 860 (0)
DStd-22 12 (0.001) 360 (0) 68 (0) 0 68 (0) 332 (0)
DStd-M-V0.25 0 8 (20.0003) 0 0 0 0
DStd-M-V1 54 (270.4) 4 (0) 0 0 0 0
DStd-M-Local 128 (275.3) 4 (0) 0 0 0 0
DStd-M-Long 106 (234.7) 98 (483.6) 30 (17.9) 56 (361.7) 6 (100.3) 36 (114.0)

Each cell gives the number of mismatched alleles between estimated and true parental haplotypes, where the value in parentheses is the log
likelihood given the estimated haplotypes minus that given the true haplotypes. For each of the 14 simulation scenarios (Table 1), six sub–data sets
are specified by the number No = 10, 20, and 100 offspring and the number Nt = 75 and 300 markers.
a For example, 6 is the number ofmismatched alleles out of the total 8Nt = 600 alleles, and29.9 is given by logl(estimateH)2 logl(trueH) (see the phasing algorithm).
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the dosage data for offspring o. For each of the 9 (bvModel)
or 16 (fullModel) possible values of Vo, we calculate the mar-
ginal likelihood PðDojH;VoÞ and the posterior probabil-
ity PðXo

t

��Do;H;VoÞ by integrating out the latent parental
origins fXo

t gNt
t¼1 using the forward-backward algorithm (Rabiner

1989) independently for o ¼ 1; . . . ;No.
Wedivide offspring into four possible types, 22, 24, 42, and

44, where the first digit denotes the bivalent (digit 2) or
quadrivalent (digit 4) formation in parent P1, and the second
digit, for parent P2. We set each offspring to the type with
the largest probability. For example, the posterior
probability P½typeðoÞ ¼ 22jDo;H� of offspring o being type
22 can be obtained by summing the posterior probability

PðVo ¼ kjDo;HÞ over 9 of the 16 possible values for bivalent
pairing. The posterior probability of the chromosome pairing
Vo is given by

PðVojDo;HÞ ¼ PðDojH;VoÞPðV0jHÞ
PðDojHÞ

where PðDojHÞ ¼
P

Vo
PðDojH;VoÞPðV0jHÞ according to the

law of total probability. Here the prior probability PðV0jHÞ
is assumed to be independent of parental haplotype H, and
it is determined by the preferential probability ppref and the
quadrivalent probability pquad. We have PðV0jHÞ ¼ 1=9 for
the bvModel and 1=16 for the fullModel.

Figure 2 Density dependencies of ancestral infer-
ence for the three types of the 14 simulation sce-
narios (Table 1). The y-axis is the wrongly assigned
probability, one minus the posterior probability of
being the true ancestral state, averaged over the
No = 200 offspring and all markers. The increasing
intermarker distances correspond to the numbers
of markers NT = 1200, 600, 300, 150, and 75 on a
120-cM chromosome, respectively. The symbols
connected by the solid lines denote the results
obtained from the fullModel and the dashed lines
from the bvModel. Except for DQuad-M, DPref-
Quad-M, DStd-M-Local, and DStd-M-Long, the re-
sults from the bvModel and the fullModel are the
same because all the offspring are identified as
being produced only by bivalent pairing in the full-
Model. In B, the results for DStd-11 and DStd-13
largely overlap with those for DStd-M.
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After assigning the chromosome pairing type for each
offspring, we obtain the final marginal posterior probability

P
�
Xo
t
��Do;H; typeðoÞ

�¼
X

k
P
�
Xo
t
��Do;H;Vo¼ k

�
PðVo¼ kjDo;HÞ

P½typeðoÞjDo;H�

where the summation is taken over all the possible chromo-
some pairing values that are compatible with the assigned
type. Note that the possible ancestral origin states depend on
Vo during the weighted summation.

Data availability

The TetraOrigin package has been implemented in Mathe-
matica 9.0 (Wolfram Research 2012) and is freely available
under the GNU General Public License from the website
https://github.com/chaozhi/TetraOrigin.git. The full data sets
for the 14 simulation scenarios and the real potato data extracted
from Hackett et al. (2013) are included in the package.

Results

Simulation experiments

We evaluate the performance and robustness of our method
on haplotype reconstruction by intensive simulation studies in
full-sib tetraploid families. We simulate 14 scenarios using
PedigreeSim v2.0 (Voorrips and Maliepaard 2012), differing
with respect to preferential and/or quadrivalent pairing,marker
segregation type, and accuracy of genetic maps (Table 1). We
simulate only one linkage group. The full data set of each sce-
nario consists of 200 offspring and 1200 SNPs randomly distrib-
uted along four homologous/homeologous chromosomes of
120 cM in length; the centromere is located at 40 cM.

The 14 scenarios can be divided into three types. Type A
has different combinations of preferential and quadrivalent

pairings. We denote by DStd-M the standard data set without
preferential pairing andwithout quadrivalent pairing, where -M
refers to the mixed segregation types owing to mixed parental
dosages. Type B has six scenarios with the data sets denoted by
DStd-st, where the segregation type st = 01, 02, 11, 12, 13, or
22 refers to the unordered dosages of two parents at each SNP
locus; the segregationswith the parental dosages 03, 14, 23, 24,
33, and 34 are equivalent to one of the preceding segregation
types by switching dosage alleles into nondosage alleles for
parents and offspring (see Table 1). Type C has four scenarios
for studying sensitivity to erroneous genetic maps, and they are
derived fromDStd-M by disturbing the intermarker distances or
the marker ordering while keeping the dosages unchanged. We
denote by -V0.25 (-V1) the disturbance of intermarker distances
by a gamma distribution with mean being the original distance
and variance being 0.25 (1), by -Local the disturbance ofmarker
ordering by partitioning chromosomes into segments of 10 con-
secutive markers and swapping two markers within each seg-
ment, and by -Long for each of the 10 pairs of markers being
chosen randomly within the same linkage group (not necessar-
ily within the same segment). We consider only one linkage
group for each simulation scenario and perform the distur-
bances independently for each sub–data set.

We carry out multilocus haplotype reconstruction for each
of the 14 scenarios using the network model illustrated in
Figure 1 and described in detail in the Methods section. The
haplotype reconstruction is divided into two stages: parental
linkage phasing and ancestral inference. For each stage, two
models can be used: bvModel, where only preferential or non-
preferential bivalent pairings are modeled, and fullModel,
where both bivalent and quadrivalent pairings are modeled.
We evaluate separately the results obtained from each stage.
In addition, we study the impact of missing data by analyzing
DStd-M with a given fraction of dosages regarded as missing
and the effects of dosage errors based on data sets derived

Figure 3 Estimation of double reduction along the
chromosomes obtained from DQuad-M (top pan-
els) and DPrefQuad-M (bottom panels). Each data
set has NO = 200 offspring and Nt = 75 markers.
The left panels are from the bvModel, and the right
panels are from the fullModel. The solid lines de-
note the estimations, the posterior probabilities of
double-reduction states averaged over the off-
spring at a given marker; the empty circles denote
the true values, the fractions of offspring being in
double-reduction states. The dashed lines denote
the wrongly assigned probabilities along the chro-
mosomes, one minus the posterior probability of
being the true ancestral state, averaged over all
offspring but not markers.
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from DStd-M by changing the correct dosage to another ran-
dom dosage in a specified fraction of data points.

Evaluation of parental linkage phasing

Totest the effect of sample size, for each fulldata set,weextract
six nested subsets with the number of offspring No = 10, 20,
and 100 and the number of markersNt = 75 and 300 obtained
by sampling every sixteenth and fourth of the 1200 markers,
respectively. For each subset, we perform phasing analysis us-
ing the bvModel because the fullModel is more computation-
ally intensive. Because the permutation of the four haplotypes
within each parent is arbitrary and nonidentifiable from dos-
age data, we label the ordering of the most probable parental
haplotypes obtained from the simulated data sets so that the
number of mismatches with their true (simulated) values
is minimized and keep the same labeling for real data where
the true values are not known. Table 2 shows the comparisons
of estimated parental haplotypes with their true values.

We first examine the phasing results for the sample sizes
No = 20 and 100. For the type A scenarios, the estimated
parental haplotypes match the true values, despite the pres-
ence of preferential and/or quadrivalent pairings. For the type
B scenarios, most of the estimations match the true values,
except for some segregation types such as st = 02, 13, and
22 (Table 2).Wemay obtain different mismatches if we repeat
the phasing analysis with random starting values, but these
estimations are always equivalent to their true values in terms
of marginal likelihood (Table 2). The mismatches are shown
in Supplemental Material, Figure S1, where the dosage and
nondosage alleles are switched at some markers for segrega-
tion type st = 02, but there is no clear pattern for st = 13 or 22.
For each of the type B scenarios, we repeated the phasing
analysis at least twice, and the segregation types st = 01, 11,
and 12 did not show such equivalent mismatches. For the type

C scenarios, the phasing analyses are robust to the noise of
intermarker distances and the local disturbance of marker or-
dering but not to long-range disturbances. In the latter case, the
marginal likelihoods for the estimated parental haplotypes are
larger than those for the true values, indicating that the phasing
analysis cannot be improved without jointly re-estimating the
marker ordering (Table 2).

For the smallest sample size No = 10, the parental phasing
varies with repeated analysis and thus is unreliable. This incon-
sistency of results may occur because many similar haplotypes
are indistinguishable based on the small data sets; the phasing
results are improvedwith highermarker density, as shownby the
larger likelihood values. However, there is no visible effect of
marker density for the larger sample sizes No = 20 and 100.

Furthermore, we evaluate the effect of missing data on
parental linkage phasing by using DStd-M with No = 200 and
Nt = 300. Dosages are assumed to be missing at random. We
perform phasing analysis for the missing fraction among two
parents being 0, 0.1, 0.2, 0.5, 0.75, and 1 and the missing
fraction among offspring being 0, 0.1, 0.2, 0.5, and 0.75. For
all 30 combinations of missing fractions, we successfully re-
cover the true parental haplotypes.

Evaluation of ancestral inference

For each simulated data set, we perform ancestral inference
(i.e., for each progeny individual we obtain its genetic compo-
sition in terms of parental homolog segments) and compare
this to their true compositions. To study the effects of marker
density, for each of the 14 full data sets we extract sub–data
sets by sampling every ithmarker for i ¼ 1, 2, 4, 8, and 16 such
that the marker subsets are nested and recursively reduced by
half; the average intermarker distance of 0.1 cM for the full
data set is doubled repeatedly until we reach 1.6 cM for the
smallest sub–data set.

Figure 4 The posterior haplotype probabilities for
two typical offspring. The top two panels show the
results obtained from DQuad-M using the bvMo-
del and the fullModel, respectively; the bottom
two panels, for the offspring from DPrefQuad-M.
The x-axis refers to the Nt = 75 SNP markers, and
the y-axis refers to the eight parental chromosomal
origins of two parents. The red stars denote the
true ancestral origins, and the gray levels denote
the haplotype probabilities, with white = 0 and
black =0.5; the haplotype probabilities at each
marker sum to 1. The black bands indicate the
double reduction where two copies of alleles have
the same parental origin.
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Figure 2 shows the effects of marker density on the
wrongly assigned probability for each of the 14 full data sets.
The wrongly assigned probability is given by one minus the
posterior probability of being the true ancestral state, aver-
aged over all markers and offspring. As expected, the wrongly
assigned probabilities increase roughly linearly with the aver-
age intermarker distances. Figure 2A shows that the effects of
density from the fullModel (solid lines) depend little on the
chromosome pairings; the wrongly assigned probabilities from
DQuad-MandDPrefQuad-Musing the bvModel (dashed lines)
are larger than those using the fullModel, and the excess
amounts approximate the average double-reduction probabil-
ities (Figure 3). Figure 2B shows that segregation types 01 and
02 are less informative for ancestral inference than other types.

Figure 2C shows the sensitivities of ancestral inference to
an erroneous genetic linkage map. The noises of intermarker
distances have little effect on the wrongly assigned probabil-
ities. The local disturbances of marker ordering almost dou-
ble the wrongly assigned probabilities, though they do not
affect the parental linkage phasing (Table 2). The long-
distance disturbances have the greatest deleterious effects
on ancestral inference because they also deteriorate the phas-
ing accuracy (Table 2). For both the local and long-distance
disturbances of marker ordering, the wrongly assigned prob-
abilities obtained from the fullModel are slightly larger than
those from the bvModel, probably because for some offspring
quadrivalents are wrongly assigned (Figure S2).

Figure 3 shows the estimations of double reduction along
chromosomes obtained from DQuad-M and DPrefQuad-M us-
ing both the bvModel and the fullModel. For both data sets, the
true double-reduction probabilities are zero at the centromere
and increase toward the telomeres. Because the bvModel does
not allow double reduction, the wrongly assigned probabilities
along chromosomes are positively correlated with the true
double-reduction fractions (Figure 3, A and B). In contrast,
the fullModel estimates the double reduction very well,
and thus the wrongly assigned probabilities are small and
uncorrelated with the true double-reduction fractions along
chromosomes (Figure 3, C and D); the wrongly assigned prob-
abilities are relatively large at the chromosomal ends because
the marker information is available only from one side.

Figure 4 shows the posterior haplotype probabilities along
the chromosomes for two offspring, one from each of DQuad-
M and DPrefQuad-M. The haplotype probability refers to the
probability of each allele at a locus being one of the eight
parental origins of the two parents. The gradual changes of
gray levels around the recombination breakpoints indicate
the large uncertainties of identifying the true ancestral states
there. Both the bvModel and the fullModel estimate the pa-
rental origins very well in the chromosomal region without
double reduction. The fullModel successfully identifies the
true double-reduction states on the right end of chromo-
somes (Figure 4), while the bvModel identifies parental ori-
gins correctly for only two or three of four alleles at a locus.
Figure S2 shows similar results from the posterior genotype
probabilities along the chromosomes.

Effects of dosage errors

To evaluate the effects of dosage errors, we analyze the data sets
derived fromDStd-Mbycombining twomarkerdensitiesNt=150
and 1200 and seven dosage error probabilities e = 0, 0.01, 0.05,
0.1, 0.2, 0.3, and 0.5. All the No = 200 offspring are included.
Each derived data set is obtained by applying errors to offspring
dosages using the dosage error model described in the Methods
section.Wedonot apply errors onparental dosages partlybecause
of the intensive computational load but mainly because these
errorsmight be detectable in real data based on offspring dosages.
We use the true dosage error probabilities and the bvModel in the
following phasing analysis and ancestral inference.

Table S1 shows the results of the estimated parental link-
age phases. The true parental haplotypes are successfully re-
covered from the sparse marker data sets with e # 0.2 and
from the dense marker data sets with e # 0.3. For the data
sets with large dosage error probability, the phasing algo-
rithm failed to find the global maximization when the num-
ber of phasing runs reached the default threshold Crun ¼ 20.

Figure 5 shows the effects of offspring dosage errors on
ancestral inference conditional on true parental haplotypes.
The wrongly assigned probability increases nonlinearly with
the offspring dosage error probability: the dosage errors have
very little effect on ancestral inference for the data sets with
dosage error probability less than �0.2.

Comparisons using simulated data

Wecompare the performanceof TetraOriginwithH2013 (Hackett
et al. 2013) using the simulated data sets. For H2013, the parental
linkage phasing involves heuristic algorithms for placing nonsim-
plex markers with respect to the phased framework of simplex
markers (segregation type01)andsubsequentmanualassignment
for the remaining markers. Because only a few simplex markers
are available for small simulated data sets and extensive manual
work is required for large data sets, we perform the comparisons
on ancestral inference but not on parental linkage phasing.

Table 3 shows the comparisons of ancestral inferences con-
ditional on the true parental haplotypes, where H2013 cannot

Figure 5 Effect of offspring dosage error on ancestral inference, condi-
tional on true parental linkage phases. The filled (open) circles refer to the
derived DStd-M with the number No = 200 offspring and the number
Nt = 1200 (Nt = 50) SNP markers.
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be applied toDQuad-M andDPrefQuad-M. Except for DStd-M-
Long, the wrongly assigned probabilities for the sparse marker
data (Nt = 75) using H2013 are around two times larger than
those using TetraOrigin and 1.5 times larger than the dense
marker data (Nt = 300). As shown in Table S2, the differences
become smaller when the estimations are compared in terms
of thewrongly called probability. Here thewrongly called prob-
ability is given by one minus the fraction of the calls being the
true states, where the calls are determined by the ancestral
states with the maximum posterior probabilities. Consistently,
Figure S3 shows that the posterior genotype probabilities along
the chromosomes obtained from H2013 are noisier than those
from TetraOrigin.

Table 3 and Table S2 indicate that TetraOrigin extracts
more information from marker data than H2013. As a result,
for DStd-M-Long, TetraOrigin performs generally a bit worse
than H2013, indicating that TetraOrigin is more sensitive to
the long-range disturbances of marker ordering.

Comparisons using real potato data

We evaluate TetraOrigin by using real SNP dosage data from
potato (Hackett et al. 2013) for a comparison of results with
H2013. For the potato mapping population of parents and
190 offspring, 1093 of the 5378 polymorphic SNPs are
assigned to the constructed genetic map of 12 chromosomes
(Hackett et al. 2013). We set the dosage error probability to
be 0.01 for the dosage data, assuming no dosage error for the
two parents. We analyze each chromosome (linkage group)
independently.

Table 4 shows the comparisons for each of the 12 chromo-
somes between TetraOrigin (bvModel) and H2013. The pa-
rental haplotypes estimated by the twomethods are the same
for seven chromosomes, and for the other chromosomes,
there are a few mismatches mainly around the telomeres
(Figure S4). The haplotypes estimated by TetraOrigin are
strongly supported in terms of marginal likelihood (Table 4).

We perform ancestral inference by TetraOrigin (bvModel)
andH2013,conditionalontheirestimatedparentalhaplotypes.
We call the ancestral states at all themarkers for each offspring
by their maximum posterior probabilities and calculate the
fractionof consistent calls between the twomethods. As shown
in Table 4, on average, 86% of the calls are consistent, while,
of course, the true ancestral states are unknown.

Figure 6 (A–C) shows the genome-wide posterior geno-
type probabilities for a typical offspring obtained by H2013
and TetraOrigin (bvModel and fullModel). Consistent with
the simulation studies (Figure S3), the results from H2013
are noisier than those from TetraOrigin. For example, the an-
cestral states around 600 cM (chromosome VII) and 980 cM
(chromosome XI) are more likely to be identified unambigu-
ously in TetraOrigin. The results from TetraOrigin (fullModel)
are different from those from TetraOrigin (bvModel) only
for chromosomes I, III, and IV (Figure 6C). The results from
TetraOrigin (fullModel) indicate double-reduction segments
on the right ends of chromosomes I and III, while the tiny
double-reduction segment around the middle of chromosome
IV (�330 cM) is likely to be artifactual.

Figure 6D shows the maximum posterior genotype prob-
abilities along the chromosomes averaged over the 190 off-
spring. The probabilities obtained from TetraOrigin are much
larger than those from H2013. TetraOrigin (fullModel) indi-
cates that the average double-reduction probability is around
0.04, larger than the estimate based only on a subset ofmarkers
of a different potato mapping population (Bourke et al. 2015).
As expected, double reduction occurs more frequently at the
telomeres than near the centromere (Figure 6D).

Discussion

We have developed a novel statistical framework for multi-
locushaplotype reconstruction inoutcrossing tetraploids from
SNP dosage data, where the two-stage implementation of

Table 3 Comparisons of ancestral inference between TetraOrigin and H2013 for the 14 simulation scenarios (Table 1)

Data set

No = 100, Nt = 75 No = 100, Nt = 300

TetraOrigin
(bvModel)

TetraOrigin
(fullModel) H2013

TetraOrigin
(bvModel)

TetraOrigin
(fullModel) H2013

DStd-M 0.061 0.061 0.144 0.015 0.015 0.023
DPref-M 0.060 0.060 0.136 0.014 0.014 0.022
DQuad-M 0.164 0.062 N/A 0.122 0.012 N/A
DPrefQuad-M 0.146 0.065 N/A 0.101 0.013 N/A
DStd-01 0.157 0.157 0.329 0.038 0.038 0.053
DStd-02 0.126 0.126 0.222 0.027 0.027 0.036
DStd-11 0.059 0.059 0.149 0.013 0.013 0.022
DStd-12 0.043 0.043 0.114 0.011 0.011 0.018
DStd-13 0.060 0.060 0.158 0.014 0.014 0.023
DStd-22 0.042 0.043 0.098 0.008 0.008 0.016
DStd-M-V0.25 0.064 0.064 0.148 0.014 0.014 0.021
DStd-M-V1 0.067 0.067 0.155 0.015 0.015 0.025
DStd-M-Local 0.100 0.101 0.171 0.020 0.020 0.026
DStd-M-Long 0.222 0.229 0.287 0.097 0.107 0.066

For each scenario, two sub–data sets are specified by the number No = 100 offspring and the number Nt = 75 or 300 markers. Each cell gives the
wrongly assigned probability conditional on the true parental haplotypes. The DQuad-M and DPrefQuad-M data sets could not be analyzed with
H2013.
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parental linkage phasing and ancestral inference is built on
an integrated network model of tetraploid inheritance in
TetraOrigin. Simulation studies demonstrate that the new
haplotype reconstruction is robust to preferential bivalent and
quadrivalent pairing during meiosis, to the six marker segre-
gation types, to erroneous genetic maps (except in the case of
long-range disturbances in marker ordering), and to the
various fractions of missing data in parents and offspring
dosages.

We have compared the performance of TetraOrigin and the
methodology described in Hackett et al. (2013), H2013. For
ancestral inference, H2013 cannot be applied to data sets with
quadrivalent pairings, and otherwise, the results are noisier
than those from TetraOrigin. For parental linkage phasing,
H2013 uses a heuristicmultilocus algorithmand requiresman-
ual manipulation of intermediate results, and thus, it is less
accurate and more time-consuming than TetraOrigin, which
uses a fully probabilistic multilocus algorithm (Table 4). In
addition, the algorithm for phase reconstruction by H2013
starts from a framework of simplex SNPs and thus has poten-
tial difficulties in analyzing data sets with a limited number of
simplex SNPs, although this has not been a problem in practice
(C. Hackett, personal communication).

Modeling quadrivalent pairing has been a theoretically
challenging topic in quantitative genetics, and most studies
have been built on the pioneering work of Fisher (1947) and
Mather (1936). Fisher (1947) proposed a conceptual two-
locus tetrasomic model where all 136 gamete genotypes
are classified into 11 modes of gamete formation according
to the occurrence of double-reduction and recombination
events between two loci. Luo et al. (2004) established a de-
terministic relationship between the coefficient of double re-
duction at two linked loci and the recombination fraction
between them, which subsequently has been applied to
two- and multilocus linkage analysis (Luo et al. 2006; Leach
et al. 2010).

In contrast to Leach et al. (2010), we have built a simpler
model of quadrivalent pairing, assuming that the ances-
tral origins along a chromosome follow a time-homogeneous
Markov chain independently between two homologous
(homeologous) chromosomes of a diploid gamete. Remark-
ably, our nonmechanistic model produces very good estima-
tions of double reduction (Figure 3), indicating that the
marker data (200 offspring and 75 markers within the link-
age group) provide enough information on double reduction.
Also, the accurate estimation may be due to the equivalence

between the transition probability matrix of gamete genotypes
in our model and that derived by Leach et al. (2010) based on
the 136 two-locus gamete genotypes, although the transition in
our model refers to the 16 phased (ordered) genotypes from
one locus to the next, instead of the 10 unphased genotypes in
Leach et al. (2010).

The simulation studies showthat thehaplotype reconstruc-
tion is not sensitive to intermarker distances, indicating that
the assumption of no genetic interference is not critical and
that improving the accuracy of the intermarker distances by
multilocus linkage analysis may be of marginal value to
haplotype reconstruction and thus to QTL mapping. We have
also assumed implicitly that there is no selection and thus no
segregation distortion. This assumption is used as a prior in
TetraOrigin, and the calculated posterior probabilities of
parental origins may contain segregation distortion informa-
tion passed from marker data when parent and offspring
dosages are known in distortion regions. However, if parental
dosage information is missing in regions with distorted seg-
regation, that might result in incorrect estimation of parental
origin and QTL mapping.

TetraOrigin is very capable of handling missing data and
dosage errors in parents and offspring. However, accounting
for possible dosage errors in parents results in a more than
10-fold reduction in the computational speed of parental
linkage phasing because the total number of phases over all
the possible dosages per locus increases dramatically. For
example, for DStd-M with 200 offspring and 300 markers,
the running times on a standard desktop are around 10 and
144 min for the missing fractions of parental dosages being
0 and 1, respectively, assuming no parental dosage error.
When accounting for parental dosage error, the running time
for the missing fraction 0 of parental dosages would be
similar to that for the missing fraction 1. Thus, it is advan-
tageous to perform quality control of parental dosages based
on offspring dosages. Accounting for dosage error in the
offspring imposes no such computational cost, and error
rates of up to 20% in sparse data sets and 30% in dense data
sets are handled well (Figure 5). This flexibility may be
pertinent to genotyping-by-sequencing data; in particular,
relatively low genome coverage typically results in higher
error frequency.

The nulliplex-simplex and nulliplex-duplex segregation
types are the least informative for ancestral inference, yet these
markers, along with simplex-simplex markers, have been used
most commonly in mapping studies. If this is the case here, a

Table 4 Comparisons between TetraOrigin (bvModel) and H2013 obtained from the real potato data

Chromosome: I II III IV V VI VII VIII IX X XI XII

No. of SNPs: 142 120 74 152 119 122 89 85 91 104 85 118
No. of mismatchesa: 0 0 6 0 0 0 0 0 6 12 6 4
Dloglb: 0 0 164.4 0 0 0 0 0 21.4 1248.4 227.7 309.3
Consistencyc: 0.91 0.91 0.84 0.88 0.93 0.88 0.91 0.90 0.72 0.86 0.70 0.92
a The number of mismatches between the parental haplotypes estimated from TetraOrigin and those from H2013.
b The log likelihood given the TetraOrigin estimated parental haplotypes minus that given the H2013 estimated parental haplotypes.
c The fraction of ancestral states called by their maximum posterior probabilities that are consistent between two methods.
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lack of informative markers on the genetic map may limit the
accuracy of estimation by our proposed method. However, if a
genome sequence is available, the unmappedmarkers stillmay
be roughly positioned. More important, current approaches in
tetraploid species use most or all marker types (Hackett et al.
2013).

The networkmodel can, in principle, be applied to higher,
even-ploidy levels, but we would need to improve the phas-
ing algorithm for computational efficiency. For example, the
number of possible bivalent pairings in a tetraploid parent is
3, which increases to 15 for hexaploids and to 105 for
octoploids. Thus, the number of combinations of bivalent
pairings in two parents increases from 32 for tetraploids, to
152 for hexaploids, and to 1052 for octoploids. As a result,
we cannot simply perform the maximization step with re-
spect to all the possible combinations of bivalent pairings, at
least for octoploid or higher polyploid species. At the tetra-
ploid level, the rigorous framework of TetraOrigin yields
accurate posterior genotype probabilities that are needed

for downstream QTL analysis in outcrossing tetraploids,
even in the absence of parental dosage information.
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Table S1 Similar to Table 3 but each cell gives the wrongly called probability instead of the wrongly assigned 

probability.  

Dataset 𝑁𝑂 = 100, 𝑁𝑇 = 75 𝑁𝑂 = 100, 𝑁𝑇 = 300
TetraOrigin 

(bvModel) 

TetraOrigin 

(fullModel) 

H2013 TetraOrigin 

(bvModel) 

TetraOrigin 

(fullModel) 

H2013 

DStd-M 0.044 0.044 0.059 0.012 0.012 0.017 

DPref-M 0.045 0.045 0.059 0.012 0.012 0.016 

DQuad-M 0.150 0.046 N/A 0.120 0.009 N/A 

DPrefQuad-M 0.131 0.048 N/A 0.098 0.010 N/A 

DStd-01 0.110 0.110 0.124 0.028 0.028 0.033 

DStd-02 0.092 0.092 0.108 0.020 0.020 0.024 

DStd-11 0.043 0.043 0.059 0.010 0.010 0.016 

DStd-12 0.031 0.031 0.047 0.008 0.008 0.015 

DStd-13 0.044 0.044 0.061 0.010 0.010 0.017 

DStd-22 0.034 0.034 0.053 0.007 0.007 0.013 

DStd-M-V0.25 0.049 0.049 0.066 0.011 0.011 0.014 

DStd-M-V1 0.054 0.054 0.075 0.013 0.013 0.018 

DStd-M-Local 0.081 0.083 0.082 0.016 0.016 0.020 

DStd-M-Long 0.200 0.205 0.166 0.067 0.081 0.054 



 

Table S2 Estimations of parental linkage phases for DStd-M after applying various amounts of errors on 

offspring dosages. Each cell gives the number of mismatched alleles between estimated and true parental 

haplotypes, where the value in parentheses is the log likelihood given the estimated haplotypes minus that given 

the true haplotypes. The sparse (or dense) datasets are specified by the number 𝑁𝑂 = 200 of offspring and the 

number 𝑁𝑇 = 150 (or 1200) of markers.  

Dosage error probability 

ε 
NO = 200, NT = 150 NO = 200, NT = 1200 

0 0 0 

0.01 0 0 

0.05 0 0 

0.1 0 0 

0.2 0 0 

0.3 78 (-992.11) 0 

0.5 426 (-79.04) 3456 (-3575.14) 
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