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ABSTRACT The advent of accessible ancient DNA technology now allows the direct ascertainment of allele frequencies in ancestral
populations, thereby enabling the use of allele frequency time series to detect and estimate natural selection. Such direct observations
of allele frequency dynamics are expected to be more powerful than inferences made using patterns of linked neutral variation
obtained from modern individuals. We developed a Bayesian method to make use of allele frequency time series data and infer the
parameters of general diploid selection, along with allele age, in nonequilibrium populations. We introduce a novel path augmentation
approach, in which we use Markov chain Monte Carlo to integrate over the space of allele frequency trajectories consistent with the
observed data. Using simulations, we show that this approach has good power to estimate selection coefficients and allele age.
Moreover, when applying our approach to data on horse coat color, we find that ignoring a relevant demographic history can
significantly bias the results of inference. Our approach is made available in a C++ software package.
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THE ability to obtain high-quality genetic data from an-
cient samples is revolutionizing the way that we under-

stand the evolutionary history of populations. One of themost
powerful applications of ancient DNA (aDNA) is to study the
action of natural selection.While methodsmaking use of only
modern DNA sequences have successfully identified loci
evolving subject to natural selection (Nielsen et al. 2005;
Voight et al. 2006; Pickrell et al. 2009), they are inherently
limited because they look indirectly for selection, finding its
signature in nearby neutral variation. In contrast, by sequenc-
ing ancient individuals, it is possible to directly track the
change in allele frequency that is characteristic of the action
of natural selection. This approach has been exploited re-
cently, using whole-genome data to identify candidate loci
under selection in European humans (Mathieson et al. 2015).

To infer the action of natural selection rigorously, several
methods have been developed to explicitly fit a population
genetic model to a time series of allele frequencies obtained

via aDNA. Initially, Bollback et al. (2008) extended an ap-
proach devised byWilliamson and Slatkin (1999) to estimate
the population-scaled selection coefficient, a ¼ 2Nes; along
with the effective size, Ne: To incorporate natural selection,
Bollback et al. (2008) used the continuous diffusion approx-
imation to the discrete Wright–Fisher model. This required
them to use numerical techniques to solve the partial differ-
ential equation (PDE) associated with transition densities of
the diffusion approximation to calculate the probabilities of
the population allele frequencies at each time point. Ludwig
et al. (2009) obtained an aDNA time series from six coat-
color–related loci in horses and applied the method of
Bollback et al. (2008) to find that two of them, ASIP and
MC1R, showed evidence of strong positive selection.

Recently, a number of methods have been proposed to
extend the generality of the Bollback et al. (2008) frame-
work. To define the hidden Markov model they use, Bollback
et al. (2008) were required to posit a prior distribution on the
allele frequency at the first time point. They chose to use a
uniform prior on the initial frequency; however, in truth the
initial allele frequency is dictated by the fact that the allele at
some point arose as a new mutation. Using this information,
Malaspinas et al. (2012) developed a method that also infers
allele age. They also extended the selection model of
Bollback et al. (2008) to include fully recessive fitness
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effects. A more general selective model was implemented by
Steinrücken et al. (2014), who model general diploid selec-
tion, and hence they are able to fit data where selection acts
in an over- or underdominant fashion; however, Steinrücken
et al. (2014) assumed a model with recurrent mutation and
hence could not estimate allele age. The work of Mathieson
and McVean (2013) is designed for inference of metapopu-
lations over short timescales and so it is computationally
feasible for them to use a discrete time, finite population
Wright–Fisher model. Finally, the approach of Feder et al.
(2014) is ideally suited to experimental evolution studies
because they work in a strong selection, weak drift limit that
is common in evolving microbial populations.

One keyway that thesemethods differ fromeach other is in
how they compute the probability of the underlying allele
frequency changes. For instance, Malaspinas et al. (2012)
approximated the diffusion with a birth–death type Markov
chain, while Steinrücken et al. (2014) approximate the like-
lihood analytically, using a spectral representation of the
diffusion discovered by Song and Steinrücken (2012). These
different computational strategies are necessary because
of the inherent difficulty in solving the Wright–Fisher par-
tial differential equation. A different approach, used by
Mathieson and McVean (2013) in the context of a densely
sampled discrete Wright–Fisher model, is to instead compute
the probability of the entire allele frequency trajectory in
between sampling times.

In this work, we develop a novel approach for inference of
general diploid selection and allele age from allele frequency
time series obtained from aDNA. The key innovation of our
approach is that we impute the allele frequency trajectory
between sampled points when they are sparsely sampled.
Moreover, by working with a diffusion approximation, we
are able to easily incorporate general diploid selection and
changing population size. This approach to inferring param-
eters from a sparsely sampled diffusion is known as high-
frequency path augmentation and has been successfully
applied in a number of contexts (Roberts and Stramer
2001; Golightly and Wilkinson 2005, 2008; Sørensen 2009;
Fuchs 2013). The diffusion approximation to the Wright–
Fisher model, however, has several features that are atypical
in the context of high-frequency path augmentation, in-
cluding a time-dependent diffusion coefficient and a bounded
state space. We test this approach with simulation, showing
that it is important to accurately model demography history,
and then apply it to several data sets and find that we have
power to estimate parameters of interest from real data.

Model and Methods

Overview

We begin by first reviewing the Wright–Fisher model, pre-
senting its diffusion approximation as a stochastic differential
equation (SDE). We then describe our inferential strategy,
using a path augmentation approach, in which we model

the underlying allele frequency trajectory as an additional
(infinite-dimensional) parameter. This requires us to derive
an expression for the likelihood of an allele frequency trajec-
tory, including accounting for the fact that we model alleles
that start from low frequency as new mutants. Finally, we
describe a Markov chain Monte Carlo algorithm for obtaining
a posterior distribution of the parameters of natural selection,
as well as the allele frequency trajectory.

Generative model

We assume a randomly mating diploid population that is size
NðtÞ at time t, where t is measured in units of 2N0 generations
for some arbitrary, constant N0: At the locus of interest, the
ancestral allele, A0; was fixed until some time t0 when the de-
rived allele, A1; arose with diploid fitnesses as given in Table 1.

Given that an allele arises at some finite population fre-
quency 0, x0 , 1 at some time t0; the trajectory of population
frequencies of A1 at times t$ t0; ðXtÞt$ t0 ; is modeled by the
usual diffusion approximation to the Wright–Fisher model
(and many other models such as the Moran model), which
we henceforth call the Wright–Fisher diffusion. While many
treatments of the Wright–Fisher diffusion define it in terms of
the partial differential equation that characterizes its transi-
tion densities (e.g., Ewens 2004), we instead describe it as
the solution of a SDE. Specifically, ðXtÞt$ t0 satisfies the SDE

dXt ¼ Xtð12XtÞða1ð2Xt 2 1Þ2a2XtÞ  dt þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xtð12XtÞ

rðtÞ

s
  dBt

Xt0 ¼ x0;
(1)

where B is a standard Brownian motion, a1 ¼ 2N0s1;
a2 ¼ 2N0s2; and rðtÞ ¼ NðtÞ=N0: If Xt* ¼ 0 (resp. Xt* ¼ 1)
at some time t* . t0; then Xt ¼ 0 (resp. Xt ¼ 1) for all t$ t*:

Tomake this description of the dynamics of the population
allele frequency trajectory ðXtÞt$ t0 complete, we need to
specify an initial condition at time t0: In a finite population
Wright–Fisher model we would take the allele A1 to have
frequency 1=2Nðt0Þ at the time t0 when it first arose in a
single chromosome. This frequency converges to 0 when
we pass to the diffusion limit, but we cannot start the
Wright–Fisher diffusion at 0 at time t0 because the diffusion
started at 0 remains at 0. Instead, we take the value of Xt0 to
be some small, but arbitrary, frequency x0: This arbitrariness
in the choice of x0 may seem unsatisfactory, but we will see
that, in the context of a Bayesian inference procedure, the
resulting posterior distribution for the parameters a1;a2; t0
converges as x0Y0 to a limit that can be thought of as the
posterior corresponding to a certain improper prior distribu-
tion, and so, in the end, there is actually no need to specify x0:

Table 1 Fitness scheme assumed in the text

Genotype A1A1 A1A0 A0A0

Fitness 1þ s2 1þ s1 1
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Finally, we require a model for how alleles arise. We as-
sume that mutations at time t occur at a rate proportional to
2NðtÞ and that a mutant allele arises exactly once. Further
constraining alleles to have arisen more recently than some
time, T, in the past, this implies that the prior density of allele
ages is

pðt0Þ ¼ rðt0ÞR 0
T rðt0Þds

:

Taking the limit as TY2N results in an improper distribution
on allele age, which, in the context of our Bayesian inference
algorithm, implies an improper prior distribution on t0 that is
proportional to r. However, we emphasize that this still pro-
duces a proper posterior distribution on allele age (see also
Slatkin 2001).

Finally, we model the data assuming that at known times
t1; t2; . . . ; tk samples of known sizes n1; n2; . . . ; nk chromo-
somes are taken and c1; c2; . . . ; ck copies of the derived al-
lele are found at the successive time points (Figure 1). Note
that it is possible that some of the sampling times are more
ancient than t0; the age of the allele.

Bayesian path augmentation

We are interested in devising a Bayesian method to obtain
the posterior distribution on the parameters, a1; a2; and t0
given the sampled allele frequencies and sample times—
data that we denote collectively as D. Because we are deal-
ing with objects that do not necessarily have distribu-
tions that have densities with respect to canonical reference

measures, it is convenient in the beginning to treat priors
and posteriors as probability measures rather than as den-
sity functions. For example, the posterior is the probability
measure

Pðda1; da2; dt0jDÞ ¼ PðdDja1;a2; t0Þ  pðda1; da2; dt0Þ
PðdDÞ ; (2)

where p is a joint prior on the model parameters. However,
computing the likelihood PðdDja1;a2; t0Þ is computationally
challenging because, implicitly,

PðdDja1;a2; t0Þ ¼
Z

PðdDjXÞ  PðdXja1;a2; t0Þ;

wheretheintegral isoverthe(unobserved, infinite-dimensional)
allele frequency path X ¼ ðXtÞt$ t0 ; Pð�ja1;a2; t0Þ is the distri-
bution of a Wright–Fisher diffusion with selection parameters
a1;a2 started at time t0 at the small but arbitrary frequency x0;
and

PðdDjXÞ ¼
Yk
i¼1

�
ni
ci

�
Xti
cið12XtiÞni2ci

because we assume that sampled allele frequencies at the
times t1; . . . ; tk are independent binomial draws governed
by underlying population allele frequencies at these times.
Integrating over the infinite-dimensional path ðXtÞt$ t0 in-
volves either solving partial differential equations numeri-
cally or using Monte Carlo methods to find the joint
distribution of population allele frequency paths at the
times t1; . . . ; tk:

To address this computational difficulty, we introduce a
path augmentation method that treats the underlying allele
frequency path ðXtÞt$ t0 as an additional parameter. Observe
that the posterior may be expanded out to

Pðda1; da2; dt0jDÞ

¼
R
P
�
dDjX9�  P�dX9��a1;a2; t0

�
pðda1; da2; dt0ÞR

PðdDjX9Þ  PðdX9ja91;a92; t 90Þpðda91; da92; dt 90Þ
;

where we use primes to designate dummy variables over
which we integrate. Thinking of the path ðXtÞt$ t0 as another
parameter and taking the prior distribution for the aug-
mented family of parameters to be

PðdXja1;a2; t0Þpðda1; da2; dt0Þ;

the posterior for the augmented family of parameters is

Pðda1; da2; dt0; dXjDÞ

¼ PðdDjXÞPðdXja1;a2; t0Þpðda1; da2; dt0ÞR
PðdDjX9ÞPðdX9ja90;a90; t90Þpðda90; da90; dt 90Þ

: (3)

We thus see that treating the allele frequency path as a
parameter is consistent with the initial “naive” Bayesian ap-
proach in that if we integrate the path variable out of the

Figure 1 Taking samples from an allele frequency trajectory. An allele
frequency trajectory is simulated from the Wright–Fisher diffusion (solid
line). At each time, ti ; a sample of size ni chromosomes is taken and ci
copies of the derived allele are observed. Each point corresponds to the
observed allele frequency of sample i. Note that t1 is more ancient than
the allele age, t0:
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posterior (3) for the augmented family of parameters, then
we recover the posterior (2) for the original family of param-
eters. In practice, this means that marginalizing out the path
variable from aMonte Carlo approximation of the augmented
posterior gives a Monte Carlo approximation of the original
posterior.

Implicit in our setup is the initial frequency x0 at time t0:
Under the probability measure governing the Wright–
Fisher diffusion, any process started from x0 ¼ 0 will stay
there forever. Thus, we would be forced to make an arbi-
trary choice of some x0 . 0 as the initial frequency of our
allele. However, we argue in the Appendix that in the limit
as x0Y0; we can achieve an improper prior distribution on
the space of allele frequency trajectories. We stress that our
inference using such an improper prior is not one that arises
directly from a generative probability model for the allele
frequency path. However, it does arise as a limit as the
initial allele frequency x0 goes to zero of inferential proce-
dures based on generative probability models and the lim-
iting posterior distributions are probability distributions.
Therefore, the parameters a1;a2; t0 retain their meaning,
our conclusions can be thought of as approximations to
those that we would arrive at for all sufficiently small val-
ues of x0; and we are spared the necessity of making an
arbitrary choice of x0:

Path likelihoods

Most instances of Bayesian inference in population genetics
havehitherto involvedfinite-dimensional parameters.Recall
that for continuous, finite-dimensional parameters, one sim-
ply includes the prior density of the parameter value in place
of the prior probability. Finite-dimensional parameters usu-
ally have densities defined with respect to Lebesgue mea-
sure in an appropriate dimension; however, there is no
infinite-dimensional Lebesgue measure against which to
define a density for our infinite-dimensional augmented
path. We thus require a reference measure on the infinite-
dimensional space of paths that will play a role analogous to
that of Lebesgue measure in the finite-dimensional case,
allowing us to write down the probability density for each
sampled path.

To see what is involved, suppose we have a diffusion
process ðZtÞt$ t0 that satisfies the SDE

dZt ¼ aðZt; tÞ  dt þ dBt
Zt0 ¼ z0;

(4)

where B is a standard Brownian motion (the Wright–Fisher
diffusion is not of this form but, as we shall soon see, it can be
reduced to it after suitable transformations of time and
space). Let ℙ be the distribution of ðZtÞt$ t0—this is a proba-
bility distribution on the space of continuous paths that start
from position z0 at time t0: While the probability assigned by
ℙ to any particular path is zero, we can, under appropriate
conditions, make sense of the probability of a path under ℙ
relative to its probability under the distribution of Brownian

motion. If we denote by W the distribution of Brownian mo-
tion starting from position z0 at time t0; then Girsanov’s
theorem (Girsanov 1960) gives the density of the path
segment ðZsÞt0 # s# t under ℙ relative to W as

dℙ
dW

�
ðZsÞt0 # s# t

	
¼exp


Z t

t0
aðZs; sÞ  dZs21

2

Z t

t0
a2ðZs; sÞ  ds

�
;

(5)

where the first integral in the exponentiand is an Itô in-
tegral. For (5) to hold, the integral

R t
t0
a2ðZs; sÞ  ds must be

finite, in which case the Itô integral
R t
t0
aðZs; sÞ  dZs is also

well defined and finite.
However, the Wright–Fisher SDE (1) is not of the form

(4). In particular, the factor multiplying the infinitesimal
Brownian increment dBt (the so-called diffusion coefficient)
depends on both space and time. To deal with this issue, we
first apply a well-known time transformation (see, e.g.,
Slatkin and Hudson 1991 and Griffiths and Tavare 1994)
and consider the process ð~XtÞt$0 given by ~Xt ¼ Xf21ðtÞ;where

fðtÞ ¼
Z t

t0

1
rðsÞ   ds; t$ t0: (6)

It is not hard to see that ð~XtÞt$ 0 satisfies the following SDE
with a time-independent diffusion coefficient,

d~Xt ¼ r
�
f21ðtÞ�~Xt

�
12 ~Xt

��
a1
�
2~Xt 21

�
2a2~Xt

�
  dt

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Xt

�
12 ~Xt

�q
  d~Bt

~X0 ¼ x0;

where ~B is a standard Brownian motion. Next, we employ
an angular space transformation first suggested by Fisher
(1922), Yt ¼ arccosð12 2~XtÞ: Applying Itô’s lemma (Itô
1944) shows that ðYtÞt$ 0 is a diffusion that satisfies the SDE

dYt ¼ 1
4

�
r
�
f21ðtÞ

	
sinðYtÞ

�
a2 þ ð2a1 2a2ÞcosðYtÞ

	
2 2cotðYtÞ

�
  dt þ dWt

Y0 ¼ y0 ¼ arccosð122x0Þ;
(7)

whereW is a standard Brownian motion. If the process X hits
either of the boundary points 0; 1; then it stays there, and the
same is true of the time and space transformed process Y for
its boundary points 0;p:

The restriction of the distribution of the time and space
transformed process Y to some set of paths that do not hit the
boundary is absolutely continuous with respect to the distri-
bution of standard Brownian motion restricted to the same
set; that is, the distribution of Y restricted to such a set of
paths has a density with respect to the distribution of
Brownian motion restricted to the same set. However, the
infinitesimal mean in (7) (that is, the term multiplying dt)
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becomes singular as Yt approaches the boundary points
0 and p, corresponding to the boundary points 0 and 1 for
allele frequencies. These singularities prevent the process Y
from reentering the interior of its state space and ensure that
a Wright–Fisher path will be absorbed when the allele is
either fixed or lost. A consequence is that the density of the
distribution of Y relative to that of a Brownian motion blows
up as the path approaches the boundary.We aremodeling the
appearance of a new mutation in terms of a Wright–Fisher
diffusion starting at some small initial frequency x0 at time t0
and we want to perform our parameter inference in such a
way that we get meaningful answers as x0Y0: This suggests
that rather thanworkingwith the distributionW of Brownian
motion as a reference measure it may be more appropriate to
work with a tractable diffusion process that exhibits similar
behavior near the boundary point 0.

To start making this idea of matching singularities more
precise, consider a diffusion process ðZtÞt$ t0 that satisfies
the SDE

dZt ¼ b
�
Zt; t

	
  dt þ dBt

Z0 ¼ z0; (8)

where B is a standard Brownian motion. Write ℚ for the
distribution of the diffusion process ðZtÞt$ t0 and recall that
ℙ is the distribution of a solution of (4). If ðZsÞt0 # s# t is a
segment of path such that both

R t
t0
a2ðZs; sÞ  ds,N andR t

t0
b2ðZs; sÞ  ds,N; then

dℙ
dℚ

�
ðZsÞt0 # s# t

	
¼ dℙ

dW

�
ðZsÞt0 # s# t

	.dℚ
dW

�
ðZsÞt0 # s# t

	
¼ exp


Z t

t0

�
aðZs; sÞ2 bðZs; sÞ

�
  dZs

2
1
2

Z t

t0

�
a2ðZs; sÞ2 b2ðZs; sÞ

�
  ds
�
:

(9)

Note that the right-hand side will stay bounded if one
considers a sequence of paths, indexed by h , ðZh

s Þt0 # s# t;

with
R t
t0
a2ðZh

s ; sÞ  ds,N and
R t
t0
b2ðZh

s ; sÞ  ds,N; provided
that

R t
t0

�
a2ðZh

s ; sÞ2 b2ðZh
s ; sÞ

�
  ds stays bounded. These ma-

nipulations with densities may seem somewhat heuristic,
but they can be made rigorous and, moreover, the form of
dℙ=dℚ follows from an extension of Girsanov’s theorem that
gives the density of ℙ with respect to ℚ directly without
using the densities with respect to W as intermediaries
(see, for example, Kallenberg 2002, theorem 18.10).

We wish to apply this observation to the time and space
transformed Wright–Fisher diffusion of (7). Because

2
1
2
cotð yÞ þ 1

4
r
�
f21ðtÞ�sinð yÞðð2a1 2a2Þcosð yÞ þ a2Þ

¼ 2
1
2y

þ Oð yÞ

when y is small, an appropriate reference process should have
infinitesimal mean bð y; tÞ � 2 1=ð2yÞ as yY0: Following

suggestions by Schraiber et al. (2013) and Jenkins (2013),
we compute path densities relative to the distribution ℚ of
the Bessel(0) process, a process that is the solution of the
SDE

dYt ¼ 2
1
2Yt

  dt þ dBt;

Y0 ¼ y0 ¼ arccosð12 2x0Þ
(10)

up until thefirst time thatYt hits 0, afterwhich time Yt stays at
0 (Revuz and Yor 1999, Chap. XI).

As we show more explicitly in the Appendix, this choice
of dominating measure allows us to arrive at a proper poste-
rior distribution as we send the initial frequency of the allele
down to 0. In brief, if we write ℙy0 and ℚy0 for the respective
distributions of the solutions of (7) and (10) to emphasize the
dependence on y0 (equivalently, on the initial allele fre-
quency x0), then there are s-finite measures ℙ0 and ℚ0 with
infinite total mass such that for each e. 0

lim
y0Y0

ℙy0
��

Yt
�
t$ e

2 �jYe . 0
	
¼ ℙ0

��
Yt
�
t$ e

2 �
	

ℙ0
�
Ye. 0

�.
and

lim
y0Y0

ℚy0
�
ðYt
�
t$ e

2 �jYe .0
	
¼ ℚ0

��
Yt
�
t$ e

2 �
	
ℚ0�Ye . 0

	
;

�

where the numerators and denominators in the last two
equations are all finite. Moreover, ℙ0 has a density with re-
spect to ℚ0 that arises by naively taking limits as y0Y0 in the
functional form of the density of ℙy0 with respect to ℚy0 [we
say “naively” because ℙy0 and ℚy0 assign all of their mass to
paths that start at position y0 ¼ arccosð12 2x0Þ at time 0,
whereas ℙ0 and ℚ0 assign all of their mass to paths that start
at position 0 at time 0, and so the set of paths at which it is
relevant to compute the density changes as y0Y0]. As we
have already remarked, the limit of our Bayesian inferential
procedure may be thought of as Bayesian inference with an
improper prior, but we stress that the resulting posterior is
proper.

The notion of the infinitemeasureℚ0 may seem somewhat
forbidding, but this measure is characterized by the simple
properties

ℚ0
�
Ye 2 dy

	
¼ y2

e2
exp


2
y2

2e

�
  dy; y. 0;

so that ℚ0ðYe . 0Þ ¼ ffiffiffiffiffiffiffiffiffi
p=2

p ð1= ffiffiffi
e

p Þ; and conditional on the
event fY e ¼ yg the evolution of ðYtÞt$ e is exactly that of the
Bessel(0) process started at position y at time e. In the Appen-
dix, we provide a more explicit construction of the measure
ℚ0 as part of our derivation of the proposal ratios in our
MCMC algorithm. Moreover, conditional on the event
fYs ¼ a;   Yu ¼ bg for 0# s,u and a; b. 0; the evolu-
tion of the “bridge” ðYuÞs# t# u is the same as that of the
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corresponding bridge for a Bessel(4) process; a Bessel(4)
process satisfies the SDE

dŶt ¼ 3

2Ŷ t
  dt þ dB̂t:

Very importantly for the sake of simulations, the Bessel(4)
process is just the radial part of a four-dimensional standard
Brownian motion—in particular, this process started at
0 leaves immediately and never returns.

Note that the Bessel(0) process arises naturally
because our space transformation x↦ arccosð12 2xÞ ¼R x
0

�
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wð12wÞp 	

 dw is approximately x↦
R x
0

�
1=

ffiffiffiffi
w

p �
  dw ¼

2
ffiffiffi
x

p
when x. 0 is small. Interestingly, a multiple of the

square of the Bessel(0) process, sometimes called Feller’s
continuous state branching processes, arises naturally as an
approximation to the Wright–Fisher diffusion for low fre-
quencies and has a long history in population genetics
(Haldane 1927; Feller 1951).

The joint likelihood of the data and the path

To write down the full likelihood of the observations and the
path, we make the assumption that the population size func-
tion rðtÞ is continuously differentiable except at a finite
set of times d1 , d2 , . . . , dM : Further, we require that
rðdþi Þ ¼ limtYdi rðtÞ exists and is equal to rðdiÞ while
rðd2i Þ ¼ limt[di rðtÞ also exists [although it may not neces-
sarily equal rðdiÞ].

We canwrite the joint likelihoodof thedata and the path as

L
�
D; ðYtÞt$0

��a1;a2; t0
� ¼F

�
DjðYtÞt$0; t0

�
3

dℙ
dℚ
�ðYtÞt$0;a1;a2; t0

�
;

where Fð�Þ is the binomial sampling probability of the ob-
served allele frequencies, ℙ is the distribution of transformed
Wright–Fisher paths, and ℚ is the distribution of Bessel(0)
paths. In the Appendix, we show that

L
�
D; ðYsÞ0# s# tk

���a1;a2; t0
	

¼ exp
n
A
�
Yf ðtkÞ; t

2
k

	
þ A

�
Yf ðdmÞ; d

2
m

	
2
�
A
�
Yf ðdKÞ; dK
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where f is as in (6), m ¼ minfi : di . t0g and
K ¼ maxfi : di . tkg; and

Að y; tÞ ¼ logð yÞ
2

2
1
8
ðrðtÞcosð yÞð2a2 þ ð2a12a2Þcosð yÞÞ

þ 4logðsinðyÞÞÞ

Bð y; tÞ ¼ 2
1
8
dr
dt

ðtÞcosð yÞð2a2 þ ð2a1 2a2Þcosð yÞÞ

Cð y; tÞ ¼ 1
2

�
a1cosð yÞ þ cscð yÞ2

rðtÞ
	
2

1
2 y2rðtÞ

Dð y; tÞ ¼ 1
16rðtÞðrðtÞsinð yÞða2 þ ð2a12a2Þcosð yÞÞ

22cotð yÞÞ2 2 1
4 y2rðtÞ:

While this expression may appear complicated, it has the
important feature that, unlike the form of the likelihood that
would arise by simply applying Girsanov’s theorem, it in-
volves only Lebesgue (indeed Riemann) integrals and not
Itô integrals, which, as we recall in the Appendix, are known
from the literature to be potentially difficult to compute
numerically.

Metropolis–Hastings algorithm

We now describe a Markov chain Monte Carlo method for
Bayesian inference of the parameters a1; a2; and t0; along
with the allele frequency path ðXtÞt$ t0 [equivalently, the
transformed path ðYtÞt$ 0]. While updates to the selection
parameters a1 and a2 do not require updating the path,
updating the time t0 at which the derived allele arose requires
proposing updates to the segment of path from t0 up to the
time of the first sample with a nonzero number of derived
alleles. Additionally, we require proposals to update small
sections of the path without updating any parameters and
proposals to update the allele frequency at the most recent
sample time.

Interior path updates: To update a section of the allele
frequency, we first choose a time s1 2 ðt0; tkÞ uniformly at
random and then choose a time s2 that is a fixed fraction of
the path length subsequent to s1:We prefer this approach of
updating a fixed fraction of the path to an alternative strat-
egy of holding s2 2 s1 constant because paths for very strong
selection may be quite short. Recalling the definition of
f from (6), we subsequently propose a new segment of
transformed path between the times f ðs1Þ and fðs2Þ while
keeping the values Yf ðs1Þ and Yfðs2Þ fixed (Figure 2A). Such a
path that is conditioned to take specified values at both end
points of the interval over which it is defined is called a
bridge, and by updating small portions of the path instead
of the whole path at once, we are able to obtain the desir-
able behavior that our Metropolis–Hastings algorithm is
able to stay in regions of path space with high poste-
rior probability. If we instead drew the whole path each
time, we would much less efficiently target the posterior
distribution.

Noting that bridges must be sampled against the trans-
formed timescale, the best bridges for the allele frequency
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path would be realizations of Wright–Fisher bridges them-
selves. However, sampling Wright–Fisher bridges is chal-
lenging (but see Schraiber et al. 2013; Jenkins and Spano
2015), so we instead opt to sample bridges for the trans-
formed path from the Bessel(0) process. Sampling Bessel(0)
bridges can be accomplished by first sampling Bessel(4)
bridges (as described in Schraiber et al. 2013) and
then recognizing that a Bessel(4) process is the same as
a Bessel(0) process conditioned to never hit 0 and hence
has the same bridges—in the language of the general the-
ory of Markov processes, the Bessel(0) and Bessel(4)
processes are Doob h-transforms of each other and it is
well known that processes related in this way share the
same bridges. We denote by ðY9tÞt$ 0 the path that has
the proposed bridge spliced in between times f ðs1Þ and
f ðs2Þ and coincides with ðYtÞt$ 0 outside the interval
½ f ðs1Þ; f ðs2Þ�:

In the Appendix, we show that the acceptance probability
in this case is simply

min 1;
LðD; �Y9t�f ðs1Þ# t# fðs2Þja1;a2; t0Þ
LðD; ðYtÞf ðs1Þ# t# f ðs2Þja1;a2; t0Þ

8<:
9=;: (12)

Note that we need to compute the likelihood ratio only for
the segment of transformed path that changed between the
times fðs1Þ and fðs2Þ:

Allele age updates: The first sample time with a non-
zero count of the derived allele (Figure 2B) is ts; where
s ¼ minfi : ci . 0gWemust have t0 , ts: Along with propos-
ing a new value t90 of the allele age t0 we propose a new
segment of the allele frequency path from time t90 to time ts:
Changing the allele age t0 to some new proposed value t 90
changes the definition of the function f in (6). Write
f 9ðtÞ ¼ R tt90 ð1=rðsÞÞ  ds; where we stress that the prime
does not denote a derivative. The proposed transformed path
Y9 consists of a new piece of path that goes from location

0 at time 0 to location Yf ðtsÞ at time f 9ðtsÞ and then has
Y9f 9ðtÞ ¼ Yf ðtÞ for t$ ts: Recall that we use the improper prior
rðt0Þ for t0; which reflects the fact that an allele is more like-
ly to arise during times of large population size (Slatkin
2001). In the Appendix, we show that the acceptance
probability is

min 1;
L
�
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�
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(13)

where, in the notation of the Path likelihoods section,

cðy; eÞ ¼ y2

e2
exp


2
y2

2e

�
¼ ℚ0ðYe 2 dyÞ

dy
(14)

is the density of the so-called entrance law for the Bessel(0)
process that appears in the characterization of the
s-finite measure ℚ0 and qðt90

��t0Þ is the proposal distribu-
tion of t90 (in practice, we use a half-truncated normal
distribution centered at t0; with the upper truncation oc-
curring at the first time of nonzero observed allele
frequency).

Most recent allele frequency update: While the allele fre-
quency at sample times t1; t2; . . . ; tk21 is updated implicitly
by the interior path update, we update the allele frequency
at the most recent sample time tk separately (note that the
most recent allele frequency is not an additional parameter,
but simply a random variable with a distribution implied by
the Wright–Fisher model on paths). We do this by first pro-
posing a new allele frequency Y9fðtkÞ and then proposing a
new bridge from Yfðtf Þ to Y9f ðtkÞ where tf 2 ðtk21; tkÞ is a fixed
time (Figure 2C). If qðY9f ðtkÞ

��YfðtkÞÞ is the proposal density for
Y9fðtkÞ given YfðtkÞ [in practice, we use a truncated normal dis-
tribution centered at YfðtkÞ and truncated at 0 and p], then,
arguing along the same lines as the interior path update

Figure 2 Illustration of path updates. Solid circles correspond to the same sample frequencies as in Figure 1. The shaded line in each panel is the current
allele frequency trajectory and the dashed black lines are the proposed updates. In A, an interior section of path is proposed between points s1 and s2: In
B, a new allele age, t90 is proposed and a new path is drawn between t90 and ts: In C, a new most recent allele frequency Y 9tk is proposed and a new path is
drawn between tf and tk:
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and the allele age update, we accept this update with probability
where

Qðx; y; tÞ ¼ y
t
exp 2x2 þ y2

2t


 �
I1

�
xy
t

�
(16)

is the transition density of the Bessel(0) process [with I1ð�Þ
being the Bessel function of the first kind with index 1—see
Knight 1981, section 4.3.6]. Again, it is necessary to compute
the likelihood ratio only for the segment of transformed path
that changed between the times fðtf Þ and fðtkÞ:
Updates to a1 and a2

Updates to a1 and a2 are conventional scalar parameter up-
dates. For example, letting qða91

��a1Þ be the proposal density
for the new value of a1; we accept the new proposal with
probability

min 1;
L
�
D; ðYtÞt$0

��a91;a2; t0
�

L
�
D; ðYtÞt$0

��a1;a2; t0
� q
�
a1ja91

�
qða91ja1Þ

p
�
a91;a2; t0

�
pða1;a2; t0Þ

( )
:

The acceptance probability for a2 is similar. For both a1 and
a2; we use a heavy-tailed Cauchy prior with median 0 and
scale parameter 100, and we take the parameters a1;a2; t0 to
be independent under the prior distribution. In addition, we
use a normal proposal distribution, centered around the cur-
rent value of the parameter. Here, it is necessary to compute
the likelihood across the whole path.

Data availability

C++ software implementing the method described in this
article is freely available under a GNU Public License at
https://github.com/Schraiber/selection.

Results

We first test our method using simulated data to assess its
performance and thenapply it to two realdata sets fromhorses.

Simulation performance

To test the accuracy of our MCMC approach, we performed
two sets of simulations. First, we simulated data under a
constant demographic history to assess the quality of param-
eter inference under a simple model. Second, we simulated
data under the horse demographic history of Der Sarkissian
et al. (2015) and compared inferences performed with and
without accounting for the demographic history.

In the constant demography simulations, we simulated
allele frequency trajectories with ages uniformly distributed
between0.1 and0.3 diffusion timeunits ago, evolvingwitha1

and a2 uniformly distributed between 0 and 100. We simu-
late allele frequency trajectories using a Euler approximation
to the Wright–Fisher SDE (1) with rðtÞ[ 1: At each time
point between 20:4 and 0.0 in steps of 0.05, we simulated
the sampling of 20 chromosomes.

We then ran the MCMC algorithm for 1; 000; 000 genera-
tions, sampling every 1000 generations to obtain 1000
MCMC samples for each simulation. After discarding the first
500 samples from each MCMC run as burn-in, we computed
the effective sample size of the allele age estimate, using the
R package coda (Plummer et al. 2006). For the analysis of the
simulations, we included only simulations that had an effec-
tive sample size.150 for the allele age, resulting in retaining
744 of 1000 simulations.

Because our MCMC analysis provides a full posterior dis-
tribution on parameter values, we summarized the results by
computing themaximum a posteriori estimate of each param-
eter. We find that across the range of simulated a1 values,
estimation is quite accurate (Figure 3A). There is some down-
ward bias for large true values of a1; indicating the influence
of the prior. On the other hand, the strength of selection in
favor of the homozygote, a2; is less well estimated, with a
more pronounced downward bias (Figure 3B). This is largely
because most simulated alleles do not reach sufficiently high
frequency for homozygotes to be common. Hence, there is
very little information regarding the fitness of the homozy-
gote. Allele age is estimated accurately, although there is a
slight bias toward estimating amore recent age than the truth
(Figure 3C).

When simulating under the horse demographic history, we
drew 1000 allele ages with probability proportional to rðtÞ
for t between 0.1 and 0.3 diffusion time units ago. Similarly
to the simulations with constant demography, we drew a1

and a2 uniformly between 0 and 100 and then simulated
allele frequency trajectories, using a Euler approximation to
(1) with rðtÞ given by the history inferred by Der Sarkissian
et al. (2015). The sampling scheme is identical to the con-
stant demography simulations.

We ran our simulated data through two separate MCMC
pipelines, one accounting for the true simulated demographic
history and the other assuming a constant population size. All
other settings were identical to the analysis of the data
simulated under constant demography. We retained MCMC
runs where the sampling likelihood, path likelihood, a1

min 1;
LðD; �Y9t�f ðtf Þ# t# f ðtkÞja1;a2; t0Þ
LðD; ðYtÞf ðtf Þ# t# f ðtkÞja1;a2; t0Þ

qðYfðtkÞjY9f ðtkÞÞ
qðY9f ðtkÞjYf ðtkÞÞ

QðYfðtf Þ; Yf ðtkÞ; fðtkÞ2 f ðtf ÞÞ
QðYf ðtf Þ; Y9fðtkÞ; f ðtkÞ2 f ðtf ÞÞ

8<:
9=;; (15)
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estimate, a2 estimate, and allele age estimate all had effec-
tive sample sizes .50, resulting in 561 analyses retained
from the inference with variable demography, 647 analyses
retained from the inference with constant demography, and
454 analyses that were retained in both.

To quantify the overall impact of demographic model
misspecification on parameter inference, we approximated
the posterior root mean square error of a parameter (gener-
ically u) by averaging over the posterior distribution,

RMSEðuÞ ¼
�Z �

û2u
�2
P
�
û
��D�dû�1=2

�
 
1
N

X
i

�bui2u
�2!1=2

;

where the sum is over retained MCMC samples.
We found substantially smaller root mean square error

(RMSE) for inference of a1 when demography is properly
modeled (Figure 4). While inference of a2 was similar be-
tween the two models, there is somewhat larger RMSE when
demography is incorrectly assumed to be constant. Interest-
ingly, there seem to be two regimes of error in allele age
estimation: for the most recent allele ages, modeling demog-
raphy results in larger RMSE, while for more ancient ages,
inferences with constant population size result in larger
RMSE. These are likely caused by a particular feature of
this demographic model, which is a very strong bottleneck
inferred in the recent past. Because alleles are more likely
to arise during periods of larger population size, accounting
for demographic history extends the tail of the posterior dis-
tribution farther into the past, when the population was
larger.

Application to ancient DNA

Weappliedourapproach to realdataby reanalyzing theMC1R
andASIP data from Ludwig et al. (2009). In contrast to earlier
analyses of these data, we explicitly incorporated the de-
mography of the domesticated horse, as inferred by Der
Sarkissian et al. (2015), using a generation time of 8 years.
Table 2 shows the sample configurations and sampling times

corresponding to each locus, where diffusion units are scaled
to 2N0;withN0 ¼ 16; 000 being themost recent effective size
reported by Der Sarkissian et al. (2015). For comparison, we
also analyzed the data assuming the population size has been
constant at N0:

With the MC1R locus, we found that posterior inferences
about selection coefficients can be strongly influenced by
whether demographic information is included in the analysis
(Figure 5). Marginally, we see that incorporating demo-
graphic information results in an inference that a1 is larger
than the constant-size model [maximum a posteriori (MAP)
estimates of 267.6 and 74.1, with and without demography,
respectively; Figure 5A], while a2 is inferred to be smaller
(MAP estimates of 59.1 and 176.2, with and without demog-
raphy, respectively; Figure 5B). This has very interesting im-
plications for the mode of selection inferred on the MC1R
locus. Recall that a2 .a1 . 0 is direction selection, in which
the derived allele is always beneficial; a2 ,a1 .0 is over-
dominant selection, in which the heterozygote is favored;
and a2 .a1 , 0 is underdominant selection, in which the
heterozygote is disfavored. With constant demography, the
trajectory of the allele is estimated to be shaped by positive
directional selection (joint MAP, a1 ¼ 87:6; a2 ¼ 394:8; Fig-
ure 5C), while when demographic information is included,
selection is inferred to act in an overdominant fashion (joint
MAP, a1 ¼ 262:5; a2 ¼ 128:1; Figure 5D).

Incorporation of demographic history also has substantial
impacts on the inferred distribution of allele ages (Figure 6).
Most notably, the distribution of the allele age for MC1R is
significantly truncated when demography is incorporated, in
away that correlates to the demographic events (Supplemen-
tal Material, Figure S1). While both the constant-size history
and the more complicated history result in a posterior mode
at approximately the same value of the allele age, the domes-
tication bottleneck inferred by Der Sarkissian et al. (2015)
makes it far less likely that the allele rosemore anciently than
the recent population expansion. Because the allele is
inferred to be younger under the model incorporating de-
mography, the strength of selection in favor of the heterozy-
gote must be higher to allow it to escape low frequency

Figure 3 Maximum a posteriori estimates of different parameters. Panels A, B and C show the results for a1, a2, and t0, respectively. Each panel shows
the true value of a parameter on the x-axis, and the inferred value is on the y-axis. Dashed line is y ¼ x:
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quickly and reach the observed allele frequencies. Hence, a1

is inferred to be much higher when demographic history is
explicitly modeled.

Incorporation of demographic history has an even more
significant impact on inferences made about the ASIP locus
(Figure 7). Most strikingly, while a1 is inferred to be very
large without demography, it is inferred to be close to 0 when
demography is incorporated (MAP estimates of 16.3 and
159.9 with and without demography, respectively; Figure
7A). On the other hand, inference of a2 is largely unaffected
(MAP estimates of 34.7 and 39.8 with and without demog-
raphy, respectively; Figure 7B). Interestingly, this has an op-
posite implication for the mode of selection compared to the
results for theMC1R locus.With a constant-size demographic
history, the allele is inferred to have evolved under overdom-
inance (joint MAP, a1 ¼ 153:3; a2 ¼ 47; Figure 7C), but
when the more complicated demography is modeled, the
allele frequency trajectory is inferred to be shaped by
positive, nearly additive, selection (joint MAP, a1 ¼ 16:4;
a2 ¼ 46:8; Figure 7D).

Incorporating demography has a similarly opposite effect
on inference of allele age (Figure 8). In particular, the allele is
inferred to be much older when demography is modeled and
features a multimodal posterior distribution on allele age,
with each mode corresponding to a period of historically

larger population size (Figure S2). Because the allele is
inferred to be substantially older when demography is mod-
eled, selection in favor of the heterozygote must have been
weaker than would be inferred with the much younger age.
Hence, the mode of selection switches from one of overdom-
inance in a constant demography to one in which the homo-
zygote is more fit than the heterozygote.

Discussion

Using DNA from ancient specimens, we have obtained a
number of insights into evolutionary processes that were
previously inaccessible. One of the most interesting aspects
of ancient DNA is that it can provide a temporal component to
evolution that has long been impossible to study. In particu-
lar, instead of making inferences about the allele frequencies,
we can directly measure these quantities. To take advantage
of these new data, we developed a novel Bayesianmethod for
inferring the intensity and direction of natural selection from
allele frequency time series. To circumvent the difficulties
inherent in calculating the transition probabilities under
the standard Wright–Fisher process of selection and drift,
we used a data augmentation approach in which we learn
the posterior distribution on allele frequency paths. Doing
this not only allows us to efficiently calculate likelihoods,
but also provides an unprecedented glimpse at the historical
allele frequency dynamics.

The key innovation of our method is to apply high-
frequency path augmentation methods (Roberts and Stramer
2001) to analyze genetic time series. The logic of themethod is
similar to the logic of a path integral, in which we average over
all possible allele frequency trajectories that are consistentwith
the data (Schraiber 2014). By choosing a suitable reference
probability distribution against which to compute likelihood
ratios, we were able to adapt these methods to infer the age
of alleles and properly account for variable population
sizes through time. Moreover, because of the computational

Figure 4 Comparison of root mean square error (RSME) when inference is performed with the proper (variable) demographic model on the x-axis
compared to a misspecified constant demography model on the y-axis. Panels A, B and C show the results for a1, a2, and t0, respectively. Each point
represents a single simulation, and points are shaded according to simulated parameter values (scale on the right of each panel). Solid line is y ¼ x:

Table 2 Sample information for horse data

Sample time
(years BCE) 20,000 13,100 3,700 2,800 1,100 500

Sample time
(diffusion units)

0.078 0.051 0.014 0.011 0.004 0.002

Sample size 10 22 20 20 36 38
Count of ASIP

alleles
0 1 15 12 15 18

Count of MC1R
alleles

0 0 1 6 13 24

Diffusion time units are calculated assuming N0 ¼ 2500 and a generation time of 5
years. BCE, Before Common Era.
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advantages of the path augmentation approach, we were
able to infer a model of general diploid selection. To our
knowledge, ours is thefirstwork that can estimate both allele
age and general diploid selection while accounting for
demography.

Using simulations, we showed that our method performs
well for strong selection and densely sampled time series.
However, it is worth considering the work of Watterson
(1979), who showed that even knowledge of the full trajec-
tory results in very flat likelihood surfaces when selection is

not strong. This is because for weak selection, the trajectory
is extremely stochastic and it is difficult to disentangle the
effects of drift and selection (Schraiber et al. 2013).

We also used simulations to test how misspecification of
demographic history affects inference. We saw substantially
increased posterior root mean square error in inference of
selection parameters if demographic history is misspecified.
To examine the impact of demographic history in the context
of real data, we then applied our method to a classic data set
from horses. We found that our inference of both the strength

Figure 5 Posterior distributions of se-
lection coefficients for the MC1R locus.
A and B show marginal distributions of
a1 and a2; respectively, with the solid
line indicating the posterior obtained
from an analysis including the full de-
mographic history and the dotted line
showing what would be inferred in a
constant size population. C and D show
contour plots of the joint distribution of
a1 and a2 without and with demogra-
phy, respectively.

Figure 6 (A and B) Posterior distribution on allele frequency paths for the MC1R locus. Each panel shows the sampled allele frequency data (solid
circles), the point-wise median (black), 25% and 75% quantiles (red), and 5% and 95% quantiles (green) of the posterior distribution on paths and the
posterior distribution on allele age (blue). A reports inference with constant demography, and B shows the result of inference with the full demographic
history.
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and mode of natural selection depended strongly on whether
we incorporateddemography. For theMC1R locus, a constant-
size demographic model results in an inference of positive
selection, while the more complicated demographic model
inferred by Der Sarkissian et al. (2015) causes the inference
to tilt toward overdominance, as well as a much younger
allele age. In contrast, the ASIP locus is inferred to be over-
dominant under a constant-size demography, but the compli-
cated demographic history results in an inference of positive
selection and a much older allele age.

These results stand in contrast to those of Steinrücken
et al. (2014), who found that the most likely mode of evo-
lution for both loci under a constant demographic history is
one of overdominance. There are a several reasons for this
discrepancy. First, we computed the diffusion time units differ-
ently, using N0 ¼ 16; 000 and a generation time of 8 years, as

inferred by Der Sarkissian et al. (2015), while Steinrücken
et al. (2014) used N0 ¼ 2500 (consistent with the bottleneck
size found by Der Sarkissian et al. 2015) and a generation time
of 5 years. Hence, our constant-size model has far less genetic
drift than the constant-size model assumed by Steinrücken
et al. (2014). This emphasizes the importance of inferring
appropriate demographic scaling parameters, even when a
constant population size is assumed. Second, we use MCMC
to integrate over the distribution of allele ages, which can have
a very long tail going into the past, while Steinrücken et al.
(2014) assume a fixed allele age.

One key limitation of thismethod is that it assumes that the
aDNA samples all come from the same, continuous popula-
tion. If there is in fact a discontinuity in the populations from
which alleles have been sampled, this could cause rapid
allele frequency change and create spurious signals of natural

Figure 7 (A–D) Posterior distributions
of selection coefficients for the ASIP
locus. Panels are as in Figure 5.

Figure 8 (A and B) Posterior distri-
bution on allele frequency paths for
the ASIP locus. Panels are as in
Figure 6.
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selection. Several methods have been devised to test this
hypothesis (Sjödin et al. 2014), and one possibility would
be to apply these methods to putatively neutral loci sampled
from the same individuals, thus determining which samples
form a continuous population. Alternatively, if our method is
applied to a number of loci throughout the genome and an
extremely large portion of the genome is determined to be
evolving under selection, this could be evidence for model
misspecification and suggest that the samples do not come
from a continuous population.

An advantage of the method that we introduced is that it
may be possible to extend it to incorporate information from
linked neutral diversity. In general, computing the likelihood
of neutral diversity linked to a selected site is difficult and
many researchers have used Monte Carlo simulation and
importance sampling (Slatkin 2001; Coop and Griffiths
2004; Chen and Slatkin 2013). These approaches average
over allele frequency trajectories in much the same way as
our method; however, each trajectory is drawn completely
independently of the previous trajectories. Using a Markov
chain Monte Carlo approach, as we do here, has the potential
to ensure that only trajectories with a high posterior proba-
bility are explored and hence greatly increase the efficiency of
such approaches.
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Appendix

A Proper Posterior in the Limit As the Initial Allele Frequency Approaches 0

For reasons that we explain in the Path likelihoods section, we reparameterize our model by replacing the path variable ðXtÞt$ t0
with a deterministic time and space transformation of it ðYtÞt$ 0 that takes values in the interval ½0;p�with the boundary point
0 (resp. p) for ðYtÞt$ 0 corresponding to the boundary point 0 (resp. 1) for ðXtÞt$ t0 : The transformation producing ðYtÞt$ 0 is
such that ðXtÞt$ t0 can be recovered from ðYtÞt$ 0 and t0:

Implicit in our setup is the initial frequency x0 at time t0 that corresponds to an initial value y0 at time 0 of the transformed
process ðYtÞt$ 0: For themoment, let us make the dependence on y0 explicit by including it in relevant notation as a superscript.
For example, ℙy0ð�ja1;a2; t0Þ is the prior distribution of ðYtÞt$ 0 given the specified values of the other parameters a1;a2; t0:We
construct a tractable “reference” process ðYtÞt$ 0 with distribution ℚ y0ð�Þ such that the probability distribution ℙy0ð�ja1;a2; t0Þ
has a density with respect to ℚ y0ð�Þ—explicitly, ℚ y0ð�Þ is the distribution of a Bessel(0) process started at location y0 at time 0.
That is, there is a function Fy0ð�;a1;a2; t0Þ on path space such that

ℙy0ðdyja1;a2; t0Þ ¼ F y0ð y;a1;a2; t0Þ ℚ y0ðdyÞ (A1)

for a path ð ytÞt$ 0:Assuming thatp has a density with respect to Lebesguemeasure that, with a slight abuse of notation, we also
denote by p, the outcome of our Bayesian inferential procedure is determined by the ratios

ℙ
�
dDj y**; t**0

�
F y0

�
y**;a**

1 ;a**
2 ; t**0

�
p
�
a**
1 ;a**

2 ; t**0
�

ℙ
�
dDj y*; t*0

�
F y0

�
y*;a*

1;a
*
2; t

*
0

�
p
�
a*
1;a

*
2; t

*
0

� (A2)

for pairs of augmented parameter values ð y*;a*
1;a

*
2; t

*
0Þ and ð y**;a**

1 ;a**
2 ; t**0 Þ (i.e., the Metropolis–Hastings ratio).

Under the probability measure ℙy0ð�ja1;a2; t0Þ; the process ðYtÞt$ 0 converges in distribution as y0Y0 (equivalently, x0Y0) to
the trivial process that starts at location 0 at time 0 and stays there. However, for all e. 0 the conditional distribution of ðYtÞt$ e

under the probability measure ℙy0ð�ja1;a2; t0Þ given the event fYe . 0g converges to a nontrivial probability measure as y0Y0:
Similarly, the conditional distribution of the reference diffusion process ðYtÞt$ e under the probability measureℚy0ð�Þ given the
event fY e .0g converges as y0Y0 to a nontrivial limit. There are s-finite measures ℙ0ð�ja1;a2; t0Þ andℚ0ð�Þ on path space that
both have infinite total mass and are such that for any e. 0 both of these measures assign finite, nonzero mass to the set of
paths that are strictly positive at the time e, and the corresponding conditional probabilitymeasures are the limits as y0Y0 of the
conditional probability measures described above. Moreover, there is a function F0ð�;a1;a2; t0Þ on path space such that

ℙ0ðdyja1;a2; t0Þ ¼ F0ðy;a1;a2; t0Þ ℚ0ðdyÞ: (A3)

The posterior distribution (3) converges to

ℙ0ðda1; da2; dt0; dY jDÞ ¼ ℙðdDjY ; t0Þℙ0ðdY ja1;a2; t0Þpðda1; da2; dt0ÞR
ℙðdDjY9Þℙ0ðdY9ja91;a92; t90Þpðda91; da92; dt90Þ

: (A4)

Thus, the limit as y0Y0 of a Bayesian inferential procedure for the augmented set of parameters can be viewed as a Bayesian
inferential procedurewith the improper prior ℙ0ðdY ja1;a2; t0Þpðda1; da2; dt0Þ for the parameters Y ;a1;a2; t0: In particular, the
limiting Bayesian inferential procedure is determined by the ratios

ℙ
�
dDj y**; t**0

�
F0�h**;a**

1 ;a**
2 ; t**0

�
p
�
a**
1 ;a**

2 ; t**0
�
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F0� y*;a*

1;a
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0

�
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�
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1;a
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0

� (A5)

for pairs of augmented parameter values ð y*;a*
1;a

*
2; t

*
0Þ and ð y**;a**

1 ;a**
2 ; t**0 Þ:

The Likelihood of the Data and the Path

Write ti ¼ f ðtiÞ: Note that t0 ¼ f ðt0Þ ¼ 0: Using Equation 9, the density of the distribution of the transformed allele frequency
process ðYtÞ0# s# tk

against the reference distribution of the Bessel(0) process ðYsÞ0# s# tk
when Y0 ¼ Y0 ¼ y0 can be written

exp

Z tk

0
ðaðYr; rÞ2 bðYrÞÞ  dYr 2 1

2

Z tk

0

�
a2ðYr; rÞ2 b2ðYrÞ

�
  dr
�
; (A6)

where
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að y; tÞ ¼ 2
1
2
cotðYtÞ þ 1

4

�
r
�
f21ðtÞ�sinð yÞða2 þ ð2a12a2Þcosð yÞÞ

�
is the infinitesimal mean of the transformed Wright–Fisher process and

bð yÞ ¼ 2
1
2y

is the infinitesimalmean of the Bessel(0) process. However, as shown by Sermaidis et al. (2013), attempting to approximate the
Itô integral in (A6) using a discrete representation of the path can lead to biased estimates of the posterior distribution. Instead,
consider the potential functions

H1ð y; tÞ ¼
Z y

aðj; tÞ  dj ¼ 2
1
8

�
r
�
f21ðtÞ�cos2ð yÞð2a12a2Þ þ 4logðsinð yÞÞ�

and

H2ð yÞ ¼
Z y

bðj; tÞ  dj ¼ 2
logðyÞ

2
:

If we assume that r is continuous (not merely right continuous with left limits), then Itô’s lemma shows that we can writeZ tk

0

�
aðYr; rÞ2 bðYrÞ

�
  dYr ¼ H1ðYtk ; tkÞ2H2ðYtkÞ2

�
H1ðY0; 0Þ2H2ðY0Þ

�
2
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0

�
@H1
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ðYr; rÞ2 @H2
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ðYrÞ

�
  dr 2

Z tk

0

�
@2H1

@y2
ðYr; rÞ2 @2H2

@y2
ðYrÞ

�
  dr:

To generalize this to the case where r is right continuous with left limits, writeZ tk

0
ðaðYr; rÞ2 bðYrÞÞ  dYr ¼ I0 þ

XK
i¼m

Ii;

where m and K are defined in the main text,

I0 ¼ lim
t[f ðdmÞ

Z t

0

�
aðYr; rÞ2 bðYrÞ

�
  dYr;

for m, i,K;

Ii ¼ lim
t[fðdiþ1Þ

Z t

f ðdiÞ

�
aðYr; rÞ2 bðYrÞ

�
  dYr;

and

IK ¼ lim
t[tk

Z t

f ðdKÞ

�
aðYr; rÞ2 bðYrÞ

�
  dYr:

Itô’s lemma can then be applied to each segment in turn. Following the conversion of the Itô integrals into ordinary Lebesgue
integrals, making the substitution s ¼ f21ðrÞ results in the path likelihood displayed in (11).

Acceptance Probability for an Interior Path Update

When we propose a new path ðy9tÞ0# t# tk
to update the current path ðytÞ0# t# tk

that does not hit the boundary, the new path
agrees with the existing path outside some time interval ½v1; v2� and has a new segment spliced in that goes from yv1 at time v1 to
yv2 at time v2: The proposed new path segment comes from a Bessel(0) process over the time interval ½v1; v2� that is pinned to
take the values yv1 and yv2 at the end points; that is, the proposed new piece of path is a bridge.

The ratio that determines the probability of accepting the proposed path is
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P
�
dDjy9; t0

�
PðdDjy; t0Þ 3

ℙ
�
dy9
�
k
�
dyjy9�

ℙðdyÞkðdy9jyÞ ; (A7)

where Pð�j y9; t0Þ and Pð�j y; t0Þ give the probability of the observed allele counts given the transformed allele frequency paths
and initial time t0; ℙð�Þ is the distribution of the transformedWright–Fisher diffusion starting from y0 . 0 at time 0 (that is, the
distribution we have sometimes denoted by ℙy0), the probability kernel kð�jyÞ gives the distribution of the proposed path when
the current path is y, and kð�j y9Þ is similar. To be completely rigorous, the second term in the product in (A7) should be
interpreted as the Radon–Nikodym derivative of two probability measures on the product of path space with itself.

Consider a finite set of times 0[ t0 [ u0 , u1 , . . . , uℓ [ tk: Suppose that fv1; v2g 2 fu0; . . . ; uℓg; v1 ¼ um; and v2 ¼ un
for some m, n: Let ð ytÞ0# t# tk

and ð y9t Þ0# t# tk
be two paths that coincide on ½0; v1� [ ½v2; tk� ¼ ½u0; um� [ ½un; uℓ�: Write

Pðx; y; s; tÞ for the transition density (with respect to Lebesgue measure) of the transformed Wright–Fisher diffusion from
time s to time t and Qðx; y; tÞ for the transition density (with respect to Lebesgue measure) of the Bessel(0) process. Sup-
pose that ðj; zÞ is a pair of random paths with Pððj; zÞ 2 ðdy; dy9ÞÞ ¼ ℙðdyÞkðdy9��yÞ: Then, writing zt ¼ yt ¼ y9t for
t 2 ½0; v1� [ ½v2; tk� ¼ ½u0; um� [ ½un; uℓ�; we have

P
�
ju1

2 dyu1 ; . . . ; juℓ
2 dyuℓ ; zu1

2 dy9
u1

; . . . ; zuℓ
2 dy9 uℓ

	
¼ Pðzu0 ; zu1 ; u0; u1Þdzu1 3⋯3 Pðzum21 ; zum ; um21; umÞdzum

3 P
�
zum ; yumþ1 ; um; umþ1

�
dyumþ13⋯3 Pð yun21 ; zun ; un21; unÞdzun3 P

�
zun ; zunþ1 ; un; unþ1

�
dzumþ13⋯3 Pðzuℓ21 ; zuℓ ; uℓ21; uℓÞdzuℓ

3Q
�
zum ; y9umþ1

; umþ1 2 um
	
dyumþ1 3⋯3Qðyun21 ; zun ; un2 un21Þ=Qðzum ; zun ; un 2 umÞ;

where the factor in the denominator arises because we are proposing bridges and hence conditioning on going from a fixed
location at v1 ¼ um to another fixed location at v2 ¼ un: Thus,
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2 dy9u1
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2 dy9uℓ
; zu1
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2 dyuℓ
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2 dy9u1
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2 dy9uℓ

�
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j¼m
P
�
y9uj
; y9ujþ1

; uj; ujþ1
�.

Q
�
y9uj
; y9ujþ1

; ujþ12 uj
�

Yn21

j¼m
P
�
yuj ; yujþ1 ; uj; ujþ1

�
Q
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yuj ; yujþ1 ; ujþ1 2 uj

� :
Therefore, the Radon–Nikodym derivative appearing in (A7) is the ratio of Radon–Nikodym derivatives�

d~ℙ

d~ℚ
��

y9
��

d~ℙ

d~ℚ
�ð yÞ ;

where ~ℙ (resp. ~ℚ) is the distribution of the transformedWright–Fisher diffusion [resp. the Bessel(0) process] started at location
yv1 ¼ y9v1 at time v1 and run until time v2: The formula (12) for the acceptance probability associated with an interior path
update follows immediately.

Theaboveargumentwas carriedoutunder theassumption that the transformed initial allele frequency y0 was strictly positive
and so all the measures involved were probability measures. However, taking y0Y0 we see that the formula (12) continues to
hold. Alternatively, we could have worked directly with the measure ℙ0 in place of ℙy0 : The only difference is that we would
have to replace Pð y0; y; 0; sÞ with the density fðy; 0; sÞ of an entrance law for ℙ0: That is, fð y; 0; sÞ has the property that

lim
y0Y0

P
�
y0; y9; 0; s9

�
Pðy0; y$; 0; s$Þ ¼

f
�
y9; 0; s9

�
fðy$; 0; s$Þ

for all y9; y$.0 and s9; s$. 0 so that Z
fð y; 0; sÞPð y; z; s; tÞ  dy ¼ fðz; 0; tÞ

for 0, s, t: Such a density, and hence the corresponding entrance law, is unique up to a multiplicative constant. In any case, it
is clear that the choice of entrance law in the definition of ℙ0 does not affect the formula (12) as the entrance law densities
“cancel out.”
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Acceptance Probability for an Allele Age Update

The argument justifying the formula (13) for the probability of accepting a proposed update to the allele age t0 is similar to the
one just given for interior path updates. Now, however, we have to consider replacing a path y that starts from y0 at time 0 and
runs until time fðtkÞ with a path y9 that starts from y0 at time 0 and runs until time f 9ðtkÞ: Instead of removing an internal
segment of path and replacing it with one of the same length with the same values at the endpoints, we replace the initial
segment of path that runs from time 0 to fðtsÞ ¼

R ts
t0
  ð1=rðsÞÞds with one that runs from time 0 to time f 9ðtsÞ ¼

R ts
t90
  ð1=rðsÞÞds;

with y9f 9ðtsÞ ¼ yfðtsÞ:
By analogy with the previous subsection, we need to consider

P
�
j 2 dy9;Tj

0 2 dt9; z 2 dy;Tz
0 2 dt

	
P
�
j 2 dy;Tj

0 2 dt; z 2 dy9;Tz
0 2 dt9

	;
where j is a transformed Wright–Fisher process starting at y0 at time 0 and running to time Fj ¼ R tsTj

0
  ð1=rðsÞÞds;

where PðTj
0 2 dtÞ ¼ rðtÞdt; and conditional on j, z is a Bessel(0) bridge running from y0 at time 0 to jFj at time

Fz ¼ R tsTz
0
  ð1=rðsÞÞds; where PðTz

0 2 dtÞ ¼ rðtÞdt independent of j and Tj
0:

Suppose that 0 ¼ u0 , u1 , . . . , um ¼ R tst9   ð1=rðsÞÞds and 0 ¼ v0 , v1 , . . . , vn ¼ R tst ð1=rðsÞÞ  ds: We have for y90; . . . ; y9m
and y0; . . . ; yn with y0 ¼ y90 and y9m ¼ yn that
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where the second equality follows from the fact that yn ¼ y9m:
Thus,

P
�
j 2 dy9; Tj

0 2 dt9; z 2 dy;Tz
0 2 dt

	
P
�
j 2 dy;Tj

0 2 dt; z 2 dy9;Tz
0 2 dt9

	 ¼

�
d�ℙ
�

d�ℚ
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ðdℙ̂=dℚ̂ÞðyÞ 3
Q
�
y0; y9T9;T9

�
Qðy0; yT ;TÞ 3

r
�
t9
�

rðtÞ ;

where T ¼ R tst ð1=rðsÞÞ  ds and T9 ¼ R tst9   ð1=rðsÞÞds; ℙ̂ (resp. �ℙ) is the distribution of the transformed Wright–Fisher diffusion
starting at location y0 at time 0 and running until time T (resp. T9), and ℚ̂ (resp. �ℚ) is the distribution of the Bessel(0) process
starting at location y0 at time 0 and running until time T (resp. T9).

We have thus far assumed that y0 is strictly positive. As in the previous subsection, we can let y0Y0 to get an expression in
terms of Radon–Nikodym derivatives of s-finite measures and the density cðy; sÞ of an entrance law for ℚ0: That is, cðy; sÞ has
the property that

lim
y0Y0

Q
�
y0; y9; s9

�
Qðy0; y$; s$Þ ¼

c
�
y9; s9

�
cðy$; s$Þ

for all y9; y$.0 and s9; s$. 0; so that
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Z
cð y; sÞQð y; z; tÞ  dy ¼ cðz; sþ tÞ

for s; t. 0: Up to an irrelevant multiplicative constant, c is given by the expression (14), and the formula (13) for the
acceptance probability follows immediately.

Acceptance Probability for a Most Recent Allele Frequency Update

The derivation of formula (15) for the probability of accepting a proposed update to the most recent allele frequency is similar
to those for the other acceptance probabilities (12) and (13), so we omit the details.
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