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ABSTRACT Deleterious alleles can reach high frequency in small populations because of random fluctuations in allele frequency. This may
lead, over time, to reduced average fitness. In this sense, selection is more “effective” in larger populations. Recent studies have
considered whether the different demographic histories across human populations have resulted in differences in the number, distribu-
tion, and severity of deleterious variants, leading to an animated debate. This article first seeks to clarify some terms of the debate by
identifying differences in definitions and assumptions used in recent studies. We argue that variants of Morton, Crow, and Muller’s “total
mutational damage” provide the soundest and most practical basis for such comparisons. Using simulations, analytical calculations, and
1000 Genomes Project data, we provide an intuitive and quantitative explanation for the observed similarity in genetic load across
populations. We show that recent demography has likely modulated the effect of selection and still affects it, but the net result of the
accumulated differences is small. Direct observation of differential efficacy of selection for specific allele classes is nevertheless possible
with contemporary data sets. By contrast, identifying average genome-wide differences in the efficacy of selection across populations will
require many modeling assumptions and is unlikely to provide much biological insight about human populations.
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ONE of the best-known predictions of population ge-
netics is that smaller populations harbor less diversity at

any one time but accumulate a higher number of deleterious
variants over time (Kimura et al. 1963). Considerable subsequent
theoretical effort has been devoted to the study of fitness differ-
ences at equilibrium in populations of different sizes (e.g., Glémin
2003) and in subdivided populations (e.g., Whitlock 2002; Roze
and Rousset 2003). The reduction in diversity has been observed
in human populations that have undergone strong population
bottlenecks. For example, heterozygosity decreased in popula-
tions that left Africa and further decreased with successive foun-
der events (Tishkoff et al. 1996; Ramachandran et al. 2005; 1000
GenomesProjectConsortium2012;Casals et al.2013). The effect
of demography on the accumulation of deleterious variation has
been more elusive in both humans and nonhuman species. In
conservation genetics, where fitness can be measured directly
and effective population sizes are small, a modest correlation

between population size and fitness was observed (Reed and
Frankham 2003). In humans, the first estimates of the fitness
cost of deleterious mutations were obtained through the analysis
of census data (Crow 1958), but recent studies have focused on
bioinformatic prediction using genomic data (Davydov et al.
2010; Adzhubei et al. 2013). Lohmueller et al. (2008) found that
sites that were variable among Europeans were more likely to be
deleterious than sites that were variable among African Ameri-
cans and attributed the finding to a reduced efficacy of selection
in Europeans because of the out-of-Africa (OOA) bottleneck.
However, recent studies (Do et al. 2014; Simons et al. 2014)
suggest that there has not been enough time for substantial dif-
ferences in fitness to accumulate in these populations, at least
under an additive model of dominance. By contrast Peischl et al.
(2013) and, more recently, Henn et al. (2016) have claimed
significant differences amongpopulations under range expansion
models, and Fu et al. (2014) claim a slight excess in the number
of deleterious alleles in EuropeanAmericans compared toAfrican
Americans. These apparent contradictions have sparked a heated
debate as to whether the efficacy of selection has indeed been
different across human populations (Fu et al. 2014; Lohmueller
2014). Part of the apparent discrepancy stems for disagreement
about how we should measure the effect of selection.
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What does it mean for selection to be “effective”? Some
genetic variants increase the expected number of offspring by
carriers. As a result, these variants tend to increase in fre-
quency in the population. This correlation between the fit-
ness of a variant and its fate in the population—i.e., natural
selection—holds independent of the biology and history of
the population. However, the rate at which deleterious al-
leles are removed from a population depends on mutation,
dominance, linkage, and demography and can vary across
populations. Multiple metrics have been proposed to quan-
tify the action of selection in human populations and verify
the classical population genetics predictions, leading to ap-
parent discrepancies between studies.

In this article, we first review different metrics used in
recent empirical work to quantify the action of selection in
human populations. We show that many commonly used
metrics implicitly rely on “steady state” or “equilibrium” as-
sumptions, wherein genetic diversity within populations is
independent of time. This condition is not met in human
populations. We discuss two measures of the efficacy of se-
lection that are appropriate for the study of human popula-
tions and other out-of-equilibrium populations.

We then seek to provide an intuitive but quantitative
understanding of the effect of mutation, selection, and drift
on the efficacy of selection in out-of-equilibrium popula-
tions. This is done via a combination of extensive simulation
and analyticalwork describing differentiation between pop-
ulations after a split from a common ancestor. Using this
information, we discuss how the classical predictions con-
cerning the effect of demography on selection could be
verified in empirical data from human populations.

Methods

Measuring selection in out-of-equilibrium populations

We consider large panmictic populations whose size NðtÞ
may change over time and whose reproduction follows the
Wright-Fisher model (Ewens 2012). Given alleles a and A,
we assume that genotype aa has fitness 1, aA has fitness
1þ sihi, and AA has fitness 1þ si. We suppose that A is the
least favorable allele (si , 0) and that 0#hi # 1. In a random-
mating population, an allele A at frequency xi adds an
average of dwi ¼ si½2hixi þ ð12 2hiÞx2i � to individual fitness
compared to the optimal genotype.We compute the expected
fitness over multiple loci as w ¼Qið1þ dwiÞ ’ 1þPidwi

under the assumption that the individual selection coeffi-
cients si are small. Finally, we define the genetic load
L ¼ 12w as the total relative fitness reduction compared
to the optimal genotype wmax ¼ 1. This yields

L ¼ 2
X
i

si
h
2hixi þ ð12 2hiÞx2i

i

To study the effect of selection over short time spans and in out-
of-equilibrium populations, we want to define instantaneous

measures of the effect of selection on the genetic load and
the frequency of deleterious alleles. In this article, the rate of
adaptation refers to the instantaneous rate of fitness increase
(or load decrease) in a population. It has contributions from
selection, mutation, and drift. The contribution of selection
has been the object of considerable theoretical attention: it is
the object of the fitness increase theorem (FIT) (see, e.g.,
Ewens 2012). We will refer to the contribution of selection
to the rate of adaptation as the FIT efficacy of selection.

We also wish to study the effect of selection on the fre-
quency of deleterious alleles. There are multiple ways to com-
bine frequencies across loci to obtain a single, genome-wide
metric: any linear function Llin ¼Pirixi of the allele frequen-
cies, with ri .0 a weight assigned to locus i, provides an
equally acceptable metric. A natural option, which weights
alleles according to their selection coefficient, is Morton,
Crow, and Muller’s total mutational damage (Morton et al.
1956), which is equivalent to the additive genetic load that
would be observed if all dominance coefficients were
replaced by 1/2, i.e., Ladd ¼ 2

P
isixi. Mutation and selection

systematically affect Llin, but genetic drift does not. We define
theMorton efficacy of selection as the contribution of selection
to @Llin=@t. In simulations, where all alleles have equal fit-
ness, we use ri ¼ 2 s. Another common choice, in empirical
studies, is to set ri ¼ 1 for all sites annotated as deleterious by
a prediction algorithm and zero otherwise (Do et al. 2014; Fu
et al. 2014; Simons et al. 2014). Because different empirical
studies use different ri, direct comparisons of the results can
be challenging.

Because Morton and FIT efficacies are instantaneous
measures of the effect of selection, they can be integrated
over time to measure the effect of selection over arbitrary
periods. Their integrals over long periods are directly related
to classical steady-state metrics such as the rate of fixation of
deleterious alleles and the average genetic load in a population.

Tounderstandhowgenetic drift affects theFIT andMorton
efficacies of selection, consider an allele with parental fre-
quency x, selection coefficient jsj � 1; and no dominance
(h ¼ 0:5). In the descending population, this allele is drawn
with probability x9 ’ x þ sxð12 xÞ=2. Figure 1 shows the
resulting distribution in offspring allele frequency for x ¼ 0:5,
s ¼ 2 0:6, and 2N ¼ 100;  500;  and N. The average fre-
quency x9 is independent of N; hence, the expected FIT and
Morton efficacies are equal in all populations. Genetic drift
does not instantaneously change the effect of selection.

If we let these populations evolve further, however, we
will eventually find that deleterious allele frequencies de-
crease more slowly in smaller populations. This happens
because natural selection acts on fitness differences and there-
fore requires genetic variation. By dispersing allele frequen-
cies and reducing diversity, genetic drift also reduces the
subsequent effect of selection (Figure 2). Drift accumulated
during one generation can change the efficacy of selection for
many future generations. Conversely, the current average
efficacy of selection depends on the drift accumulated in
many previous generations. This delay between the action
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of drift and its impact on selection can be ignored in steady-
state populations but not in out-of-equilibrium populations.
For this reason, measures of the effect of selection that have
been developed for populations of constant size can be mis-
leading or biased when applied to populations that are out of
equilibrium.

Other measures of the effect of selection

The rate at which deleteriousmutations are eradicated from a
population, for example, is an intuitive metric for the effect of
selection that has been recently applied to out-of-equilibrium
populations (Gazave et al. 2013). Over long time scales or
in the steady state, this rate of eradication is indeed equiv-
alent to Morton’s efficacy of selection. However, in out-of-
equilibrium populations, the rate of eradication is a biased
measure of the effect of selection. In Figure 1, the smaller
population has a higher rate of eradication of deleterious
alleles, but this reflects the action of drift rather than the
effect of selection. This effect of drift on the rate of eradi-
cation of deleterious alleles is short-lived on phylogenetic
time scales, but it can be the dominant effect for time scales
relevant to human populations.

Classical work on the efficacy of selection in steady-state
populations has emphasized the role of the combined param-
eterNs in the dynamics of deleterious alleles. The importance
of this combined parameter has led some authors to argue
that it should be used as a metric for the efficacy of selection
even outside the steady state (Do et al. 2014; Lohmueller
2014). This is problematic for practical and fundamental rea-
sons. On the practical side, the parameter NðtÞs is a function
of time and does not allow for comparison between popula-
tions over finite times:NðtÞs is not a rate, and its time integral
is meaningless. At a more fundamental level, an instanta-
neous difference between two populations in the product
NðtÞs simply indicates a difference in effective population
sizes. The interesting biological question is not whether the

population sizes are different but whether these differences
lead to differential action of selection by the process illus-
trated in Figure 2.

More generally, it is commonly proposed that the effect of
selection should be measured relative to the effect of drift
(Lohmueller 2014) because the classical parameter Ns is a
ratio between a selection term s and a drift term 1=N. Such a
relative measure is not necessary: Morton and FIT efficacies
are absolute measures of the effect of selection, and they do
capture the classical interaction between selection and genetic
drift. In populations of constant size, these efficacies do
depend on the relative magnitude of selection and drift coef-
ficients through the classical parameter Ns. In out-of equilib-
rium populations, however, they depend on a more complex
function of s and NðtÞ: In other words, the classical param-
eter Ns does not measure the effect of selection as compared
to the effect of drift but rather the effect of selection as
modulated by past genetic drift.

Finally, even thoughmost classicalwork has focused on the
effect of selection on fitness or allele frequency, Henn et al.
(2016) recently proposed to measure the effect of selection
on diversity, defining a “reduction in heterozygosity” (RH)
statistic that compares the heterozygosity of selected and
neutral sites. We show in Section S2 of Supplemental Mate-
rial, File S1 that RH is robust to the effect of genetic drift, but
it can be biased by recent mutations.

Asymptotic Results

To study the effect of selection after a population split, we
calculate the moments of the expected allele frequency dis-
tribution fðx; tÞ under the diffusion approximation. In this
formulation, fðx; tÞdx represents the expected number of al-
leles with frequency between x and x þ dx at time t. In a

Figure 2 Effect of drift on the rate of adaptation for h ¼ 0:5. We con-
sider two populations with initial allele frequency 0.5 and selection co-
efficient s ¼ 20:1. The red population does not undergo drift, and the
blue population undergoes one generation of neutral drift, leading to
increased variance in allele frequency. The reduced diversity at each locus
leads to a lower average rate of fitness increase per generation (blue star).
Because the rate of fitness increase is a concave function of allele fre-
quency, drift always reduces the future effect of selection when h ¼ 0:5.

Figure 1 Frequency distribution of deleterious alleles with initial fre-
quency 0.5 after one generation, assuming population sizes of 2N ¼
100;  500; and N; a selection coefficient s ¼ 2 0:6; and no dominance
(h ¼ 0:5). The average effect of selection after one generation does not
depend on N.
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randomly mating population of size N ¼ NðtÞ � 1 and con-
stants s and h, the evolution of fðx; tÞ approximately follows
the diffusion equation (Ewens 2012)

@fðx; tÞ
@t

’ 1
4N

@2

@x2
xð12 xÞfðx; tÞ

2 s
@

@x
½hþ ð12 2hÞx�xð12 xÞfðx; tÞ

þ 2Nud
�
x2

1
2N

�
(1)

where u is the total mutation rate. The first term describes the
effect of drift; the second term, the effect of selection; and the
third term, the influx of new mutations: d is Dirac’s delta
distribution. From this equation, we can easily calculate evo-
lution equations for moments of the expected allele fre-
quency distribution mk ¼ hxki. For example, the rate of
change in allele frequencies _m1 [ dm1=dt is driven by muta-
tion and selection, i.e.,

_m1 ¼ uþ sG1;h

4
(2)

where Gi;h ¼ 4ðmi 2miþ1Þhþ 4ð12 2hÞðmiþ1 2miþ2Þ is a
function of the diversity in the population that generalizes
the heterozygosity p1 ¼ G1;1=2 [see the Appendix for detailed
calculations and Evans et al. (2007) and Balick et al. (2015)
for other applications of the moment approach]. We can de-
fine the contributions of selection andmutation to changes in
allele frequency as _m1s [ sG1;h=4 and _m1u [ u. Morton’s effi-
cacy of selection at a locus is simply s _m1s. Whereas the effect
of mutation is constant and independent of population size,
Morton’s efficacy depends on the history of the population
through G1;h:

s _m1s ¼
s2G1;h

4
(3)

Similarly, changes in the expected fitness W can be decom-
posed into contributions from mutation, drift, and selection:

_W ¼ _Wu þ _WN þ _Ws

¼ s 2huþ ð12 2hÞp1

4N
þ s
�
hG1;h þ ð12 2hÞG2;h

��
2

� �
(4)

Favorable mutations increase fitness, drift increases fitness
when fitness of the heterozygote is below the mean of the
homozygotes, and selection always increases average fitness.

The FIT efficacy _Ws is therefore

_Ws ¼ s2
�
hG1;h þ ð12 2hÞG2;h

��
2 (5)

The right-hand side is the additive variance in fitness, and
Equation 5 is an expression of the FIT [see, e.g., equations 1.9
and 1.42 in Ewens (2012)]. Importantly, the FIT efficacy
describes only one of three genetic contributions to the rate
of adaptation. Interpreting changes in fitness in terms of FIT

efficacy requires picking apart the effects of drift and mutation
from those of selection. In addition to these genetic effects,
changes in the environment can directly affect fitness, intro-
ducing a further confounder (Mustonen and Lassig 2010).

Now consider an ancestral population that splits into two
isolated randomly mating populations with initial sizes NA

and NB at time t ¼ 0. The populations may experience con-
tinuous population size fluctuations. If we expand the mo-
ments mk of the allele frequency distribution in Taylor series
around t ¼ 0; we can easily solve the diffusion equation to
study the differentiation between the two populations right
after the bottleneck. Here we provide an overview of the
main results. Detailed derivations are provided in the
Appendix.

The difference in fitness between the two popula-
tions DWðtÞ ¼ WAðtÞ2WBðtÞ grows linearly in time under
dominance

DWðtÞ ¼ 2sð122hÞtp1;o

4

�
1
NB

2
1
NA

�
þ O

	
t2



(6)

where t is measured in generations, p1;o is the expected het-
erozygosity in the source population, and Oðt2Þ represents
terms at least quadratic in t. This rapid, linear differentiation
is driven by drift coupled with dominance. The smaller pop-
ulation has higher fitness when h. 0:5 for s, 0: drift hides
dominant, deleterious alleles from the action of selection.

If the source population is large and h.0, we have
p1;o ’ 2m1;o ’ 22u=hs (Crow and Kimura 2009), and the
rate of fitness differentiation is independent of s. This gener-
alizes Haldane’s observation that load is insensitive to the
selection coefficient in large populations (Haldane 1937).
By contrast to the constant-size population case, however,
the observation does not hold when h ¼ 0. The initial re-
sponse to the bottleneck is independent of fitness for
0, h, 0:5 (Figure S2 and Figure S3) but not for h ¼ 0 or
h ¼ 0:5 (Figure 3 and Figure S1).

The effect of selection on fitness differences DWsðtÞ grows
only quadratically

DWsðtÞ ¼ s2t2Ph

16

�
1
NB

2
1
NA

�
þ O

	
t3



(7)

where Ph is a measure of diversity that reduces to p1;o when
h ¼ 0:5 (see Appendix).

This slower response is the mathematical consequence of
the intuition provided by Figure 1 and Figure 2: right after the
split, the fitnesses are identical, and the efficacy of selection is
the same in both populations. It takes time for drift to in-
crease the variance in allele frequency and cause differ-
ences in the efficacy of selection, accounting for a factor
t½ð1=NBÞ2 ð1=NAÞ�. It then takes time for differences in the
efficacy of selection to accumulate and produce differences in
fitness, accounting for an additional factor st.

Combining Equations 6 and 7, we get an asymptotic result
for the load differentiation:
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DWasymptoticðtÞ ¼
�
2sð12 2hÞtp1;o

4
þ s2t2Ph

16

�
3

�
1
NB

2
1
NA

�
(8)

This expression describes the leading differentiation in fit-
ness in all the simulations that follow. It is straightforward to

refine this asymptotic result by computing higher-order cor-
rections. However, the number of terms in the expansion in-
creases rapidly. Some of these terms are of particular interest,
suchas thecontributionofnewmutations.Since thedirecteffect
of mutation on load is independent of demography (Equation 4),
we must wait for mutations to accumulate before load differen-
tiation can begin. This leads to an additional factor of ut com-
pared to the case of standing variation. The contribution of drift
acting on new recessive mutations is therefore quadratic:

DWnew ¼ 2sut2ð122hÞ
4

�
1
NB

2
1
NA

�
þ O

	
t3



(9)

The effect of selection on newmutations is only cubic in time:
wemustwait formutations to appear (contributing a factor of
ut), then wait for drift to cause differences on the frequency
distribution of the new mutations {contributing a factor of
t½ð1=NBÞ2 ð1=NAÞ�}, and finally wait for selection to act on
these frequency distribution differences (contributing a fac-
tor of st). The leading contribution of selection is therefore

DWs;new ¼ s2t3uhð5h2 2Þ
6

�
1
NB

2
1
NA

�
þ O

	
t4



Finally, since drift alone does not produce differences in
average allele frequencies, the rate of differentiation in del-
eterious allele frequencies is always quadratic in time, i.e.,

Dm1sðtÞ ¼
st2

8

�ð3h2 1Þp1;o þ 3ð12 2hÞp2;o
�

3

�
1
NB

2
1
NA

�
þ O

	
t3



(10)

Simulations

We simulated the evolution of fðx; tÞ using dadi (Gutenkunst
et al. 2009) and the OOA demographic model illustrated in
Figure 3A. This model begins with an ancestral population of
size Nr ¼ 11; 930 with frequency distribution following the
quasi-stationary distribution of Kimura (1964) and features
population splits and size changes that were inferred from
synonymous polymorphism from the 1000 Genomes Project
data set (Gravel et al. 2011). We estimated the probability
fnði; tÞ that a variant is at frequency i in a finite sample of size
n ¼ 100 for each population given a mutation rate of
m ¼ 1:443 1028 bp21 generation21 (Gravel et al. 2013) in
an infinite genome. We used the finite-sample predictions to
estimate the expected genetic load and the contributions of
drift, selection, and mutation. Finally, to ensure that the re-
sults were not model dependent, we repeated each simula-
tion using a different demographic model described in Do
et al. (2014), featuring a single deeper but shorter OOA
bottleneck.

We simulated all combinations of selection coefficients
2Nrs 2 f0;2 0:01;2 0:1;2 0:3;2 1;2 3;2 10;2 30;2 100g

Figure 3 (A) Changes in load after the OOA split model as a function of
s, given ancestral population size Nr ¼ 11;930 and no dominance
(h ¼ 0:5). (B) Load evolution after the split. We subtracted the load due
to variants fixed in all populations. (C) Difference in load between pop-
ulations. Because h ¼ 0:5, this is equivalent to the difference in additive
load. Dotted lines show asymptotic results from Equations 8 and 10. Load
is given per Gbp of variants at the specified selection coefficient. The total
amount of variation under strong selection in the human genome is likely
much less than 1 Gbp.
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and dominance coefficients h 2 f0; 0:05; 0:2; 0:3; 0:5; 1g.
The contributions of selection and drift were obtained using
Equation 4. To emphasize the long-term effects of the OOA
bottleneck even after drift is suppressed, simulations also
were carried to future times assuming large population sizes
(N ¼ 20Nr) and nomigrations (Figure S6). In all cases, Equa-
tions 8–10 capture the initial increase in load (Figure 3, Fig-
ure S1, Figure S2, and Figure S7).

Genic selection: h = 1/2

Simulated differences in load are modest and limited to
intermediate-effect variants (0:3, j2Nrsj, 30, 2:53 1025 ,
jsj, 0:0025). Assuming the distribution of fitness effects
inferred from European-American data by Boyko et al.
(2008), the excess load in the OOA population is 0.49 per
Gbp of amino-acid-changing variants, in addition to a total
accumulated load of 24 Gbp21 in the African population
(this accumulated load does not include variation that was
fixed at the time of the split). If we consider the 24 Mb of
exome covered by the 1000 Genomes Project and assume
that 70% of mutations are coding in that region (Hwang
and Green 2004), the model predicts a nonsynonymous load
difference of 0.008. The total estimated nonsynonymous
load, excluding mutations fixed in the ancestral state, is 0.4
in the African-American population. In this model, the re-
duced efficacy of selection caused by the OOA bottleneck
leads to a relative increase in nonrecessive load of 2%.
Since we did not consider fixed ancestral deleterious al-
leles in the total load, this figure is an overestimate of the
relative increase in load due to the bottleneck. The relative
increase reaches a maximum of 8% for mutations with
220, 2Nrs, 2 10. The results are similar if we use the dis-
tribution of fitness effects inferred from African-American
data (Boyko et al. 2008).

Using the simple bottleneck demographic model of Do
et al. (2014), we find very similar load (24 Gbp21) and load
differences across populations (2% of the total load).

Partial and complete dominance

The picture changes dramatically when we consider reces-
sive deleterious variants (h ¼ 0). Reactions to changes in popu-
lation size are linear rather than quadratic, and they are more
substantial than in the additive case (Figure S1). The OOA
load due to segregating variants with 2Nrs ¼ 2100 almost
doubles after 500 generations. This excess load in the OOA
population is due entirely to drift and leads to an increased
efficacy of selection in the OOA population because a higher
proportion of deleterious alleles is now visible to selection.
The difference in load for the most deleterious variants is
therefore not sustained. Both the number of very deleterious
variants and the associated genetic load eventually become
higher in the simulated Yoruba population. By contrast,
weak-effect deleterious variants contribute more load in the
simulated European population.

Even though a bottleneck inexorably leads to increased
load when no dominance is present, the additional exposure

of recessive variants therefore leads to “purging,” a reduction
in the frequency of deleterious alleles [see Glémin (2003)
and references therein]. Simulations show that the increase
in recessive load can last hundreds or thousands of gener-
ations for weakly deleterious variants. Glémin (2003) ar-
gued that the purging effect is suppressed in constant-sized
population when Ns is much less than “2 to 5.” This also
holds in a nonequilibrium setting in recessive alleles going
through a bottleneck (Figure S1) (see also Wang et al.
1999). The time required for purging to compensate the
initial fitness loss increases rapidly as the magnitude of
the selection coefficients decreases: whereas our model
predicts a reduced load in present-day OOA populations
for alleles with 2Nrs ¼ 2100, it would take over 20,000
generations of continued isolation in a large constant-sized
population to see purging in alleles with 2Nrs ¼ 2 3 (Fig-
ure S6).

Opposite effects are observed for dominant deleterious
variants (Figure S7). Drift tends to increase fitness by com-
bining more of the deleterious alleles into homozygotes, re-
ducing their average effect on fitness. The difference between
populations is much less pronounced and less sustained than
in the recessive case. Equation 6 shows that the reduced
magnitude is caused by reduced ancestral heterozygosity
p1;0: dominant deleterious alleles are much less likely to
reach appreciable allele frequencies before the split. Here
again, the population with the highest load depends on the
selection coefficient, with a higher load in the simulated Eu-
ropean population for strongly deleterious variants and a
higher load in the simulated Yoruba population for the
weakly deleterious variants.

The distribution of dominance coefficients formutations in
humans is largely unknown, but nonhuman studies suggest
that partial recessive may be the norm [see, e.g., Henn et al.
(2015) and references therein]. Under models with h ¼ 0:2,
we find that the genetic load is elevated in OOA populations
for most selection coefficients Nrs, whereas the additive ge-
netic load is mostly reduced (Figure S3, B and C, and Figure
S4, B and C). These simulations suggest that the rate of ad-
aptation was reduced in OOA populations (i.e., the genetic
load is higher in OOA population), while the efficacy of se-
lection was higher in the OOA population, whether it is mea-
sured by the Morton efficacy or the FIT efficacy (Figure S5).
Thus, unless most nearly neutral variation has h. 0:20, we
do not expect an overall elevated number of deleterious var-
iants in OOA populations. As we move closer to additive
selection, e.g., at h ¼ 0:3; the contributions of alleles with
larger and weaker selection coefficients are of comparable
magnitude and opposite direction. Because of our limited
ability to estimate selection coefficients in humans, this might
explain why observing differences in the overall frequency
of deleterious alleles between populations has been so diffi-
cult. This also suggests that any claim for an across-the-board
difference in the efficacy of selection between two popula-
tions will have to rely on a number of assumptions about
fitness coefficients in human populations.
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Present-Day Differences in the Efficacy of Selection

The Wright-Fisher predictions for the instantaneous Morton
and FIT efficacies of selection (Equations 3 and 5) depend on
the present-day allele frequency distribution, on the domi-
nance coefficient h, and on the selection coefficient s. How-
ever, s is a multiplicative factor in both equations and cancels
out when we consider the relative rate of adaptation across
populations. We can therefore use Equations 3 and 5 to esti-
mate differences in the efficacy of selection between popu-
lations based on the present-day distribution of allele
frequencies. For nearly neutral alleles, the present-day fre-
quency distribution is similar to the neutral frequency spec-
trum and largely independent of h. We can therefore use the
present-day frequency spectrum for synonymous variation to
estimate the relative efficacy of selection for all nearly neutral
alleles at different values of h (Figure 4). Figure S9 and Fig-
ure S10 show similar results for nonsynonymous and pre-
dicted deleterious alleles (for the most deleterious classes,
the assumption that the present-day frequency spectra de-
pend weakly on h is less accurate).

In the nearly neutral case, the Luhya population (LWK)
shows the highest Morton and FIT efficacies of selection for
most dominance parameters and is used as a basis of com-
parison. The estimated FIT efficacy of selection is higher in
African population for all dominance coefficients, as is the
Morton efficacy, except for completely recessive alleles. The
reduction in Morton efficacy of selection for nearly neutral
variation in OOA populations is 25–39% for dominant var-
iants, 19–31% for additive variants, and 6–13% for fully
recessive variants. The reduction in the FIT efficacy in
OOA populations is 29–44% for dominant variants, 19–
31% for additive variants, and 0.2–6% for fully recessive
variants. This is also consistent with the interpretation of
Glémin (2003) that purging, measured as the reduction in
the frequency of recessive alleles caused by a bottleneck, is
not expected for nearly neutral variants. By contrast, esti-
mates using sites with high predicted pathogenicity accord-
ing to combined annotation-dependent depletion (CADD)
(Kircher et al. 2014) do suggest that purging of deleterious
variation by drift is still ongoing in OOA populations (Figure
S9 and Figure S10).

Admixed populations from the Americas with the highest
African ancestry proportion also show elevated predicted
efficacy of selection: African Americans (75.9% African an-
cestry) (Baharian et al. 2015), Puerto Rican (14.8% African
ancestry) (Gravel et al. 2013), Colombians (7.8% African
ancestry) (Gravel et al. 2013), and Mexican Americans
(5.4% African ancestry) (Gravel et al. 2013). The predicted
Morton efficacy of selection in admixed populations is much
larger than the weighted average of source populations would
suggest (Figure 4C, which uses CHB, CEU, and YRI as ancestral
population proxies for native, European, and African ancestries).
By averaging out some of the genetic drift experienced by the
source populations since their divergence, admixture increases
the overall amount of additive variance in the population and

therefore leads to a substantial and rapid increase in the
predicted efficacy of selection for nearly neutral alleles.

Data availability

The authors state that all data necessary for confirming the
conclusions presented in the article are represented fully
within the article.

Figure 4 (A) Present-day Morton efficacy of selection for nearly neutral var-
iants, estimated from 1000 Genomes Project synonymous variation. (B) FIT
efficacy for the same variants and (C) Morton efficacy in admixed populations
are increased compared to the average efficacies in ancestral populations.
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Discussion

Selection affects evolution in many ways. It tends to increase
the frequency of favorable alleles and the overall fitness of a
population, and it often reduces diversity. The rates atwhich it
performs these tasks vary across populations, and population
geneticists like to frame these differences in terms of the
efficacy of selection. The word “efficacy” implies a measure
of achievement, but there are many ways to define achieve-
ment for selection. We considered two measures of achieve-
ment: the change in deleterious allele frequency (i.e., the
Morton efficacy) and the change in load caused by selection
(i.e., the FIT efficacy). Even though the two quantities are
closely related and are equal for additive selection, the Mor-
ton efficacy is much easier to measure: systematic differences
in the frequency of deleterious alleles are robust to drift and
to modest changes in the environment. By contrast, the FIT
efficacy is impossible to observe directly and requires picking
apart the contributions of selection, drift, and the environ-
ment. Given the long-standing controversy about how this
should be done in the context of Fisher’s fundamental theo-
rem (Ewens and Lessard 2015), we would advise against
using it.

We have argued that other popular measures for the
efficacy of selection (Lohmueller et al. 2008; Casals et al.
2013; Lohmueller 2014; Henn et al. 2016) are biased in
out-of-equilibrium populations studied over short time
scales. Many previous claims that selection acted differen-
tially in human populations (Lohmueller et al. 2008; Casals
et al. 2013) could be explained by these biases. Confirming
this interpretation, Fu et al. (2014) found no differences in
the average frequency of deleterious alleles between African
Americans and European Americans in the ESP 6500 data set
(NHLBI GO Exome Sequencing Project 2012). However, they
did report a slight but extremely significant difference in the
average number of deleterious alleles per individual for a set
of putatively deleterious SNPs. The contrasting results are
surprising because the two statistics are equal up to a multi-
plicative constant: the average number of deleterious alleles
per genome equals the mean frequency of deleterious alleles
multiplied by the number of loci. We could reproduce the
results from Fu et al. (2014) but found that the statistical test
used did not account for variability introduced by genetic
drift in a finite genome: results remained significant if allele
frequencies were randomly permuted between African Amer-
icans and European Americans (see Section S1 of File S1 for
details). This emphasizes that an empirical observation of
differences in genetic load must be robust to both finite sam-
ple size and finite genome to be attributed to differences in
the efficacy of selection.

Figure 4, Figure S9, and Figure S10 strongly suggest that
the OOA bottleneck still influences the present-day efficacy
of selection. By extension, they also suggest that the efficacy
of selection did differ and will differ among populations. Im-
portantly, the differences in frequency distributions across
populations that provide this support are not a consequence

of past differences in the efficacy of selection but a possible
cause for such differences in the present and future. We have
shown that some of the future differences are not inevitable
and can be attenuated by demographic processes including
admixture. Therefore, measuring actual differences in the
efficacy of selection can only be achieved bymeasuring actual
differences in the average frequency or effect of deleterious
alleles.

The simulations presented here, together with the results
of Simons et al. (2014) and Do et al. (2014), do suggest that
the classical prediction on the differential efficacy of selection
in small populations can be verified if only we can accurately
isolate variants of specific selective effect and dominance
coefficients. By picking apart variants of different selection
and dominance coefficients, we should soon be able to con-
vincingly and directly observe the consequences of differ-
ences in the efficacy of selection. The recent results of Henn
et al. (2016) using a version of the Morton efficacy suggest
such differences for a subset of variants and therefore provide
important experimental validation for a classical population
genetics prediction. By contrast, the observation of genome-
wide differences in the efficacy of selection across popula-
tions depends on the cancellation of effects across different
variant classes and therefore can depend sensitively on the
particular choice of a metric. For this reason, overall differ-
ences in load among populations may not be particularly
informative about the fundamental processes governing
human evolution.
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Appendix

Background

To derive the asymptotic results in the text, we start with the diffusion approximation for the distribution fðx; tÞ of allele
frequencies x over time t in an infinite-sites model (see Crow and Kimura 2009, section 8.6):

@fðx; tÞ
@t

’ 1
4N

@2

@x2
xð12 xÞfðx; tÞ2 s

@

@x
½hþ ð12 2hÞx�xð12 xÞfðx; tÞ þ 2Nud

�
x2

1
2N

�
(A1)

where N is the effective population size, h is the dominance coefficient, s is the selection coefficient, and u is the mutation rate.
In this model, new mutations are constantly added via Dirac’s delta function d. Because there are no back-mutations in this
model, the proportion of fixed mutations increases over time without bound. Because we are only interested in population
differences accumulating over a short time span, however, we can simply ignore the (infinite) number of deleterious alleles
that fixed before the population split. The time scales that we will consider are short enough that back-mutations and multiple
mutations contribute little to changes in allele frequencies.

A complete solutionof this problemcanbeexpressedasa superpositionofGegenbauerpolynomials (Kimura1964).However,
here we are looking for simple asymptotic results that will help us to understand the dynamics of the problem.Wewill consider
the evolution of moments of the allele frequency distribution mk [

R 1
0 dxxkfðx; tÞ. Similar moment approaches have been used

in Evans et al. (2007) and Balick et al. (2015). Because there is a potentially infinite number of fixed sites at frequencies 0 and 1,
it is often convenient to distinguish contributions from segregating sites and fixed sites, i.e.,

mk ¼
Z 12

0þ
dxxkfðx; tÞ þ K0dk;0 þ K1

where K0 is the number of sites fixed at frequency 0, K1 is the number of sites fixed at frequency 1, and dk;0 is Kronecker’s delta.
Both K0 and K1 can be infinite in this model, but this will not be a problem because we will ultimately consider only differences
or rates of change in the moments, and these remain finite. In this notation, m0 is the (possibly infinite) number of sites, and m1
is the expected number of alternate alleles per haploid genome.

To obtain evolution equations for the moments, we integrate both sides of Equation A1 using
R 12
0þ dxxk. The left-hand side

gives

Z 12

0þ
dxxk

@fðx; tÞ
@t

¼ @
R 12

0þ dxxkfðx; tÞ
@t

¼ _mk 2 _K0dk;0 2 _K1

(A2)

and the right-hand side can be integrated by parts. For k ¼ 0, this yields

_m0 ¼ 2Nu2
fð0; tÞ þ fð1; tÞ

4N
þ _K0 þ _K1

where fð0; tÞ and fð1; tÞ are defined by continuity from the open interval ð0; 1Þ and do not include fixed sites. Because the
number of sites is constant ( _m0 ¼ 0) and the diffusion equation is continuous, we require

_K0 ¼ 22Nuþ fð0; tÞ
4N

_K1 ¼ fð1; tÞ
4N

(A3)

These equations are equivalent to equations 3.18 and 3.19 in Kimura (1964).
To obtain an evolution equation for mk at arbitrary k, we return to the integration of Equation A1 with

R 12
0þ dxxk. We use the

left-hand-side expression obtained in Equation A2 and once again integrate the right-hand side by parts. This yields

_mk ¼ kðk2 1Þ
8N

pk21 þ
sk
4
Gk;h þ

u

ð2NÞk21 (A4)

where
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pk ¼ 2
	
mk 2mkþ1



Gk;h ¼ 2½hpk þ ð12 2hÞpkþ1�

(A5)

These are functions of themomentsm and therefore can be thought of as measures of the shape of the frequency distributionf.
Thefirst term inEquationA4represents theeffect ofdrift; the second term, theeffect of selection; and the third term, theeffect

of mutation. For example, if k ¼ 1 and h ¼ 1=2, we get

_m1 ¼ sðm1 2m2Þ=2þ u

The frequency of damaging alleles can decrease because of selection or increase because of mutation.

Response in Allele Frequencies

Solving Equation A4 in general is challenging because _mk can depend on mkþ1 and mkþ2, leading to an infinite number of
coupled equations. However, it can be used to calculate the response in allele frequency to a sudden change in demographic or
selective conditions. Consider a population of size No that experiences a change in size to NA at time t ¼ 0. We can expand mk
for short times, i.e.,

mkðtÞ ¼ mk;o þ mk;1t þ mk;2t
2 þ O

	
t3



(A6)

where mk;o is the kth moment prior to the population size change, and Oðt3Þ represent terms at least cubic in t. The coefficients
can be evaluated by expanding both sides of Equation A4 using Equation A6 and then collecting powers of t. For example, we
get

m1ðtÞ ¼ m1;o þ
 
sG1;h




t¼0

4
þ u

!
t þ O

	
t2



The frequency of variants can increase even in a steady-state regimewithNA ¼ No because ourmodel assumes a constant supply
of irreversible mutations. However, this linear term is independent of NA and does not contribute to differences across
populations that share a common ancestor. Differences Dm1ðtÞ in the number of segregating sites between two populations
with sizes NA and NB appear at the next order in t. Computations are elementary but a bit more cumbersome. Matching terms
linear in t in Equation A4, we find Equation 10:

Dm1ðtÞ ¼
st2

8

�ð3h2 1Þp1;o þ 3ð12 2hÞp2;o
�
3

�
1
NB

2
1
NA

�
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where pi;o is the moment pi computed for the common ancestral population.

Response in Genetic Load

To compute the fitness in the diploid case, we write

W ¼ s½2hm1 þ ð122hÞm2� (A7)

Using Equation A4, we get

_W ¼ _Ws þ _Wu þ _WN (A8)

where

_Ws ¼ s
�
s
2

	
hG1;h þ ð12 2hÞG2;h


�
_Wu ¼ sð2huÞ

_WN ¼ s
�ð12 2hÞ

4N
p1

� (A9)
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are the instantaneous contributions of selection, mutation, and drift to changes in fitness. Themutation term is constant in time
and independent of population size; it does not contribute directly to differences across populations. The drift term, by contrast,
has anexplicit dependenceon thepopulation size; this leads todifferentiationbetweenpopulations that growlinearly in time.To
see this,we compute the load using EquationA7 and the time dependence computed in EquationA6 as in the sectionResponse in
Allele Frequencies:

DW ¼ W12W2 ¼ 2sð12 2hÞtp1;o

4

�
1
NB

2
1
NA

�
þ O

	
t2



(A10)

This reduction in load is driven by drift, i.e., the third term in Equation A9. It is not caused by selection, in the sense that it does
not result from differential reproductive success between individuals. As expected, the contribution of drift vanishes for
additive variants (h ¼ 1=2).

For arbitrary h, the change in fitness caused by selection is

DWs ¼ s2t2Ph
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NB

2
1
NA

�
þ O

	
t3



where Ph is a statistic of the ancestral frequency distribution, i.e.,

Ph ¼ 4hp1;oð5h2 2Þ2 12p2;oð12 2hÞð12 4hÞ þ 24p3;oð122hÞ2 (A11)

which reduces to the heterozygosity p1;0 when h ¼ 1=2: The statisticPh depends only on the ancestral frequency distribution
and the dominance coefficient.

Genetic drift also contributes to the changes in load at second order in t through _WN. In addition to the linear term from
Equation A10, we find three quadratic contributions that vanish when h ¼ 1=2: a second-order contribution of genetic drift, a
contribution from the rate of change in population size and drift, and a contribution from newmutations and drift. Even though
these terms can be comparable in magnitude to the contribution of selection in Equation A11 when h 6¼ 1=2, they are sub-
dominant to Equation A10. We only consider the contribution of new mutations in some detail because this contribution tells
us whether population differentiation in the genetic load is due to old, shared variation or to new, population-specific variation.

Effect of New Mutations

If we set pi;o ¼ 0 in the preceding equations, we can calculate the impact of new mutations on the genetic load. The leading
term is again due to drift and dominance:

DWnew ¼ 2sut2ð12 2hÞ
4

�
1
NB

2
1
NA

�
þ O

	
t3



(A12)

while the leading term describing the efficacy of selection is now cubic in t:

DWs;new ¼ s2t3uhð5h2 2Þ
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When h 6¼ 1=2, drift also contributes t3 terms toDWnew. These are reasonably straightforward to compute but are subdominant
to Equation A12. We therefore use the asymptotic result

DWnew;asymptotic ¼ 2sut2ð12 2hÞ
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Comparisons with simulated data are shown in Figure S8.
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11, 930. (A) Overall genetic load evolution. The load due to
variants that are fixed in all populations is not included. (B)
Difference in load between the two populations. (C) Differ-
ences in additive load. The dashed lines represent the asymp-
totic results from Equations (8) and (10).
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Figure S2 Changes in load after the OOA split model il-
lustrated in Figure 3A, assuming partial recessive variants
(h = 0.05) as a function of s and given ancestral population
size Nr = 11, 930. (A) Overall genetic load evolution. The
load due to variants that are fixed in all populations is not in-
cluded. (B) Difference in load between the two populations.
(C) Differences in additive load. The dashed lines represent
the asymptotic results from Equations (8) and (10).
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Figure S3 Changes in load after the OOA split model il-
lustrated in Figure 3A, assuming partial recessive variants
(h = 0.2) as a function of s and given ancestral population
size Nr = 11, 930. (A) Overall genetic load evolution. The
load due to variants that are fixed in all populations is not in-
cluded. (B) Difference in load between the two populations.
(C) Differences in additive load. The dashed lines represent
the asymptotic results from Equations (8) and (10).
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Figure S4 Changes in load after the simple OOA bottleneck
model from (Do et al. 2014), assuming partial recessive vari-
ants (h = 0.2) as a function of s and given ancestral population
size Nr = 11, 930. (A) Overall genetic load evolution. The
load due to variants that are fixed in all populations is not in-
cluded. (B) Difference in load between the two populations.
(C) Differences in additive load. The dashed lines represent
the asymptotic results from Equations (8) and (10).
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Figure S5 Integrated contributions of selection to load differen-
tiation according to FIT (total load) and Morton (additive load)
for partially recessive alleles (h = 0.2). Both show an overall
increased effect of selection in the OOA population. However,
genetic load remains higher in the OOA population because of
the contribution of drift (Figure S3).
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Figure S6 Excess recessive load in OOA populations, assum-
ing continued future isolation between large populations
(N = 20Nr). This serves to illustrate that the ‘purging’ effect of
the bottleneck on deleterious variants is observed for all alleles
with Nrs < −3, but that it would require much more time to
compensate for the initial loss in fitness for mildly deleterious
alleles with Nrs > −30.
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Figure S7 Changes in load after the OOA split model illus-
trated in Figure 3A, assuming dominant deleterious variants
(h = 1), as a function of s and given ancestral population
size Nr = 11, 930. (A) Overall genetic load evolution. The
load due to variants that are fixed in all populations is not in-
cluded. (B) Difference in load between the two populations.
(C) Differences in additive load. The dashed lines represent
the asymptotic results from Equations (8) and (10).
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the OOA split model illustrated in Figure 3A, given h = 0.5
and ancestral population size Nr = 11, 930. The dashed lines
represent the asymptotic results from Equation (A13).
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Figure S9 A) Present-day Morton efficacy of selection for
nearly neutral variants, estimated from 1000 Genomes non-
synonymous variation, assuming different dominance coeffi-
cients h B) FIT efficacy for the same variants.
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Figure S10 A) Present-day Morton efficacy of selection for
nearly neutral variants, estimated from 1000 Genomes variants
with CADD score above 2, assuming different dominance
coefficients h. B) FIT efficacy for the same variants.



Supplementary material for
When is selection effective? by S. Gravel

S1. Analysis of the Fu et al. result

Fu et al presents two different tests for differences in the number
of deleterious alleles between individuals. In the first test, a
t-test, they compare the average frequency of deleterious alle-
les between the two populations and find no significant differ-
ences (p = 0.82). In the second test (a Mann-Whitney test), they
compared the number of deleterious alleles per individual, and
found an extremely significant difference (p < 10−15). We could
reproduce these results using the publicly available ESP 6500
data (National Heart, Lung, and Blood Institute (NHLBI) GO
Exome Sequencing Project 2012) using a permutation test. Since
the average frequency of deleterious alleles and the number of
deleterious alleles per individual are related by a proportionality
constant (i.e., the length of the genome), we suspected that the
significant difference results from a difference in the underlying
null models of each test.

To verify this, we produced simulated datasets in which the
allele frequency at each site was randomly permuted between
European-Americans and African-Americans, creating a dataset
for which there is no meaningful evolutionary difference be-
tween the two populations, except for randomly assigned differ-
ences in allele frequency. We nevertheless found very significant
differences between the average number of deleterious alleles
carried by individuals of the two populations for most simula-
tions. This effect can even be reproduced by analyzing a single
SNP. The Mann-Whitney test used in Fu et al. conditions on the
set of SNPs used and therefore does not account for the fact that
drift can have affected different SNPs differently. The difference
in deleterious allele count observed in Fu et al is therefore real,
but it only applies to a particular set of SNPs and it is consistent
with the action of genetic drift acting on neutral variation. It does
not indicate differences in the action of selection, nor systematic
differences in fitness across populations. To assign differences in
deleterious allele frequency to the systematic action of selection,
one must show that the difference is robust to both finite sample
size and finite genome effects. Both can be tested through simple
resampling strategies. In the ESP6500 example, resampling over
SNPs by bootstrap led to no significant differences in the number
of deleterious alleles per individual.

S2. Reduction in heterozygosity (RH) statistic

The reduction in heterozygosity (RH) statistic was recently in-
troduced (Henn et al. 2016) as a tool to measure the effect of
selection on population diversity as an addition to analyses
based on Morton’s efficacy. In this section, we show that even
though RH is an interesting measure of diversity in a popula-
tion, its interpretation in terms of the effect of selection can be
challenging: First, RH can be affected by recent mutation and,
second, differences in the effect of selection on RH may reflect
rather mundane normalization issues rather than interesting
biology.

RH is defined as

RH ≡ 1−
π|s
π|n

,

where π is the average heterozygosity, |s indicates a quantity
measured at selected sites, and |n indicates a quantity measured

at neutral sites. The rate of change in RH is therefore

˙RH = −
π̇|s
π|n

+
π|sπ̇|n

π2
|n

(S2)

Using equation (A4) and (A5) to leading order in 1
N , we find

π̇|n =
−π|n
2N

+ 2u|n

π̇|s =
−π|s
2N

+ 2u|s +
sΓ1,h|s

2
− sΓ2,h|s.

(S3)

where u is the mutation rate and Γi,h is defined in Equation (A5).
The first terms describe the action of drift, the second terms
describe the action of mutation, and the last two terms in the
second line describe the action of selection. The contributions
of drift cancel out in Equation (S2), so that ˙RH only depends on
contributions from selection and mutation:

˙RH = s
2Γ2,h|s − Γ1,h|s

2π|n
+ 2u|n

π|s
π2
|n
−

2u|s
π|n

. (S4)

Now consider the rate of change in the difference ∆RH be-
tween populations A and B:

˙∆RH =s∆
2Γ2,h|s − Γ1,h|s

2π|n
+ 2∆

(
u|n

π|s
π2
|n
− u|s

1
π|n

)

=s∆
2Γ2,h|s − Γ1,h|s

2π|n

+ 2∆

(
1

π|n

(
u|n(1− RH)− u|s

))
,

(S5)

By contrast with Morton’s efficacy, the mutation term does not
cancel out for ∆RH.

To show that the selection term can be substantial, we con-
sider the case of strong selection, where 1− RH � 1. In this
case, the contribution of mutation to ˙∆RH is

−2u|s∆
1

π|n
,

while the contribution of selection to ˙∆RH is

s∆
2Γ2,h|s − Γ1,h|s

2π|n
' −2hs∆

µ1|s
π|n
' 2u|s∆

1
π|n

(S6)

where the first approximation uses Equation (A5) and assumes
that higher moments are sub-dominant under strong selection
because allele frequencies are small. The second approximation
uses the mutation-selection balance relation µ1|s '

−u|s
hs (e.g.,

equation 6.2.9 in (Crow and Kimura 2009)). The effects of mu-
tation and selection on ∆RH cancel out: average frequencies of
very deleterious alleles are governed by the mutation-selection
balance and are unaffected by population size differences. Mu-
tation tends to increase RH in the less diverse population.

Identifying the effect of selection on diversity therefore re-
quires picking apart the effects of selection and mutation (if
measuring ∆RH), or the effect of selection and drift (if measur-
ing ∆πs). As in the case of fitness, knowing only the present-day
distribution of allele frequency is not enough to identify the
effect of selection unambiguously, unless the alternate effect can
be shown to be weak.



S3. Example of two populations with identical start and
end frequency distributions, but different measures
of FIT efficacy

Imagine that all alleles all have dominance coefficient 0 < h <
1, selection coefficient s and dominance h, and consider two
identical populations with exactly L segregating alleles, all at
frequency xo at time to. The initial fitness in both populations
is Wo = Ls

(
2hxo + (1− 2h)x2

o
)

. Assume no mutation. In the
second population, a short bottleneck occurs that increases the
variance in allele frequency before selection had time to change
mean allele frequencies. The difference in fitness between the
two populations after the short bottleneck is δWbottleneck =

Ls(1− 2h)σ2, where σ2 is the variance in allele frequency in the
second population. The change in fitness in population 2 up to
this point is entirely attributed to drift.

After the bottleneck, the population sizes increase to a very
large value, so that subsequent effects of drift can be neglected.
Selection is left to act until we have approached the maximum
fitness state, which has fitness W = Ls if s > 0 and W = 0 if
s < 0. The change in fitness W−Wo is equal in both populations,
since the initial and final states are exactly the same. The FIT
‘effect of selection’ is W −Wo in population 1, since all changes
are due to selection. In population 2, the effect of selection is
W −Wo − δWbottleneck, because a change δWbottleneck was
caused by drift rather than by selection.

S4. Microscopic and macroscopic efficacy of selection

The main text discusses the effect of selection by averaging over
all possible allelic trajectories. Recent work has defined a mi-
croscopic ‘rate of adaptation’ (Mustonen and Lassig 2010) as a
measure of the effect of selection on individual allele trajectories.
Even though it is not possible to attribute specific changes in
frequency to the effect of drift or to selection, individual tra-
jectories can contain more information than allele frequency
distributions.

In this section we explore the relationship between the mi-
croscopic and macroscopic definitions of the rate of adaptation
in the absence of mutation. Consider an individual allelic fre-
quency trajectory {xt}t=1,...,T , with t the time in generations. We
can write the fitness change ∆Wt at generation t as

W(xt + ∆xt)−W(xt) 'W ′(xt)∆xt + W ′′(xt)
(∆xt)

2

2
,

where ∆xt = xt+1 − xt and W ′ represents the partial deriva-
tive of the fitness function with respect to frequency x. In the
constant-fitness models discussed above, W ′(xi) = 2s(h + (1−
2h)x) and W ′′(xi) = 2s(1− 2h). When |s| � 1, the expectation
of ∆xt is ∆xt = sx(1− x)(h + x(1− 2h)).

Through direct substitution, we find that the expectation
W ′(xt)∆xt = W ′(xt)∆xt is also equal to Ẇs in (5). The sec-

ond contribution to the change in fitness, W ′′(xt)
(∆xt)2

2 , there-
fore corresponds to ẆN . We therefore define the quantities
σt = W ′(xt)∆xt as the microscopic analog to the macroscopic
FIT efficacy Ẇs, and νt = W ′′(xt)(∆xt)

2 as the analog to the
macroscopic effect of drift on selection ẆN . These are not the
only possible analogs—for example, we could consider the ex-
pectation of the linear term σt as the microscopic effect of selec-
tion, and νt + σt − σt as the microscopic effect of drift, without
changing the expected values.

Mustonen and Lassig define a ‘fitness flux’ φt as a mea-
sure of the rate of adaptation (Mustonen and Lassig 2010).

The fitness flux definition appears identical to our definition
for the microscopic FIT efficacy σ = ∑t W ′(xt)∆xt, namely
φt = ∑i W ′(yi)∆yi, where yi is an allele frequency trajectory
sampled densely in time. However, there is an important differ-
ence in the assumptions about trajectories {x} and {y}. Whereas
our trajectory {x}t is labeled by the time in generation, the time
steps in {yi} are chosen so that ∆yi � 1

N . Because of this con-
straint, time steps in (Mustonen and Lassig 2010) must be finer
than one generation, and the yi must be interpolated within
generations. While integrating over this smoothed trajectory,
quadratic terms in ∆yt can be neglected: The integrated fitness
flux yields the total rate of fitness change, whether it is due to
drift or to selection.


	FigureS1.pdf
	FigureS2.pdf
	FigureS3.pdf
	FigureS4.pdf
	FigureS5.pdf
	FigureS6.pdf
	FigureS7.pdf
	FigureS8.pdf
	FigureS9.pdf
	FigureS10.pdf
	FileS1.pdf

