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ABSTRACT Detecting the molecular basis of adaptation is one of the major questions in population genetics. With the advance in
sequencing technologies, nearly complete interrogation of genome-wide polymorphisms in multiple populations is becoming feasible
in some species, with the expectation that it will extend quickly to new ones. Here, we investigate the advantages of sequencing for
the detection of adaptive loci in multiple populations, exploiting a recently published data set in cattle (Bos taurus). We used two
different approaches to detect statistically significant signals of positive selection: a within-population approach aimed at identifying
hard selective sweeps and a population-differentiation approach that can capture other selection events such as soft or incomplete
sweeps. We show that the two methods are complementary in that they indeed capture different kinds of selection signatures. Our
study confirmed some of the well-known adaptive loci in cattle (e.g., MC1R, KIT, GHR, PLAG1, NCAPG/LCORL) and detected some
new ones (e.g., ARL15, PRLR, CYP19A1, PPM1L). Compared to genome scans based on medium- or high-density SNP data, we found
that sequencing offered an increased detection power and a higher resolution in the localization of selection signatures. In several
cases, we could even pinpoint the underlying causal adaptive mutation or at least a very small number of possible candidates (e.g.,
MC1R, PLAG1). Our results on these candidates suggest that a vast majority of adaptive mutations are likely to be regulatory rather
than protein-coding variants.
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DETECTING the molecular basis of adaptation in natural
species is one of the major questions in population

genetics. With the spectacular progress of genotyping and
sequencing technologies, genome-wide scans for positive
selection have been performed in multiple species and pop-
ulations within the last decade. Livestock species provide a
considerable resource for these selection scans, because they
have been subjected to strong artificial selection since their
initial domestication, leading to a large variety of breeds with
distinct morphology, coat color, or specialized production. In

addition, the economic value of these species and the need to
improve themhasmotivated thedevelopmentof standardized
single-nucleotide polymorphism (SNP) chips and the geno-
typing of millions of animals using these chips, providing
considerable data for population genetics analyses. For in-
stance, in taurine cattle, at least 21genomic scans for selection
have already been published andwere reviewed in Gutierrez-
Gil et al. (2015). Numerous genomic scans for selection have
also been published in other livestock species; see de Simoni
Gouveia et al. (2014) for a review.

The regions detected by these studies are generally con-
vincing, because they contain interesting positional and func-
tional candidate genes (e.g., Fariello et al. 2014) and/or are
statistically enriched with genes from regulation pathways
related to production traits (e.g., Flori et al. 2009). Neverthe-
less, these regions often span several megabases and typically
include up to tens of genes, so determining the exact gene(s)

Copyright © 2016 by the Genetics Society of America
doi: 10.1534/genetics.115.181594
Manuscript received August 18, 2015; accepted for publication March 3, 2016;
published Early Online March 24, 2016.
Supplemental material is available online at http://www.genetics.org/cgi/data/
genetics.115.181594/DC1.
1Corresponding author: INRA GABI, Domaine de Vilvert, 78352 Jouy-en-Josas, France.
E-mail: simon.boitard@toulouse.inra.fr

Genetics, Vol. 203, 433–450 May 2016 433

http://www.genetics.org/cgi/data/genetics.115.181594/DC1
http://www.genetics.org/cgi/data/genetics.115.181594/DC1
mailto:simon.boitard@toulouse.inra.fr


under selection in each region, and even more the causal
mutation(s), remains difficult from these studies. This might
change with the recent advent of next-generation sequencing
(NGS) technologies, which allow one to characterize a very
large proportion of the variants in the genome of a species.
However, although several examples of genomic scans for
selection based on large sequencing samples are already
available in livestock species such as pig (Rubin et al. 2012;
Li et al. 2013), cattle (Qanbari et al. 2014), or chicken (Rubin
et al. 2010; Roux et al. 2015), the advantage of using se-
quencing data for detecting selection signatures has still
not been widely discussed.

Another interesting question is the small overlap observed
between studies, even when these studies focus on similar
populations (Biswas and Akey 2006; Qanbari et al. 2011).
This can largely be explained by the fact that many different
detection methods have been applied, whose sensitivity de-
pends on the type of selection event: recent or old, complete
or ongoing, from a new variant (i.e., “hard”) or standing
variation (i.e., “soft”), etc. These differences between meth-
ods have been described by several studies (Biswas and Akey
2006; Sabeti et al. 2006; de Simoni Gouveia et al. 2014).
However, the practical implications of these differences when
comparing the regions detected by different studies, or by dif-
ferent approaches within the same study, are rarely discussed.

Here we detect selection signatures in four European
taurine cattle breeds (Angus, Fleckvieh,Holstein, and Jersey),
using large samples of sequencing data that have been re-
cently publishedby the1000bull genomesproject (Daetwyler
et al. 2014). We use two different statistical approaches: a
within-breed approach detecting genomic regions with
low genetic diversity (Boitard et al. 2009) and a between-
population approach detecting genomic regions with large
allele (Bonhomme et al. 2010) or haplotype (Fariello et al.
2013) frequency differences between breeds. These two
analyses provide regions whose genomic features are signif-
icantly different from what would be expected under neu-
trality, even when accounting for the effects of past population
size changes, population structure, and gene flow on the four
breeds of our study. We show that applying the abovemethods
to sequencing data improves the detection power of selection
signatures and reduces considerably the length of detected
regions. In some particular situations, it even leads to identi-
fying the exact mutation under selection. We also provide a
detailed characterization of the regions that are detected only
by the within-population approach (in one or several popula-
tions), only by the between-population approach, or jointly by
the two approaches.

Materials and Methods

Samples and sequencing

Atotal of 234genomesequenceswereobtained from the1000
bull genomes project, run II (Daetwyler et al. 2014). These
included 129 Holsteins (125 Black and 4 Red), 43 Fleckviehs,

47 Angus, and 15 Jerseys. We considered all these sequences
except the 4 Red Holsteins. We based our analyses on the
phased and corrected autosomal data produced by the 1000
bull genomes project (Daetwyler et al. 2014). These data in-
cluded 27,535,425 biallelic single nucleotide polymorphisms
(SNPs) and 1,507,728 biallelic indels.

Choice of unrelated animals

To remove potential biases arising from sample size hetero-
geneity between breeds and inbreeding within breeds, we
selected a subset of 25 unrelated animals in Holstein, Fleck-
vieh, and Angus breeds, while keeping all 15 Jersey animals.
Within each breed, we computed the genetic relationship
matrix (GRM) of all available animals based on SNPs from
chromosome 1 with minor allele frequency (MAF) .10%,
using the GCTA 1.04 software (Yang et al. 2011). We then
selected unrelated animals as follows. First, we removed all
animals with inbreeding value (the diagonal term of the
GRM) .1.5 (this threshold was chosen because inbreeding
values.1.5 clearly appeared as outliers compared to the rest
of the distribution; Supplemental Material, Figure S1). Sec-
ond, we considered all animal pairs with genetic relationship
.0.3 in absolute value and removed the most inbred animal
of each pair. Third, we performed a hierarchical clustering of
the remaining animals based on the distance dij ¼ M2GRMi;j;

where GRMi;j is the genetic relationship between animals i and
j andM is themaximum value of the GRM, and sampled the 25
most distant animals.

Estimation of a demographic model for the joint history
of the four breeds

To model the demographic history of the four breeds under
study, we assumed that these breeds diverged simultaneously
from a common ancestral population, TDIV generations ago.
Although the population tree estimated by FLK (Bonhomme
et al, 2010) would suggest a slightly more recent divergence
between Fleckvieh and Jersey (Figure 4), we considered that
this difference was negligible and preferred reducing the
number of parameters to be estimated. Based on previous
studies suggesting that effective population size in taurine
cattle strongly declined since domestication (MacLeod et al.
2013; Boitard et al. 2016), we allowed one population size
change from NANC (the ancestral population size) to NDOM

(the “domestic” population size) in the ancestral population,
TANC generations ago. The divergence between breeds im-
plied a second population size change: after this event, each
breed i was assumed to have a specific population size Ni;

which possibly differed from NDOM: Finally, we assumed that
each breed received, every generation, a proportion m of
migrants from any of the other breeds.

We estimated the parameters of this model using the
composite-likelihood approach implemented in fastsimcoal2
(Excoffier et al. 2013), which is based on the joint site fre-
quency spectrum (SFS). In our data set, this joint SFS had a
very high dimension (51 3 51 3 51 3 31). Consequently,
we instead considered the collection of joint SFS obtained for
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all six population pairs (Angus 3 Fleckvieh, Angus 3 Hol-
stein, . . .), following the recommendations of the authors.
We computed these observed joint SFS from our data using
home-made scripts and provided them as input to fastsim-
coal2, version 5.2.8 (May 2015). We performed 50 inde-
pendent EM estimations and selected the one with the
highest composite likelihood. For each estimation, we used
the folded SFS (option -m) and the default settings2n100000
2N100000 2M0.001 2l10 2L40. In fastsimcoal2, time is
scaled in generations. Time in years was obtained by assum-
ing a generation time of 5 years.

Detection of genomic regions with low
within-breed diversity

Model: We looked for hard-sweep signatures within each
breed, using the hidden Markov model (HMM) of Boitard
et al. (2009). In this model, only biallelic variants are consid-
ered and the derived allele frequency at variant i, denoted Yi;
is taken as the observed state of the HMM at this position.
Each variant i is also assumed to have a hidden state Xi;which
can take three different values: “selection,” for variants that
are very close to a swept site; “neutral,” for variants that are
far away from any swept site; and “intermediate,” for variants
in between. These three values are associated with different
allele frequency distributions. The neutral allele frequency
distribution is estimated using all variants in the genome,
assumingmost of them have indeed evolved under neutrality.
Allele frequency distributions in the intermediate and selec-
tion states are deduced from this neutral distribution using
the derivations in Nielsen et al. (2005) and are typically more
skewed toward extreme allele frequencies. The hidden states
Xi form aMarkov chain along the genomewith a per base pair
probability p of switching state, so that close variants tend to
be in the same hidden state. Under this HMM, the most likely
sequence of hidden states can be predicted from the sequence
of observed states, using the Viterbi algorithm. Each set of
consecutive variants with predicted state selection is called a
sweep window. The method of Boitard et al. (2009) is imple-
mented in the freq-hmm program, available at https://forge-
dga.jouy.inra.fr/projects/pool-hmm.

Implementation: Ancestral Bovinae alleles at 448,289 SNPs
included in the Illumina BovineHD BeadChip were obtained
from Utsunomiya et al. (2013). To check this information we
also aligned the bovine sequence against the sequence of
three Bovidae species (Rocha et al. 2014). For 365,146 SNPs,
the ancestral allele in our alignment was consistent with that
reported by Utsunomiya et al. (2013) so we used this infor-
mation for sweep detection. For all other SNPs, we used a
folded allele frequency distribution; i.e., allele frequencies Yi
and 12 Yi were considered as the same observed state. Indels
were not included at this stage of the analysis (they were
considered only when looking at candidate polymorphisms
within the region).

To reduce computation time, we estimated the neutral
allele frequency distributions in each breed, using only 5% of

the SNPs from each chromosome, which were selected at
random. These SFS are shown in Figure S2.

The type I error of the above method, i.e., the probability
that it detects a sweep window in a population that has
evolved under neutrality, depends on parameter p (see
Boitard et al. 2009 for more details). To control the genome-
wide number of false positives, we simulated 5000 samples
of length 500 kb under neutral evolution using ms (Hudson
2002) and adjusted p so that sweeps were detected in only
0.1% of these samples. We performed this calibration for
each breed, using the same sample size and proportion of
unfolded sites as in the data used for sweep detection. Pa-
rameter u was also estimated from these data using Water-
son’s estimator (Watterson 1975) and r was taken equal to
u=10; which is rather low compared to current estimates in
cattle (Sandor et al. 2012; Ma et al. 2015). As the detection
sensitivity of the HMMmethod increases when r=u decreases
(Boitard et al. 2009), our adjusted value of p should be con-
servative. Assuming a 2.5-Gb genome as that of bovine (fo-
cusing on autosomes) is equivalent to 5000 windows of
500 kb, we expected no more than five false positive signals
over the genome with this value of p.

Influence of demography on sweep detection:Weevaluated
the robustness of the above detection approach under two
neutral demographic scenarios: the multipopulation model
estimated by fastsimcoal2 (Figure 1) and the single-population
model estimated in Boitard et al. (2016). For each model,
we simulated 20,000 samples of length 500 kb using ms,
assuming a mutation rate and a recombination rate of
1e-8 per base pair and generation, and we applied the HMM
procedure to these samples. For the multipopulation model,
each simulated sample included genomes from the four
breeds, which were split to apply the HMM within each pop-
ulation. For the single-population scenario, breed-specific
samples were directly simulated independently of each other,
each breed being associated to a different population size
history. For each scenario and breed, the total length of sim-
ulated samples was equivalent to that of four cattle genomes.
Consequently, the estimated proportion m of false positive
signals per genome was given by the total number of sweeps
detected in the simulations, divided by four, and the variance
of this estimation was equal to m=4: The confidence interval
of this estimation was approximated by

½m2 2sðmÞ;mþ 2sðmÞ� ¼ �
m2

ffiffiffiffi
m

p
;mþ ffiffiffiffi

m
p �

:

Comparing hard-sweep signatures detected in different
populations: For a given variant i, the evidence for a hard-
sweep window occurring around this variant in population j
was measured by the statistic TORði; jÞ ¼ log10ðq j

i =ð12 q j
i ÞÞ;

where q j
i was the posterior probability of hidden state selec-

tion returned by the backward–forward algorithm applied to
the HMM in population j. When considering a given region of
the genome, the evidence for a hard sweep in population j
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was quantified by the median of TORði; jÞ over the variants of
the region. To detect selection signatures that are really breed
specific, we computed for each breed the distribution of TOR in
three different classes of regions: (i) those where a hard sweep
was detected in this breed, (ii) those where a hard sweep was
detected in another breed, and (iii) those where no hard
sweep was detected (Figure S3). Obviously, class i and class
iii regions lead to very different distributions, with lower TOR

values in the latter (i.e., in the completely neutral regions). In
addition, the distribution of TOR in class ii regions was not
similar to that found in class iii regions, but was shifted toward
that of class i regions. Based on these observations, we there-
fore considered that a hard sweep was breed specific when, in
all other breeds, the value of TOR of the region was below a
given quantile q of the class iii distribution. For q ¼ 0:5; 55
breed-specific sweeps were detected (listed in File S1) and for
q ¼ 0:25; 12 breed-specific regions were detected.

Detection of genomic regions with large differentiation
between breeds

We applied twomethods for the detection of genomic regions
exhibiting large genetic differentiation between populations:
FLK (Bonhomme et al. 2010), a single-marker approach
based on allele frequency differences, and its haplotypic ex-
tension hapFLK (Fariello et al. 2013), which exploits the link-
age disequilibrium information to capture differences of
haplotype frequencies.

Kinship matrix: In contrast to the FST statistic, FLK and
hapFLK account for the population history through a kinship
matrix, which captures (i) differences in effective population
sizes between populations and (ii) possible shared ancestry
between populations. The kinship matrix is inferred from a
population tree, with branch length expressed in units of
drift, i.e., measured in fixation indexes f � t=2N; where t is

the number of generations from the root and N the effective
population size. We estimated the population tree, using
neighbor joining on the Reynold’s genetic distances between
populations (see Bonhomme et al. 2010 for details). We used
the ancestral allele reconstruction of Utsunomiya et al.
(2013) to root the population tree and estimate the popula-
tion kinship matrix.

FLK: For the single-marker analysis, we performed the FLK
test on all variants and computed P-values using the theoret-
ical x2ð3Þ distribution, which was a good fit to the observed
distribution (Figure S4).

hapFLK: For the hapFLK test, to save computation time, we
removed variants that had low minor allele frequency
(,   10%) in all breeds. Note that as the analysis looks for
signals of differentiation, removing these variants does not
preclude detection. In subsequent reanalysis of small geno-
mic regions, we kept all variants in the analysis. hapFLK
makes use of the local clustering approach in Scheet and
Stephens (2006) to model haplotype diversity. This model
requires specifying a number of haplotype clusters as the in-
put parameter. Using the cross-validation procedure imple-
mented in the fastPHASE software, we found that 15 clusters
provided the smallest imputation error rate. hapFLK can be
computed on unphased or phased genotype data. Genotype
calling made used of imputation approaches, and data were
therefore already phased (Daetwyler et al. 2014). We com-
puted hapFLK both on the haplotype data and on the geno-
type (but imputed) data and found the two analyses provided
similar results (not shown).

The distribution of hapFLK is not known, but, from theo-
retical arguments hapFLK is a deviance statistic. However, the
variance parameter of this deviance is not known. If this
parameter was known, then hapFLK should follow a
x2ððN2 1ÞðK2 1ÞÞ distribution, where N is the number of
populations and K the number of haplotype clusters. Building
on this fact, we compared a set of quantiles (from 0.05 to 0.95
every 0.05) of the x2ð42Þ distribution tq to the observed
quantiles of the hapFLK statistic oq: We found that the re-
lationship between tq and oq was very close to linear (Figure
S5). Thus, we used the parameter of the linear model to scale
the hapFLK statistic to a x2ð42Þ distribution that was then
used to compute P-values.

Extracting significantly differentiated regions: To call sig-
nificant regions, we applied the approach of Storey and
Tibshirani (2003), aimed at controlling the false discovery rate
(FDR), at the 15% level; i.e., we called significant variants
with q-values ,   0:15 and selection signatures regions where
more than one variant was called significant. We note, how-
ever, that our level of control of the FDR for the regions
themselves may not be well calibrated as the tests are corre-
lated. This procedure still provides a significant threshold so
that among marker discoveries there is a sixfold enrichment
in favor of the number of statistics under the alternative.

Figure 1 Joint demography of the four cattle breeds, estimated from our
data using the approach of Excoffier et al. (2013). Population sizes cor-
respond to the number of haploid individuals. Parameter values corre-
spond to the EM iteration with the highest likelihood, but similar values
were obtained from the second- and third-best EM iterations.
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Influence of demography on hapFLK: To evaluate the ro-
bustness to demography of hapFLK and our scaling approach,
weperformed10,000simulationsof50-kbwindowsunder the
population model estimated with fastsimcoal2. We applied
the same testing procedure as with the real data, including
filtering out SNPs with low minor allele frequencies in all
breeds. The resulting hapFLK distribution was different from
the one observed on real data; in particular it showed a
depletion of low hapFLK values compared to real data; i.e.,
on real data some regions look more similar between breeds
than on simulated data. The reasons for this are not clear, but
we note that (i) fastsimcoal2 estimation does not use haplo-
type or linkage disequilibrium information so the haplotype
patterns simulated are not expected to necessarily fit the
data; (ii) simulations assume homogeneous recombination
and mutation rates, which does not hold on real data; and
(iii) common background/purifying selection between breeds
might reduce differentiation in some genome regions. Despite
the lesser hapFLK variance in simulations, scaling the hapFLK
distribution to a x2 with 14 d.f. provided a very good fit (see
Figure S6). Applying the Storey and Tibshirani (2003) ap-
proach to estimate the proportion of alternative hypotheses
in the resulting P-value distribution led to an estimate of
0 (i.e., p̂0 ¼ 1). Apython script to perform the scaling of hapFLK
to x2 distributions is now available on the hapFLK webpage:
https://forge-dga.jouy.inra.fr/projects/hapflk/documents.

Data availability

All data necessary for confirming the conclusions presented in
the article are represented fully within the article or cited
references.

Results

Genomic regions with low within-population diversity:
hard-sweep signatures

Welooked forhard-sweep signatureswithin eachbreed, using
the method of Boitard et al. (2009), as described inMaterials
and Methods. This method detects regions showing an excess
of low- and high-frequency derived alleles compared to the
rest of the genome. Although this pattern is typically expected
under a hard-sweep scenario, i.e., when a new mutation

appears in the population and goes to fixation due to posi-
tive selection, it may also arise from purely demographic
events, in particular bottlenecks. To test whether our anal-
ysis could be influenced by such false positive signals, we
first simulated genomic samples under two different neutral
demographic models, which both allow to reproduce the
genetic diversity of the breeds under study, and applied
the method of Boitard et al. (2009) to these samples.

Analysis of neutral samples: In the first demographicmodel,
we considered the joint history of the four breeds and
accounted for several important features of this history: (i)
the shared ancestry of the four breeds, which diverged re-
cently from an ancestral pool of European domestic animals;
(ii) the population size differences between breeds since their
divergence; and (iii) the possible existence of gene flow be-
tween breeds. Moreover, because recent studies suggested
that effective population size in taurine cattle strongly de-
clined since domestication (MacLeod et al. 2013; Boitard et al.
2016), we allowed one population size change in the ances-
tral population. We estimated the parameters of this model
from the joint allele frequency spectra observed in our data
for all breed pairs, using the approach of Excoffier et al.
(2013) (see Materials and Methods for more details), and
obtained the demography shown in Figure 1.

In this estimated demography, the ancestral population
size changewas not a decline related to domestication, but an
older expansion occurring in the wild population, �120,000
years before present. However, a very strong population de-
cline was found at the time where the four breeds diverged,
from an order of 100,000 individuals to an order of 100
individuals. Interestingly, the estimated divergence time
(500 years before present) was consistent with a geographic
isolation process starting a few hundred years before the
strict separation of these populations, induced by the creation
of modern breeds (Felius et al. 2011). In addition, the order
of magnitude of estimated recent effective sizes (100) and
the ranking of breeds according to these sizes were consistent
with previous studies (Bovine HapMap Consortium 2009;
Leroy et al. 2013; MacLeod et al. 2013; Boitard et al. 2016).
Thus, this simple model seemed to provide a reasonable ap-
proximation of the demography of the four breeds under

Figure 2 Comparison between HMM and CLR results.
Shown is the proportion of Fleckvieh CLR P-values
(obtained from Qanbari et al. 2014) in sweep windows
vs. other windows in the genome. On the left, the sweep
windows considered were those detected in Fleckvieh, in-
dependently of what happened in other breeds. On the
right, the sweep windows considered were those detected
only in Holstein.
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study. When genomic samples were simulated from this
model, the average number of sweeps detected per genome
was equal to 0 in Fleckvieh and Holstein, 3.75 (61.93) in
Angus, and 17.25 (64.15) in Jersey.

We performed the same test using a second demographic
model, which was estimated in another study (Boitard et al.
2016) based on the same data set as that considered here.
This model treats each breed independently of the others, so
it does not account for shared ancestry or gene flow. However,
it accounts for the variations of population size over time
more accurately than the previous model, because popula-
tion size in each breed is modeled as a stepwise process with
21 time windows (figure 6 in Boitard et al. 2016). The pop-
ulation size within each time window is estimated from the
allele frequency and linkage disequilibrium patterns ob-
served in the breed, using an approximate Bayesian compu-
tation approach. When genomic samples were simulated
from this second model, the average number of sweeps de-
tected per genome was even lower than with the first model:
0 in Fleckvieh, Holstein, and Angus and 0.75 (60.87) in
Jersey.

Overall, these results indicate that the number of false
hard-sweep signals detected by the method of Boitard et al.
(2009) should be negligible in Angus, Fleckvieh, and Hol-
stein and relatively small in Jersey, even when accounting
for the demography of these breeds.

Overview of the detected signals: When analyzing the cattle
data with the same approach, we detected 1057 hard-sweep
signals: 226, 384, 316, and131 inHolstein, Angus, Jersey, and
Fleckvieh, respectively. According to the simulation results
presented above, the false discovery rate associated with this
analysis should be,7% in Jersey (21:4=316) and close to 0 in
the other breeds. The size of detected regions ranged from
8.2 to 948 kb, with a median of 78.7 kb. Some signals were
overlapping between breeds so that after merging them we
obtained 798 sweeps that were unique to one of the breeds
(159, 297, 249, and 93, respectively) and 118 that were
shared between at least two breeds. Overall this provided
916 regions covering �4.3% of the autosomal genome.
Among these 916 regions, 450 included no (protein-coding)
gene, 268 included a single gene, 154 included between 2

and 5 genes, and 44 included .5 genes, with a maximum of
19 genes. Overall, 1088 genes were included in sweeps win-
dows, which represents �5.7% of all annotated genes in the
bovine genome, so there was a slight enrichment of protein-
coding genes within sweep regions. The list of all detected
regions and of genes included in these regions is given in
File S2.

In a recent genome scan for selection focusing on the
Fleckvieh breed (Qanbari et al. 2014), the 43 Fleckvieh se-
quences considered in our study were analyzed using the
composite likelihood ratio (CLR) method (Nielsen et al.
2005) and the integrated haplotype score (iHS) method
(Voight et al. 2006). Seventy-three hard-sweep signals were
found with the former approach and 67 with the latter. Since
the HMM approach used in this study aims at capturing the
same allele frequency patterns as in the CLR method, we
checked whether our results in Fleckvieh were consistent
with those in Qanbari et al. (2014). To this end, we compared
the distributions of CLR P-values within regions associated
with selective sweeps to their distribution on the rest of the
genome. Figure 2 (left) plots the ratio of the two densities (on
a log2 scale) for increasing levels of significance of the CLR
test. It shows a very strong enrichment of low CLR P-values in
the sweep windows we detected in Fleckvieh, compared to
the rest of the genome. We performed the same analysis with
iHS P-values and found a similarly strong enrichment (Figure
S7), which can be explained by the fact that iHS also tries to
detect hard-sweep patterns, even if the information used (the
length of haplotypes) is different.

We also observed an enrichment, albeit of lower intensity,
of CLR and iHS low P-values in the sweep windows detected
in other breeds than the Fleckvieh. For example, Figure 2
(right) shows the enrichment in low Fleckvieh CLR P-values
in selective sweep regions detected only in the Holstein
breed. A similar trend was observed in selective sweep re-
gions specific to the Jersey and Angus breeds (not shown).
Hence some of the hard sweeps detected in one breed also
have probably taken place in the other breeds, but to a
slightly lower extent that did not lead to a significant signal.
These signatures must be related to favorable alleles that
either started to increase in frequency before the divergence
of the breeds or were selected in parallel in different breeds.
However, selection signatures that are specific to one breed
are interesting because they illustrate the importance of this
breed for cattle functional diversity (Gutierrez-Gil et al.
2015). We therefore derived a way of finding clear breed-
specific sweeps as follows.

Hard-sweep regions specific to one population: The HMM
approach “tags” a region as selected by reconstructing a hid-
den state at each position of the genome. Based on the ob-
servation above, we suspected that some regions were not
tagged as selected, but might still have a nonnegligible prob-
ability of being adaptive under the HMM model, explaining
the enrichment patterns observed in Figure 2. To investigate
this possibility, we derived a statistic (TOR) quantifying the

Table 1 Sweep regions shared among all breeds

Chromosome Start (Mb) End (Mb) Genes

1 1.781 1.818 lincRNA, Polled locus
(Allais-Bonnet et al. 2013)

1 107.452 107.557 PPM1L
1 107.571 107.749 ARL14
5 68.675 68.751 SLC41A2
7 4.574 4.745 FKBP8, ELL, ISYNA1, SSBP4,

LRRC25, GDF15
10 59.148 59.338 CYP19A1
16 44.672 44.956 CLSTN1, PIK3CD, TMEM201,

SLC25A33
16 45.644 45.903 RERE, SLC45A1
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strength of evidence for selection in a breed, measured as the
log odds ratio of selection over neutrality in a region (see
Materials and Methods for details). As expected, the TOR in
one breed showed clearly different distributions in regions
tagged as selected in this breed and in regions where no
selection was detected in any breed (Figure S3). In regions
where selection was detected in another breed, the distribu-
tion of TOR was skewed toward higher values compared to
clearly neutral regions (Figure S3). We exploited this to call
breed-specific sweeps regions where TOR was unambiguously
consistent with the neutral density in all other breeds (see
Materials and Methods for details). Fifty-five breed-specific
regions were detected, and we could check that this time
the sweeps specific to Holstein did not show any enrichment
in low Fleckvieh CLR P-values (Figure S8). The 12 sweeps
exhibiting the most contrasted patterns for TOR are listed in
Table S1.

Hard-sweep regions shared by all populations: We also
looked for sweep signals shared by all breeds, as they might
correspond to older selection events, anterior to the diver-
gence of the four breeds considered here and possibly related
to initial cattle domestication. We found only one region with

a sweep detected in all four breeds, but we also considered
regions where a sweep was detected in three breeds and
where allele frequencies in the fourth one were almost con-
sistent with a sweep. This provided eight candidate regions,
four of which include a single gene (Table 1).

Several of thesegenes representnatural selection targets in
cattle, as they are related to husbandry, metabolism, or fer-
tility. On chromosome 1, we found evidence for selection in a
region 10 kb upstream the OLIG1 gene, encompassing a
lincRNA, orthologous to the human gene LINC00945, whose
expressionhas been shown to be associatedwith polledness in
Holstein and Fleckvieh (Allais-Bonnet et al. 2013). PPM1L is a
protein phosphatase that has been shown to be involved in
the response to exercise in humans (Tonevitsky et al. 2013).
SLC25A33, located in the middle of one of the shared sweeps
windows, encodes for mitochondrial pyrimidine nucleotide
transporters and is essential for mitochondrial DNA and RNA
metabolism in humans (Di Noia et al. 2014). CYP19A1 en-
codes the key enzyme for estrogen biosynthesis. Many studies
have documented its role during the development of bovine
follicles, and it has been found more abundant in bovine cells
of twinners vs. controls (Echternkamp et al. 2012). To illus-
trate the allele frequency patterns observed in such regions,

Figure 3 Allele frequencies in the sweep
region at the polled locus. For SNPs where
the ancestral allele is known (in red), the
frequency is that of the derived allele. For
other SNPs (in black) the frequency is that
of the minor allele (among all breeds).
Vertical red bars delimit the union of de-
tected regions among the four breeds.
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allele frequencies in the polled locus region are provided in
Figure 3.

Genome regions with large genetic differentiation
between breeds

We applied two approaches to detect genome regions that
exhibit outlying divergence in single-site (Bonhomme et al.
2010) or haplotype (Fariello et al. 2013) frequencies be-
tween populations. The first step in these two approaches is
to estimate a population tree summarizing the neutral history
of the populations under study. For our data set, this popula-
tion tree (Figure 4) was approximately star shaped, (i.e.,
breeds essentially evolved in parallel from an ancestral pop-
ulation), although we estimated a small shared history
between the Fleckvieh and Jersey populations. Fixation in-
dexes, represented by the branch length from the root to the
tips of the tree, had similar values in all populations, the
Jersey’s one being slightly higher. The genome-wide level of
differentiation between populations was rather large, with
between-population FST values ranging from 0.22 to 0.4.

When genetic drift is large, single-marker tests are
expected to have low power because even large allele fre-
quency differences can be explained by drift alone. This was
indeed the case here for the single-marker differentiation
analysis (FLK): the smallest observed P-value was 63 1027;

which corresponded to an FDR of �10% when applying the
approach of Storey and Tibshirani (2003). Although it is not
clear how to correct P-values for correlation betweenmarkers
in such a setting (genome-wide differentiation-based tests),
even this smallest P-value did not provide clear evidence of
selection. This does not mean that there is no selection in
these data, only that genuine selection signatures cannot be
discriminated from background noise provoked by drift when
looking at sites independently. However, as illustrated later in
this study, given a region where a selection signature has
been found, FLK can help in identifying the mutations that
have likely been under selection.

The hapFLKmethod (Fariello et al. 2013) is similar to FLK,
but it incorporates linkage disequilibrium (LD) information
through the exploitation of a multilocus LD model (Scheet
and Stephens 2006). Because hapFLK combines information
across multiple sites, it has been shown to have better de-
tection power than single-site statistics (Fariello et al. 2013,
2014). This was confirmed when applied to this data set, as
we could confidently find 67 significant regions using a FDR
threshold of 15%. hapFLK has been shown to be robust to
bottlenecks and to a certain extent to gene flow (Fariello et al.
2013).We confirmed this by simulating haplotypes under the
demographic model estimated by the approach of Excoffier
et al. (2013) (Figure 1) and calculating hapFLK on the sim-
ulated data (see Materials and Methods). While the fixation
indexes computed from the simulated samples were very
close to the ones computed from our data (Table S2), hapFLK
P-values obtained from simulated samples did not lead to any
signal called significant with the Storey and Tibshirani
(2003) approach (Figure S6).

Ten of the significant regions detected by hapFLK likely
resulted fromassembly errors andwere thus not considered in
the rest of our analysis (Table S3). The cumulated length of
the remaining 57 regions, listed and annotated in Table S4,
was 9.1 Mb, 0.36% of the total autosome length. Detected
regions spanned from a few hundred base pairs to .1 Mb
with a median length of�20 kb (Figure S9). The median size
of detected regions was thus considerably smaller than that
obtained in previous studies where hapFLK was applied to
60K data in sheep (Fariello et al. 2014; Kijas 2014). Nineteen
of the regions encompassed at least one gene while 38 con-
tained no gene. In total, 82 genes were included in hapFLK
regions, which represents �0.4% of the total number of
genes in the genome, corresponding to a small enrichment
in protein-coding genes in hapFLK signatures.

To investigate whether sequencing improves detection
power with hapFLK, we thinned the data set by considering
only SNPs present on the Illumina BovineHD BeadChip. We
found (Figure 5) that the excess of small P-values was much
larger when applying hapFLK to all sites identified in the
1000 bull genomes project than when applying it only to
the SNPs that are included in the SNP chip. Note that this
was not the case with FLK, where detection power was low
with both sequencing and SNP chip data due to the amount of
drift, as already discussed above (Figure S10).

Hard-sweep regions showing a strong
differentiation signal

Eight selection signatureswere foundwith both theHMMand
the hapFLK analyses, pointing out regions that combine a low
diversity within at least one breed and a strong haplotypic
differentiation between breeds (Table 2). Although this is sig-
nificantly more than expected if the two kinds of signals were
independent (P 5 1:43 1024), it is somewhat surprising to
observe thatmany hard sweepswere not detectedwith hapFLK.

Aprevalent reason for this is the largegenome-wide level of
differentiation between the four breeds, which reduces the

Figure 4 Population tree estimated from the 1000 bull genomes data.
Branch length is measured in units of drift (� t/2N, where t is the time in
generations and N the effective population size).
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power of differentiation-based tests (Fariello et al. 2013).
Indeed, hard-sweep regions detected in one or two popula-
tions showed a clear enrichment in low hapFLK P-values
(Figure 6). This indicates that many hard sweeps exhibit a
mild differentiation signal, although the power to detect
them with hapFLK is not sufficient. In addition, some hard-
sweep regions did not show any differentiation signal, be-
cause the same haplotype was fixed or at least increased in
frequency in all populations. This is typically the case of hard-
sweep regions detected in three or four populations, for
which there was a depletion of low hapFLK P-values (Figure
6). This may also concern regions where a hard sweep was
detected in one or two populations, but where the swept
haplotype was also at quite high frequency in other popula-
tions, as already discussed above.

Among the regions with evidence for both a hard-sweep
and an extreme differentiation signature, the top three cor-
responded to genes and mutations of known phenotypic
effects that recapitulate the most obvious phenotypic diver-
gence of the four breeds in this data set. The most differen-
tiated region corresponded to the KIT gene, which has been
shown to be associated with white spotting patterns in the
Holstein (Hayes et al. 2010) and the Fleckvieh (Qanbari et al.
2014), while the Jersey and the Angus are nonspotted
breeds. The next most differentiated region harbored the
MC1R gene, for which previous studies have identified two
causal polymorphisms for coat color (Klungland et al. 1995).
Finally, the third signature was a small genomic region com-
prising the PLAG1 gene (Figure 7, top). Hard sweeps identi-
fied in this region indicate a past selection event affecting the
Angus and the Holstein breeds, whereas no selection was
evidenced in the Fleckvieh and the Jersey breeds (Table 2),
as can also be seen from heterozygosity patterns in the region
(Figure 7, bottom). The region surrounding PLAG1 was pre-
viously demonstrated to harbor a QTL for calving ease in
the Fleckvieh (Pausch et al. 2011) and one for stature in a
Holstein 3 Jersey cross (Karim et al. 2011). Our results
are consistent with these studies and suggest that the allele
favoring high stature was selected in Holstein and Angus,
but not in Jersey and Fleckvieh.

The other common regions include the ASIP gene, which
plays a crucial role in adipocyte development and seems to be

expressed in a wide set of tissues in different cattle breeds
(Albrecht et al. 2012), and the ANKRD55 region that is
strongly associated with autoimmune disorders in humans
[in particular, multiple sclerosis (Stahl et al. 2010) and type
2 diabetes (Morris et al. 2012).

hapFLK signatures of soft or incomplete sweeps

Apart from the eight signatures above, none of the other
hapFLK signatures matched hard sweeps detected by the
HMM approach. These signatures most likely resulted from
incomplete sweeps for which the selected allele did not reach
fixation or soft sweeps where selection targeted an allele that
was already at intermediate frequency in the population.
Indeed, such signalsdonot lead to the skewedallele frequency
patterns that are looked for by the approach of Boitard et al.
(2009). This hypothesis was confirmed by examining haplo-
type diversity patterns in hapFLK signatures, which typically
show haplotypes of large but not fixed frequency in at least
one population (e.g., Figure S11 for region 1 in Table S4).

Two signatures are located close to the homologous region
ofahumanpromoter region,nearROBO1ononehandand the
prolactin receptor gene PRLR on the other, hinting that the
causal mutation is likely regulatory in nature. ROBO1 has
been shown to be involved in early follicular development in
sheep (Dickinson and Duncan 2010; Dickinson et al. 2010),
while the prolactin gene and its receptor are involved in a
large range of biological functions (development, metabolism,
immunology, reproduction, etc.) (Bole-Feysot et al. 1998).

The PRLR gene lies �6 Mb from the growth hormone re-
ceptor (GHR) gene, itself close (�140 kb) to another hapFLK
signature. It has been evidenced that two QTL affecting milk,
fat, and protein yield segregate near these two genes in a
Finnish dairy cattle population (Viitala et al. 2006). Our re-
sults suggest that these QTLmight be in regulatory regions of
these genes and that they have responded to selection in
populations from the 1000 bull genomes. We found another
selection signature, in Jersey, within a gene potentially in-
volved in milk production (Figure S12), ARL15. Seven highly
differentiated variants (FLK P-value ,   1025) were located in
an ARL15 intron. ARL15 is a protein of unknown function
that has been shown to be strongly associated with adiponec-
tin levels in humans (Richards et al. 2009). Adiponectin is a

Figure 5 Influence of NGS on hapFLK detection power.
Shown is a probabiliy probability (PP) plot of the hapFLK
test applied to SNPs of the Illumina BovineHD SNP chip
(left) or to all sites of the 1000 bull genomes project (right).
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hormone involved in glucose metabolism, with a low con-
centration of adiponectin being associated with insulin re-
sistance. In dairy cows, insulin resistance is maintained in
early lactation, favoring mammary glucose uptake. Giesy
et al. (2012) showed that the reduction of plasma adiponec-
tin concentration in early lactating cows was not associated
with changes in the adiponectin expression itself. Our re-
sults could suggest a potential role of ARL15 in this process,
with a particular adaptation of the Jersey dairy cattle at this
gene.

Apart from the PLAG1 signature, several others include
genes involved in morphology and growth: RUNX3 (Yoshida
et al. 2004; Soung do et al. 2007), STARD3NL (Rivadeneira
et al. 2009), and RASSF2 (Song et al. 2012) are involved in
bone development; NCAPG and/or LCORLmatch a large QTL
for many growth traits in cattle, horses, and sheep (Eberlein
et al. 2009; Weikard et al. 2010; Lindholm-Perry et al. 2011;
Bongiorni et al. 2012; Makvandi-Nejad et al. 2012; Signer-
Hasler et al. 2012; Lindholm-Perry et al. 2013; Metzger et al.
2013; Tetens et al. 2013; Kijas 2014; Randhawa et al. 2015;
Sahana et al. 2015; Xu et al. 2015); and CTNNBL1 (Liu et al.
2008) is associated with obesity traits in humans.

Identifying causal adaptive polymorphisms

As demonstrated above, genomic scans for selection based on
sequencing data have a higher detection power than those
based on genotyping chip data and locate the selection sig-
natures with higher precision. This is an expected outcome of
the higher marker density, and the same could be said when
comparing high-density to medium-density chip data. But a
more fundamental difference between dense SNP chip data
andsequencingdata is that,with the latter, onecan reasonably
expect the causal polymorphism under selection to be in-
cluded in the observed data. Clearly, not all selection signa-
tures can be related to a single polymorphism, and even in this
case this polymorphism might be absent in our data due to
insufficient coverage or remaining calling issues. Still, the
favorable situation where a single polymorphism leads to a
selective advantage and is present in the data should also
occur. One natural question is thus to determinewhether such
variants can be identified only fromgenetic diversity patterns.
We show below that this is indeed possible.

HapFLK signals

Haplotype frequency differences detected by hapFLK typically
result from the increase in frequency of one particular allele in
a population due to positive selection, which implied the
increase in frequency of one or several haplotypes carrying
this allele by genetic hitchhiking. Thus, in regions detected by
hapFLK, the causal polymorphism under selection should be
the onewith the largest allele frequency differentiation, and a
natural strategy to detect this polymorphism is to look at the
variants with the largest FLK value. Two of the regions
identified by hapFLK validate this strategy.

Within the MC1R selection signature, we found three
polymorphisms with clear outlying FLK values (Figure 8),
and two of these corresponded to the known causal mutations
mentioned previously: a single-base mutation at position
14,757,910 (rs109688013), responsible for the black pigmen-
tation inHolstein andAngus breeds, and a single-base deletion
at position 14,757,924 (rs110710422), responsible for the red
pigmentation in the Fleckvieh breed (Klungland et al. 1995).
The third outlying polymorphism (rs110494166) in the region
was located at position 14,678,403, within an intron of the
nearby FANCA gene, and exhibited the same allele frequencies
as rs110710422.

In the PLAG1 region, the causal mutation was shown to be
one of eight candidate quantitative trait nucleotides (QTNs)
(Karim et al. 2011). We found seven polymorphisms exhibit-
ing a high level of differentiation between breeds in this re-
gion based on the FLK statistic (P-value ,1024) (Figure 7,
middle, and Table S5). Of these seven candidates, six were
common with the candidate QTNs listed in table 2 of Karim
et al. (2011). rs134215421 and rs109815800 showed partic-
ularly extreme allele frequency differences between Holstein
and Angus on the one hand and Jersey and Simmental on the
other hand. These two mutations are located at the 39 end of
the PLAG1 gene, rs134215421 being 1 kb downstream and
rs109815800 within an intron of the PLAG1 gene. One SNP
(rs134029466) was not identified as a potential QTN in
Karim et al. (2011) but showed a strong signal for differentia-
tion. Two of themutations in Karim et al. (2011), rs209821678
and rs210030313, which are considered by the authors as the
most serious candidates because they affect a highly conserved

Table 2 Hard-sweep selection signatures associated with significant differentiation signals

Hard-sweep region hapFLK

BTA Start End Population Start End P-value Candidate genes

6 71.439 71.558 F 70.332 71.607 1:2  10212 KIT
18 14.755 14.963 F 14.305 14.872 2:1  1028 MC1R
14 24.805 25.076 H, A 24.937 25.070 2:2  1027 PLAG1
10 5.736 5.843 A 5.736 5.782 4:9  1026 Intergenic
13 64.149 64.197 A 63.879 64.546 2:0  1025 ASIP
20 22.923 23.203 J 23.110 23.125 4:2  1025 ANKRD55
7 43.436 43.542 A, J 43.473 43.474 7:0  1025 OR cluster
24 14.006 14.040 F 14.021 14.023 8:2  1025 Intergenic

Signatures are ordered by decreasing hapFLK P-values. Region coordinates are expressed in megabases on assembly UMD 3.1. Population abbreviations: A, Angus; F,
Fleckvieh; H, Holstein; J, Jersey.
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element, were not available in the 1000 bull genomes project.
One is a variable number tandem repeat (VNTR), a kind of
polymorphism that is hardly callable from short-read sequence
data, and the other one is a SNP that lies 44 bp from the VNTR,
which exhibited very low-quality scores and was therefore not
called in the 1000 bull genomes data. While these polymor-
phisms cannot be considered as disqualified based on our study,
their positions, highlighted in Figure 7, lie in a regionwhere the
differentiation signal was not significantly elevated.

Hard-sweep signals

Hard-sweep signals are expected when an allele goes from
very low frequency to almost fixation in a population due to
positive selection. In these regions, detecting the causal se-
lected variant only from genetic data of the swept population
is impossible, because all physical positions show either ex-
tremeallele frequenciesornopolymorphismatall.However, if
we assume that other sampled populations evolved neutrally
in the region, alleles that were initially at low frequency in the
swept population have likely remained at relatively low fre-
quency in these other populations. This should result in high
genetic differentiation at and around the selected polymor-
phism, which again can be detected using the FLK statistic.

For all hard-sweep regions except the ones shared by
all populations, we thus tried to identify the selected site
by looking for polymorphisms with a high FLK value
(P # 1024). To ensure that the detected polymorphisms could

indeed be the causal ones, we further required a high allele
frequency ($   75%) in the swept population(s) and only in
this (these) one(s). We found only 12 sweep regions exhibit-
ing such causal candidates (Table 3 and Table S6). Again, this
small proportion is related to the fact that in most cases the
selected allele must actually be at relatively high frequency
even in nonswept populations, due to undetected ongoing
sweeps or just random drift.

The regions detected by this approach include those of KIT,
PLAG1, andMC1R. In all these regions, a very limited number
of potentially causal polymorphismswere detected, and in the
case of MC1R these candidates included the true causal
variants. This provides a validation of the detection strategy
considered here and suggests that other regions in Table 3
should also contain interesting putative causal polymorphisms.

Of particular interest, a sweep region on chromosome 20
included a single causal candidate at position 39,872,347
(Figure 9 and Figure S13). This polymorphism is located
downstream of SLC45A2, a gene that has been associated
with fertility (Killeen et al. 2014) and residual feed intake
(Karisa et al. 2013) in cattle and with pigmentation in several
other species including humans (Sturm 2009; Stefanaki et al.
2013; Morice-Picard et al. 2014), dogs (Wijesena and
Schmutz 2015), and tigers (Xu et al. 2013). It is also located
downstream of RXFP3, a gene known to be involved in food
intake regulation and body weight in mice (Ganella et al.
2012; Smith et al. 2014)

Figure 6 Distribution of hapFLK within hard-
sweep regions. Shown is a comparison of the
distribution of hapFLK P-values in hard-sweep
regions identified within populations and in the
rest of the genome. The plot shows the ratio of
the P-values distribution in hard sweeps de-
tected in one to four populations to their distri-
bution on the part of the genome where no
hard sweep is detected. y-axis is on a log2 scale
and x-axis is on a log10 scale.

Detecting Adaptation from Sequence Data 443

http://www.genetics.org/cgi/data/genetics.115.181594/DC1/6
http://www.genetics.org/cgi/data/genetics.115.181594/DC1/20


Another interesting region was found on chromosome 22,
where two strong candidate polymorphisms were located
30 kb upstream of MAGI1 (Figure S14 and Figure S15). Al-
though not reported in Table 3 due to P-values slightly
.1024; five other suggestive polymorphisms are located

within MAGI1 introns. One of these, at position 36,011,838,
is located within a highly conserved region according to a mul-
tiple alignment of 36 eutherian mammals (www.ensembl.org).
At this position, all considered species carry allele G,
which is also the most frequent allele in Angus, Fleckvieh,

Figure 7 Selection signature around PLAG1.
Shown are hapFLK (top) and FLK (middle)
P-values (log10 scale) for the selection signature
around PLAG1 and local heterozygosity in the
four breeds (bottom) for the same region. In the
top and middle panels, genes are indicated by
purple solid rectangles, and red solid triangles
correspond to the candidate QTNs of Karim
et al. (2011).
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and Holstein, while allele A swept in Jersey. MAGI1 is a scaf-
folding protein present in tight junctions of epithelial cells and
might be implied in nervous system functions. Adaptive selec-
tion around this gene was already reported in some West Afri-
can cattle breeds (Gautier et al. 2009).

Amore complex situationwas observed on chromosome 7,
where 8 and 16 candidate polymorphisms were found in two
sweep windows distant by 300 kb. Among all these candi-
dates, the highest FLK value was reached at position
26,459,812, in an intergenic region between SLC27A6 and
FBN2. Interestingly, this polymorphism was located in a very
conserved region, and itwas theonlyone in this caseamongall
candidates in the sweepwindow. Allele Twas found in almost
all species at this position and was almost fixed in Angus,
Fleckvieh, and Holstein, while allele A swept in Jersey.
SLC27A6 has been shown related to fatty acid metabolism
in cattle (Bionaz and Loor 2008; Nafikov et al. 2013), while
FBN2 has been related to several development processes, in-
cluding bone formation in mice (Nistala et al. 2010).

Strong candidatemutationswere also found in two regions
without protein-coding genes on the current bovine annota-
tion, and in generalwe note that all candidate polymorphisms
were located in intergenic or regulatory regions. This implies
that validating the effect of these polymorphisms will be
difficult, but this also outlines the potential of selective sweep
studies to improve genome annotation.

Hard-sweep signals shared by all breeds

In regionswherehard-sweep signalswere sharedbyall breeds
(Table 1), identifying causal polymorphisms only from our
data set is impossible. Indeed, the majority of polymorphisms

have similar diversity patterns, with a low minor allele fre-
quency in all four breeds. In addition, positions that were
monomorphic in our data set are also good candidates, since
they might result from the complete fixation of a favorable
allele in the four breeds.

To identify potential causal variants in these regions, one
possible approach can be to use data from related species,
looking for highly conserved positions for which themajor (or
the only) allele of our bovine data set is absent in other
mammals. To illustrate this approach, we implemented the
following procedure. Based on a multiple alignment of the
bovine reference sequence with 10 other mammal reference
sequences (Rocha et al. 2014), we selected the positions
where (i) the bovine allele (or the major bovine allele in
the case of polymorphic positions) was distinct from the
yak allele, (ii) the bovine allele was unobserved among the
10 other species, and (iii) the yak allele was observed in .7
(of 9) other species, including at least buffalo or sheep (the
two closest species). Such positions represent convincing
candidates for two reasons. First, alleles that are observed
in other mammal species must have been segregating in the
bovine for a very long time and are thus very unlikely to
produce a hard-sweep pattern, even if they became positively
selected at some point in the bovine history. Second, highly
conserved positions are more likely functional, and thus sub-
ject to selection, than less conserved ones.

Among the 1,382,681 positions included in the regions in
Table 1, only 91 satisfied the three conditions above. Further
removing 7 positions for which theminor bovine allele was at
quite high frequency, we finally obtained 84 causal candi-
dates (Table S7). All sweep regions except one exhibited
convincing causal variants located in coding or regulatory
regions, but more work will be needed to determine the exact
causal variants in these regions.

Discussion

We performed in this study a genomic scan for selection in
European taurine cattle, basedon large samples of sequencing
data from four different breeds. We used two detection
approaches, based respectively on the genetic diversitywithin
breeds and on the genetic differentiation between breeds, and
compared the signals detected by these two approaches.

One important conclusion from our analysis is that se-
quencing data represent a great opportunity in the context
of genomic scans for selection. Indeed, the detection power of
hapFLK was higher when applied to sequencing data than
when applied to high-density chip data (Figure 5). This was
consistent with previous studies looking for selection signa-
tures in cattle (Ma et al. 2015) and humans (Liu et al. 2014),
which also found, based on computer simulations, that
higher power could be expected from sequencing data com-
pared to SNP chip data. The localization of selection signa-
tures was also found more accurate with sequencing data,
both for hapFLK and for the within-population approach, as
the median size of detected regions (a few tens of kilobases)

Figure 8 Selection signature around MC1R. Shown are hapFLK (gray)
and FLK (black) P-values (log10 scale) for the selection signature around
MC1R (purple vertical line). Red triangles highlight the two known causal
mutations for red and black coat color in cattle.
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was considerably lower than with SNP chip data. Note that
the reduced size of detected regions does not mean that we
detected older selection events. It just comes from the fact
that, in many regions, only the most significant part of the
sweep was identified. For instance, the selection events de-
tected by hapFLK are quite recent, because they must have
occurred more recently than breed divergence (�500 years
before present according to our demographic analysis).
Still, the region with excess differentiation, which is cap-
tured by hapFLK, is generally smaller than the sweep itself,
because part of the swept haplotype can be shared be-
tween breeds. An example of such a signature can be seen
in the ARL15 signature (Figure S12). Importantly, the
higher precision provided by the use of NGS data reduces
the number of genes included in each window, allowing
potentially an easier exploration of the molecular func-
tions driving selection.

Since sequencing data capture a large proportion of the
SNPs and small indels segregating in a sample, genomic scans
for selection based on such data can be expected to identify
even the causal polymorphism under selection in a given
sweep region. We demonstrated that this is indeed the case
in some regions,where the fewvariantswith thehighest allele
frequency differentiation between breeds, measured by the
FLK statistic, included the causal variant. For instance, in the
MC1R region, the two mutations that have been shown to
affect coat color in thebreedsof our studywere included in the
top three FLK values. Similarly, in the PLAG1 region, a good
overlap was observed between variants with top FLK values
and the QTNs found by Karim et al. (2011) in a genome-wide

association study analysis on stature. In several other regions,
variants with top FLK values also lead to promising candidate
polymorphisms (Table 3 and Table S6), which were often
located in highly conserved regions or/and in the vicinity of
genes with interesting metabolic functions. However, it is
important to point out that identifying the selected variant
from FLK values will essentially be possible in population-
specific hard-sweep scenarios, where the favorable allele
has almost fixed in the selected population(s) and has
remained absent or at very low frequency in the other sam-
pled populations. In all other situations, and for instance
those where the favorable allele is at intermediate fre-
quency also in neutral populations, the FLK value of the
causal variant will be reached just by chance by many neu-
tral variants, so identifying the causal variant will require
additional data, for instance phenotypes related to the se-
lection constraint.

Our study also illustrated the small overlap between the
selection signatures detected by the within- and the between-
population approachandallowedus to better characterize the
regions detected by each of these approaches. Among the 916
hard-sweep regions detected by the within-population ap-
proach, only 8were detected by hapFLK.One reason is that, in
many of the regions where a hard sweep was detected, the
swept allelewas likely at quite high frequency also in the other
breeds, reducing the differentiation signal. Indeed, in regions
where a sweep was detected in one of the breeds, the TOR
distribution in the other breeds was shifted toward that of
swept regions, even if this signal was not strong enough to be
detected by the HMM (Figure S3). This can be explained by

Table 3 Private hard-sweep regions including candidate mutations

Chr Start (Mb) End (Mb) Sel pop Nb mut Pval FLK Sel freq Genes

6 71.440 71.560 F 2 1025 0.92 Intergenic

7 25.430 26.000 J 8 3:1025 0.77 CHSY3, KIAA1024L, ADAMTS19
SLC27A6, FBN2, SLC12A2

7 26.280 27.060 J 16 1025 0.83

14 24.810 25.080 H, A 7 3:1025 0.04 LYN, RPS20, PLAG1,
CHCHD7 ENSBTAG00000039031, MOS

18 14.760 14.960 F 3 1025 0.95 TUBB6, TUBB3, DEF8, LOC532875 DBNDD1,
GAS8, SHCBP1, MC1R

20 24.230 24.740 J 1 3:1025 0.77 LOC530348, SNX18, COX8A, LOC783202,
HSPB3

20 25.030 25.390 J 21 2:1025 0.80 Intergenic
20 26.640 27.230 J 2 3:1025 0.77 Intergenic

20 39.830 39.970 J 1 1025 0.80 SLC45A2, ADAMTS12, RXFP3

22 35.680 35.790 J 1 3:1025 0.77 Intergenic
22 35.960 36.030 J 2 5:1025 0.90 MAGI1

27 4.140 4.230 J 1 1024 0.90 Intergenic

Horizontal spaces are used to group closely related sweep windows, which might result from the same selection event. Abreviations A, F, H, and J
are defined in Table 2 legend. Chr, chromosome; Sel pop, population(s) under selection; Nb mut, Number of candidate mutations; Pval FLK, lowest
P-value of the FLK test; Sel freq, Allele frequency at the position with lowest P-value.
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the long shared history between the four breeds considered
in this study, which have a common geographic origin and
have been strictly isolated only in the last 200 years. Conver-
gent selection of similar alleles in different breeds may also
have occurred, as the same traits were selected in these
breeds, but this is not the most parsimonious hypothesis.
Finally, the small proportion of hard sweeps detected by
hapFLKwas also likely related to a power issue, because none
of themost breed-specific hard sweeps listed in Table S1were
detected by this approach. Although such regions clearly
showed some signal of differentiation, this signal was not
strong enough to be detected by hapFLK, because the very
high levels of genetic drift in cattle breeds imply that only
extremely differentiated regions can be considered as signif-
icantly under selection. Actually, we can see from Table 2 that
in most hard-sweep regions detected by hapFLK, there was
not one hard sweep in a single population, but at least two
sweeps (either complete or incomplete) implying distinct
haplotypes in the four breeds, which represents an even
stronger differentiation signal (Figure S16). We expect the
1000 bull genomes data set to grow by inclusion of new
populations, which will most likely increase power of differ-
entiation approaches such as FLK and hapFLK by adding in-
formation on breeds more closely related to each other than
on the initial release.

On the other hand, among the 57 selection signatures
detected by hapFLK, 49 were not detected by the within-
population approach. This comes from the fact that this
approach is specificallydesigned todetecthard-sweep signals,
while hapFLK also detects incomplete or soft sweeps (Fariello
et al. 2013, 2014). For the 49 regions detected by hapFLK and
not by the within-breed approach, the evidence of a hard
sweep, measured by the statistic TOR; was always very low
in all breeds, indicating that the signal detected by hapFLK
had nothing to do with a hard sweep in one of the breeds. For
example, in the ARL15 signature, the swept haplotype clearly
segregates at moderate frequency (�85%) in the Jersey pop-
ulation (Figure S12). This ability of hapFLK to detect incom-
plete and soft sweeps is extremely interesting for the study of
livestock species. Indeed, recent intensive selection in mod-
ern livestock breeds has mainly targeted polygenic traits such
as milk or meat production, which is much more likely to
produce soft- and incomplete-sweep patterns than hard-sweep
patterns (Pritchard et al. 2010; Hernandez et al. 2011).

In conclusion, our study illustrates how sequencing data
offer great advantages for the detection of adaptive loci:
higher power andbetter precision in localizing adaptive genes
and even in some rare cases causal mutations. However, we
found that many of our strongest signals and mutations lie in
noncoding regions of the genome, hinting that a majority of

Figure 9 Allele frequencies in the sweep re-
gion including SLC45A2 and RXFP3. For SNPs
where the ancestral allele is known (in red), the
frequency is that of the derived allele. For other
SNPs (in black) the frequency is that of
the minor allele (among all breeds).
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adaptive mutations are regulatory in nature. A better anno-
tation of genomes, such as obtained by high-throughput
postgenomic approaches, in combination with phenotyping
in large population samples will be key in uncovering the
biological basis of adaptation.
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Figure S1: Proportion of Fleckvieh iHS p-values (obtained from [20]) in
sweep windows vs other windows in the genome. On the left panel, the
sweep windows considered were those detected in Fleckvieh, independently
of what happened in other breeds. On the right panel, the sweep windows
considered were those detected only in Holstein.
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Figure S2: Distribution of TOR in four populations in different genome re-
gions. (Red) selected in the breed, (Green) neutral in all breeds and (Blue)
selected in another breed.
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Figure S3: Proportion of Fleckvieh CLR p-values (obtained from [20]) in
sweep windows vs other windows in the genome. On the left panel, the
sweep windows considered were those specific to Fleckvieh. On the right
panel, the sweep windows considered were those specific to Holstein.
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Figure S4: Distribution of hapFLK (left) and corresponding pp-plot (right)
under neutral simulations.
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Figure S5: Distribution of the length of selection signatures detected with
hapFLK
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Figure S6: PP plot of the FLK test applied to SNPs of the Illumina 800K
chip (left) or to all SNPs of the 1000 bull genomes project (right)
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Figure S7: Haplotype cluster frequencies around the hapFLK selection sig-
nature near gene ROBO1 on BTA1. Haplotypes are clustered using the
Scheet and Stephens [25] model into 15 coloured template haplotypes.
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Figure S8: FLK profile and allele frequencies on chromosome 20 around the
ARL15 candidate gene. Mutations in an intro of ARL15 exhibiting FLK
p-values < 10−5 are highlighted in red.
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Figure S9: FLK profile in the sweep region including SLC27A6 and RXFP3.
The candidate mutation reported in Table 3 is shown in red together with
its allele frequency in the selected population (Jersey).
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Figure S10: Allele frequencies in the sweep region including MAGI1. For
SNPs where the ancestral allele is known (in red), the frequency is that of
the derived allele. For other SNPs (in black) the frequency is that of the
minor allele (among all breeds).

23



●

●

●●●●●
●●

●●●●●
●
●

●●

●●●●●
●●
●●
●●
●●●

●

●
●●●
●●

●●

●
●
●
●

●

●●

●

●●●
●●●

●

●
●●

●

●●
●

●●●●
●

●
●●●●

●

●●●

●

●

●
●

●

●●●

●

●

●●
●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●
●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●
●●

●

●
●
●●

●
●
●

●
●●

●

●

●●

●

●

●
●
●

●●
●

●

●●●●●●

●●

●●●●

●

●●
●●
●●

●

●

●
●●
●

●

●

●●

●

●
●
●

●

●

●

●●●
●
●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●●●●

●●
●●●●●
●●

●

●

●
●

●●

●

●

●●●●●
●●●●
●●

●

●
●

●

●
●●
●

●

●●

●

●

●
●●●

●

●

●

●
●●

●
●●

●

●
●●

●
●

●●

●●

●

●●
●●●

●

●
●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●●●

●

●●●

●

●

●

●

●

●●
●

●
●

●
●
●

●

●
●

●●

●

●

●

●
●

●
●●

●●●
●

●

●●

●●

●●

●

●
●●
●●
●

●●

●
●

●

●

●●
●●

●

●

●
●

●

●

●●●
●●

●

●

●

●
●

●●

●

●●

●

●

35.96 35.97 35.98 35.99 36.00 36.01 36.02 36.03

0
1

2
3

4

position (MB)

p
va

l(
p

lk
)

●
0.9

●
0.93

Figure S11: FLK profile in the sweep region including MAGI1. The can-
didate mutations reported in Table 3 are shown in red together with their
allele frequency in the selected population (Jersey).
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Figure S12: Haplotype diversity in regions detected with hapFLK and
HMM. Haplotypes are clustered using the [25] model into 15 coloured tem-
plate haplotypes. Each panel represents the template frequency in each
breed.
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Figure S13: Histogram of genomic relationship coefficients in each breed.
Diagonal terms correspond to within-animal inbreeding values and extra-
diagonal terms correpond to between animal co-ancestries.
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Figure S14: Neutral allele frequency spectrum estimated in each breed. The
Jersey breed is shown on a different box because it has a different sample
size, which implies a different range of values on the x axis.
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Figure S15: Distribution of the FLK statistic and theoretical χ2(3) distri-
bution.
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Figure S16: Relationship between hapFLK observed quantiles and χ2(42)
theoretical quantiles
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Population chr start end genes putative function or trait
Holstein 2 100.51 100.6 ERBB4 neural crest development
Jersey 4 18.06 18.12 intergenic

Fleckvieh 10 83.12 83.2 RPL7 post-weaning gain in sheep [32]
Angus 16 27.64 27.71 CAPN8 gastric mucosal defense [8]
Angus 19 2.51 2.54 intergenic
Jersey 20 0.15 0.22 PANK3 bone formation [34]

SPZ1 spermatogenesis [11]
Jersey 20 29.67 29.73 intergenic
Angus 20 66.19 66.22 intergenic
Angus 21 49.09 49.14 intergenic
Angus 22 5.73 5.77 intergenic
Jersey 27 3.54 3.64 intergenic

Table S1: Hard sweep regions specific to one breed.
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Population F data F simulations
Angus 0.174 0.162
Fleckvieh 0.127 0.092
Holstein 0.106 0.106
Jersey 0.225 0.184

Table S2: Population fixation indices calculated on real and simulated data
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Chromosome start end hapFLK p-value
1 83,218,059 83,237,473 6.6 10−7

5 22,519,930 22,585,490 6.0 10−8

7 44,194,255 44,428,089 1.3 10−12

7 79,127,958 79,269,166 1.4 10−14

13 5,373,476 5,575,795 3.8 10−16

17 35,794,432 36,050,136 2.4 10−10

17 50,710,246 50,780,102 1.7 10−6

17 51,861,569 52,083,308 1.1 10−7

17 72,519,569 72,522,168 3.4 10−5

22 39,728,012 40,072,931 2.0 10−11

Table S3: hapFLK significant regions corresponding to likely assembly er-
rors. These regions correspond exactly to contigs or scaffolds that show
conserved synteny with human sex chromosomes, and usually with the hu-
man Y chromosome, and their borders correspond to gaps in the genome
assembly. Sex chromosomes exhibit a different evolutionary history than au-
tosomes, in particular they have a reduced effective population size. Thus,
if sex chromosomes sequences are analyzed as autosomes, they will stand
out as outliers. Here, we believe these regions correspond to sex chromo-
some sequences wrongly assigned to autosomes and therefore they were not
considered in the rest of our analysis.
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Table S4: Genome regions exhibiting high levels of haplotype differentiation
between breeds based on the hapFLK statistic.

Id Chr begin (Mb) end (Mb) p-value breed(s) Candidate genes References Annotation
1 1 26.884 26.926 1.4 10−6 ANG 5Kb upstream of

ROBO1 promoter
region

[4, 5] Follicular development

2 1 76.641 76.649 3.8 10−5 CCDC50, OSTN
3 1 151.721 151.723 7.0 10−5 HOL KCNJ6 (syn. GIRK2) rs41755372, weaver gene

(mice)
4 2 128.400 128.450 1.9 10−5 FLE, (JER,

HOL)
RUNX3, RHCE region, [31, 27] Bone development (chondro-

cytes)
5 3 39.591 39.594 3.1 10−5

6 3 53.727 54.414 1.5 10−5 ANG, HOL,
JER

LRRC8C (FAD158),
LLRC8D,GBP5, GBP6

[33, 14, 9] Adiposity (LRRC8C), Meat
tenderness (GBP5), Embryo
implantation (GBP5)

7 3 86.508 86.786 2.2 10−5 HOOK1, Cytochrome
P450 (LOC521656)

8 4 38.431 38.444 2.7 10−5 ANG CACNA2D1
9 4 41.745 41.749 6.5 10−5 GNAI1, MAGI2
10 4 50.029 50.333 2.0 10−6 FLE, JER STARD3NL [22] Bone Mineral Density
11 4 76.939 76.946 7.6 10−5 ADCY1, MYO1G
12 4 77.578 77.644 5.1 10−6 NUDCD3, NPC1L1
13 4 94.791 94.797 2.7 10−5 TMEM209
14 4 116.144 116.151 3.9 10−5

Continued on next page
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Id Chr begin (Mb) end (Mb) p-value breed(s) Candidate genes References Annotation
15 6 38.622 38.726 5.3 10−5 FLE, (JER) NCAPG, LCORL [6, 3] Fetal Growth
16 6 66.810 66.810 9.7 10−5

17 6 70.332 71.607 1.2 10−12 FLE KIT [10, 16, 7] Coat color (spotting)
18 6 72.906 72.927 7.0 10−5

19 6 74.542 74.609 3.1 10−6

20 6 84.327 84.348 6.3 10−5

21 6 90.578 90.592 3.6 10−5

22 7 22.295 22.323 3.3 10−5 GNG7
23 7 39.013 39.321 1.0 10−6 (JER) COMMD10, ARL10,

NOP16, HIGD2A,
CLTB, FAF2

24 7 40.958 40.972 1.4 10−6 ZNF154
25 7 41.744 41.768 1.0 10−5 TRIM41
26 7 43.473 43.474 7.0 10−5 OR cluster
27 7 46.029 46.040 4.7 10−5 FLE GDF9, SHROOM1 ,

SOWAHA
[18] Folliculogenesis

28 7 46.998 47.091 4.2 10−6

29 9 41.523 41.529 6.7 10−5 CEP57L1
30 9 44.560 44.640 4.6 10−6 PRDM1
31 10 5.736 5.782 4.9 10−6 ANG, FLE
32 11 16.637 16.698 1.6 10−5

33 11 25.631 25.650 2.1 10−5 HOL THADA [2] rs137792035 (intronic)
34 13 47.491 47.503 5.7 10−5 RASSF2 [26] Bone remodelling
35 13 63.879 64.545 2.0 10−5 ANG ASIP

Continued on next page
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Id Chr begin (Mb) end (Mb) p-value breed(s) Candidate genes References Annotation
36 13 67.391 67.410 1.7 10−5 FLE CTNNBL1 [17] rs442482970, rs208147519,

rs109630255 Body Mass
Index (human)

37 14 24.937 25.070 2.1 10−7 HOL, ANG PLAG1 [19, 12] Stature
38 14 25.958 25.959 7.7 10−5

39 14 58.185 58.186 7.8 10−5 EMC2, EIF3E
40 14 61.828 61.840 5.0 10−5 JER ZFPM2 (human) rs381703521, rs379012140

(conserved element, intron of
human gene)

41 16 47.039 47.040 6.1 10−5 ANG CAMTA1 [24] QTLs for Fat thickness, Car-
cass Weight

42 17 29.453 29.457 5.5 10−5 FLE, JER [23] QTLs for feed efficiency traits
43 18 14.305 14.872 2.1 10−8 ANG, HOL,

FLE
MC1R Coat color (red and black)

44 18 52.664 52.683 2.5 10−5 JER, FLE CEACAM20
45 18 54.411 54.432 6.2 10−5 HOL, JER ARHGAP35
46 20 23.110 23.125 4.1 10−5 JER ANKRD55 [28, 1, 15] Region associated with auto-

immune diseases in Humans
47 20 24.855 28.602 5.1 10−5 JER ARL15 [21] adiponectin regulation
48 20 32.342 32.352 8.1 10−5 ANG 140 Kb upstream of

GHR
Growth , stature

49 20 38.945 38.946 8.6 10−5 JER, FLE 5Kb upstream of PRLR
promoter region

50 20 50.108 50.142 2.7 10−6 JER
51 24 14.021 14.023 8.2 10−5 FLE

Continued on next page
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Id Chr begin (Mb) end (Mb) p-value breed(s) Candidate genes References Annotation
52 24 62.218 62.223 5.6 10−5

53 27 13.125 13.166 2.0 10−5 FLE WWC2
54 27 33.749 33.762 1.1 10−5 JER PLEKHA2
55 28 3.989 3.998 7.1 10−5 FLE
56 29 38.204 38.280 2.5 10−6 FLE PAG12 [29, 30] Fertility
57 29 51.104 51.190 1.3 10−5 ANG BRSK2
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Allele frequencies
position P-value (FLK) Holstein Angus Fleckvieh Jersey QTN
24805830 7.9 10−4 0.87 0.96 0.12 0.03 No
24973953∗ 8.1 10−5 1.0 0.96 0.10 0.03 Yes
24974221∗ 1.0 10−4 1.0 0.96 0.12 0.03 Yes
24974811∗ 7.9 10−5 1.0 0.96 0.12 0.0 Yes
24991209 6.3 10−5 1.0 0.96 0.10 0.0 No
25003338∗ 6.3 10−5 1.0 0.96 0.10 0.0 Yes
25006125∗ 3.9 10−5 1.0 0.96 0.06 0.0 Yes
25015640∗ 3.1 10−5 1.0 0.96 0.04 0.0 Yes
25019900 1.6 10−3 1.0 0.96 0.56 0.07 No†
25022815 6.8 10−4 0.99 0.96 0.60 0.0 No†
25031172 9.0 10−4 1 0.97 0.54 0.03 No†
25052396 – – – – – Yes
25052440 – – – – – Yes
25059742 7.6 10−4 1 0.96 0.54 0.0 No†
25061179 7.6 10−4 1.00 0.96 0.54 0.0 No†

† : possible QTN in the Holstein × Jersey cross, but ruled out as QTN in an
association study in the Fleckvieh population [13].
∗ : Mutations that are still candidates after combining selection tests and QTN
results.

Table S5: Candidate selected mutations and/or QTN (from [13]) at the
selection signature around the PLAG1 gene on BTA14
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Table S6: Candidate mutations in private sweep regions. Horizontal lines
are used to group closely related sweep windows, which might result from
the same selection event.

chr position pval Jersey Angus Fleckvieh Holstein annotation
6 71517158 1 0 0 0.92 0.02 intergenic
6 71552373 1 0 0 0.92 0 intergenic
7 25574759 5 0.77 0.01 0 0 intergenic
7 25580485 7 0.8 0.01 0 0 intergenic
7 25581841 7 0.8 0.01 0 0 intergenic
7 25582672 7 0.8 0.01 0 0 downstream KIAA1024L
7 25582815 7 0.8 0.01 0 0 downstream KIAA1024L
7 25589078 7 0.8 0.01 0 0 intron KIAA1024L
7 25673520 3 0.77 0.01 0 0 intron ADAMTS19
7 25756290 3 0.77 0 0 0 intron ADAMTS19
7 26335268 2 0.8 0 0 0 intergenic
7 26459812 1 0.83 0 0 0 intergenic
7 26472093 3 0.83 0.01 0.02 0 intergenic
7 26523973 3 0.83 0.01 0.01 0 intergenic
7 26740228 3 0.77 0 0 0 intron FBN2
7 26743727 7 0.8 0 0.06 0 intron FBN2
7 26744241 7 0.8 0 0.06 0 intron FBN2
7 26744717 3 0.77 0 0 0 intron FBN2
7 26753548 2 0.8 0 0 0 intron FBN2
7 26761008 2 0.8 0 0 0 intron FBN2
7 26762977 2 0.8 0 0 0 intron FBN2
7 26768920 3 0.77 0 0 0 intron FBN2
7 26772586 2 0.8 0 0 0 intron FBN2
7 26776782 3 0.77 0 0 0 intron FBN2
7 26789277 2 0.8 0 0 0 intron FBN2
7 26871380 7 0.77 0 0 0.01 intron FBN2

14 24973953 8 0.97 0.04 0.86 0 downstream MOS
14 24974811 8 1 0.04 0.85 0 downstream MOS
14 24991209 6 1 0.04 0.86 0 intergenic
14 24995794 37 0.83 0.04 0.79 0 intergenic
14 25003338 6 1 0.04 0.86 0.01 downstream PLAG1
14 25006125 4 1 0.04 0.91 0.01 downstream PLAG1
14 25015640 3 1 0.04 0.92 0.02 intergenic
18 14757910 4 0.93 0.02 0.99 0.07 missense MC1R
18 14757923 1 0.03 0.02 0.95 0.04 frameshift MC1R
18 14843827 8 0.07 0.02 0.86 0.08 intron GAS8
20 24307385 3 0.77 0 0 0 intergenic
20 25255113 7 0.8 0.04 0 0 intergenic

Continued on next page
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chr position pval Jersey Angus Fleckvieh Holstein annotation
20 25267029 2 0.8 0 0 0 intergenic
20 25267814 2 0.8 0 0 0 intergenic
20 25287735 3 0.77 0 0 0 intergenic
20 25287759 3 0.77 0 0 0 intergenic
20 25297390 3 0.77 0 0 0 intergenic
20 25306614 2 0.8 0 0 0 intergenic
20 25308282 2 0.8 0 0 0 intergenic
20 25308605 3 0.77 0 0 0 intergenic
20 25312532 2 0.8 0 0 0 intergenic
20 25313689 3 0.77 0 0 0 intergenic
20 25314539 3 0.77 0 0 0 intergenic
20 25317501 2 0.8 0 0 0 intergenic
20 25318166 3 0.77 0 0 0 intergenic
20 25319515 3 0.77 0 0 0 intergenic
20 25320693 2 0.8 0 0 0 intergenic
20 25320734 2 0.8 0 0 0 intergenic
20 25321524 2 0.8 0 0 0 intergenic
20 25321720 2 0.8 0 0 0 intergenic
20 25321795 2 0.8 0 0 0 intergenic
20 25323147 3 0.77 0 0 0 intergenic
20 26912317 3 0.77 0 0 0 intergenic
20 27147204 3 0.77 0 0 0 intergenic
20 39872347 11 0.8 0.01 0.03 0 downstream SLC45A2

downstream RXFP3
22 35680794 3 0.77 0 0 0 upstream bta-mir
22 35970263 5 0.9 0.14 0.02 0.01 intergenic
22 35973490 8 0.93 0.23 0.03 0.02 intergenic
22 36011838 42 0.87 0.24 0.03 0.02 intron MAGI1
22 36017262 15 0.87 0.11 0.03 0.01 intron MAGI1
22 36019024 25 0.9 0.24 0.03 0.02 intron MAGI1
22 36022130 48 0.87 0.26 0.03 0.02 intron MAGI1
22 36022963 45 0.9 0.26 0.05 0.02 intron MAGI1
27 4220866 10 0.9 0.07 0.06 0.02 intergenic
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Table S7: Candidate polymorphisms within shared sweeps.

chr pos major minor Jersey Angus Fleckvieh Holstein yak buffalo sheep # yak annotation
1 1784083 G A 0 0 0.01 0 A - A 8 intergenic
1 1802301 G - 0 0 0 0 T T T 9 intergenic
1 1808680 C - 0 0 0 0 T - T 8 intergenic
1 107502158 G - 0 0 0 0 A A A 8 intron PPM1L
1 107502160 C - 0 0 0 0 A A A 8 intron PPM1L
1 107550839 T - 0 0 0 0 C C - 8 intron PPM1L
1 107576115 A - 0 0 0 0 C C C 10 upstream PPM1L
1 107583661 G - 0 0 0 0 A A A 10 intergenic
1 107585004 A - 0 0 0 0 G G G 8 intergenic
1 107645676 G C 0 0 0 0.02 C C - 8 intergenic
1 107646230 T C 0 0 0 0.01 C C C 10 intergenic
1 107688061 G - 0 0 0 0 A - A 8 synonymous ARL14
1 107688282 C - 0 0 0 0 T - T 8 upstream ARL14
1 107713763 A - 0 0 0 0 G G G 10 intergenic
1 107719968 G A 0.03 0 0.02 0.04 A - A 8 intergenic
1 107720085 C - 0 0 0 0 A A A 9 intergenic
1 107720131 T - 0 0 0 0 C C C 8 intergenic
1 107736632 C A 0 0.01 0.02 0.06 A A A 8 intergenic
5 68689789 T A 0 0.02 0.02 0 A - A 8 intergenic
5 68706351 T - 0 0 0 0 C - C 8 intron SLC41A2
5 68712273 A C 0 0.02 0.09 0 C - C 8 intron SLC41A2
5 68758455 A - 0 0 0 0 G - G 8 intron SLC41A2

Continued on next page
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chr pos major minor Jersey Angus Fleckvieh Holstein yak buffalo ovis # yak annotation
5 68783378 C T 0 0 0.07 0 T T T 8 splice region SLC41A2, intron

SLC41A2
7 4574596 T C 0.03 0 0 0.04 C - C 8 3 prime UTR FKBP8
7 4671036 T C 0 0 0.12 0 C - C 8 missense ISYNA1, down-

stream SSBP4
7 4676230 A - 0 0 0 0 G - G 8 downstream ISYNA1, intron

SSBP4
7 4676874 T - 0 0 0 0 C - C 8 downstream ISYNA1, mis-

sense SSBP4
10 59182584 G A 0.03 0.06 0 0.1 A - A 8 intergenic
10 59189890 C - 0 0 0 0 T T T 8 intergenic
10 59192974 C T 0.03 0.06 0 0.04 T T - 8 intergenic
10 59193189 T - 0 0 0 0 C - C 8 intergenic
10 59193664 A - 0 0 0 0 G - G 8 intergenic
10 59202522 G - 0 0 0 0 A A A 9 intergenic
10 59203717 G - 0 0 0 0 A - A 8 intergenic
10 59204098 G - 0 0 0 0 A - A 8 intergenic
10 59205092 T - 0 0 0 0 C C - 8 intergenic
10 59206693 G - 0 0 0 0 T - T 8 intergenic
10 59248594 G - 0 0 0 0 A A A 8 intron CYP19A1
10 59274258 T G 0.03 0.06 0 0.08 G A A 8 intron CYP19A1
10 59308568 G - 0 0 0 0 T T T 8 intergenic
10 59314493 A - 0 0 0 0 T T - 8 intergenic
10 59319111 G - 0 0 0 0 A - A 8 intergenic

Continued on next page
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chr pos major minor Jersey Angus Fleckvieh Holstein yak buffalo ovis # yak annotation
10 59326268 C T 0 0 0 0 T - T 8 intergenic
10 59330483 G - 0 0 0 0 A - A 8 intergenic
16 44674060 A - 0 0 0 0 G - G 8 downstream CLSTN1, down-

stream PK3CD
16 44679395 T - 0 0 0 0 A - A 8 missense PK3CD
16 44680925 A - 0 0 0 0 G G G 10 missense PK3CD
16 44681107 T - 0 0 0 0 C C C 9 intron PK3CD, upstream U6
16 44681560 T - 0 0 0 0 C - C 8 intron PK3CD, upstream U6
16 44682130 A G 0 0 0.02 0 G G G 9 intron PK3CD, upstream U6
16 44683730 A - 0 0 0 0 G - G 8 synonymous PK3CD, up-

stream U6
16 44686127 A - 0 0 0 0 G - G 8 intron PK3CD, downstream

U6
16 44725237 T G 0 0 0 0.06 C C C 9 upstream 5S_rRNA
16 44753716 C - 0 0 0 0 T - T 8 intergenic
16 44777756 T - 0 0 0 0 G - G 8 synonymous TMEM201
16 44806651 G - 0 0 0 0 A A A 9 intron SLC25A33
16 44832764 A - 0 0 0 0 G G G 8 upstream SLC25A33
16 44837088 G - 0 0 0 0 A - A 8 intergenic
16 44879916 T C 0.03 0.05 0.12 0.02 C C C 9 intergenic
16 44897589 A - 0 0 0 0 G - G 8 intergenic
16 44899871 A - 0 0 0 0 G - G 8 intergenic
16 44917105 T - 0 0 0 0 C - C 9 intergenic
16 44952201 A - 0 0 0 0 G G G 9 intergenic

Continued on next page
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chr pos major minor Jersey Angus Fleckvieh Holstein yak buffalo ovis # yak annotation
16 45663151 C - 0 0 0 0 A - A 9 intron RERE
16 45663204 T - 0 0 0 0 C - C 8 intron RERE
16 45663289 C - 0 0 0 0 T - T 8 intron RERE
16 45680349 T - 0 0 0 0 C - C 8 intron RERE
16 45707230 A - 0 0 0 0 G G G 8 intron RERE
16 45708963 T C 0.03 0.04 0.05 0.11 C C C 9 intron RERE
16 45711415 T - 0 0 0 0 C - C 8 splice region RERE, synony-

mous RERE
16 45729243 G - 0 0 0 0 A - A 8 intron RERE
16 45762651 A - 0 0 0 0 G - G 8 intron RERE
16 45773132 A G 0.03 0.03 0.05 0.13 G G G 8 intron RERE
16 45773382 A - 0 0 0 0 T - T 8 intron RERE
16 45782314 G - 0 0 0 0 A - A 9 intron RERE
16 45782934 G - 0 0 0 0 A A A 10 intron RERE
16 45784480 T - 0 0 0 0 C - C 8 intron RERE
16 45817029 G C 0 0.04 0.05 0.13 C C C 9 intron RERE
16 45817370 C - 0 0 0 0 T - T 8 intron RERE
16 45828780 T - 0 0 0 0 C - C 8 intron RERE
16 45857131 G A 0 0.02 0.01 0.11 A A A 8 intron RERE
16 45859900 C G 0 0.02 0.02 0.12 G - G 8 intron RERE
16 45880729 T - 0 0 0 0 C - C 8 downstream RERE
16 45897447 T - 0 0 0 0 C - C 8 synonymous SLC45A1
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File S1: Hard sweep regions detected by the within-breed HMM approach. (.txt, 38 KB) 

 

Available for download as a .txt file at: 

http://www.genetics.org/cgi/data/genetics.115.181594/DC1/24 



File S2: Breed-specific hard sweep regions, as defined by the 2 following criteria. (.txt, 5 KB) 

Available for download as a .txt file at: 

http://www.genetics.org/cgi/data/genetics.115.181594/DC1/25 
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